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Abstract: This research paper presents studies on the operation process of the Honker 2000 light
utility vehicles that are part of the Polish Armed Forces transport system. The phase space of the
process was identified based on the assumption that at any given moment the vehicle remains in
one of four states, namely, task execution, awaiting a transport task, periodic maintenance, or repair.
Vehicle functional readiness and technical suitability indices were adopted as performance measures
for the technical system. A simulation model based on Monte Carlo methods was developed to
determine the changes in the operational states. The occurrence of the periodic maintenance state is
strictly determined by a planned and preventive strategy of operation applied within the analysed
system. Other states are implementations of stochastic processes. The original source code was
developed in the MATLAB environment to implement the model. Based on estimated probabilistic
characteristics, the authors validated 16 simulation models resulting from all possible cumulative
distribution functions (CDFs) that satisfied the condition of a proper match to empirical data. Based
on the simulated operation process for a sample of 19 vehicles over the assumed 20-year forecast
horizon, it was possible to determine the functional readiness and technical suitability indices. The
relative differences between the results of all simulation models and the results obtained through the
semi-Markov model did not exceed 6%. The best-fit model was subjected to sensitivity analysis in
terms of the dependence between functional readiness and technical suitability indices on vehicle
operation intensity. As a result, the proposed simulation system based on Monte Carlo methods
turned out to be a useful tool in analysing the current operation process of means of transport in
terms of forecasts related to a current environment, as well as when attempting its extrapolation.

Keywords: Monte Carlo algorithm; simulation approach; semi-Markov process; transport system;
reliability analysis; maintenance

1. Introduction

Simulation models based on Monte Carlo methods involve repeated performances of a
certain random experiment. Initially, they were used to numerically determine the number
value of π, calculate the integrals of complex functions as the area under the graph, and
determine the probability of random events [1,2]. Developing an algorithm that depicts the
course of changes in complex processes and implementing it within software enables the
solution of a complex analytical problem using simulation methods [3–7].

Markov models [8,9] and semi-Markov models [10,11] are often used to analyse
and evaluate the operation processes. They require a thorough analysis of the stochastic
process through the identification of possible states and the description of probabilistic
characteristics for interstate transition times. The elements of the transition intensity
matrix for Markov models are identified as reciprocals of the expected times of transition
between individual states. However, in the case of mechanical vehicles, the probabilistic
characteristics determined within a time domain describe the intensity of the operation
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sub-process in a rather vague manner. The value of the vehicle with technical service
life exhaustion is a reflected unit of measure of the work performed, expressed by the
covered mileage (distance). Furthermore, probabilistic characteristics that describe the
correct operating intervals of the vehicle between successive failures can be expressed
within the mileage domain [12,13].

This study is a continuation of the research in the field of reliability and readiness of
light utility vehicles. Previous publications in this field focused on analysing reliability
based on censored failure damage [12] and modelling readiness through the application
of Markov theory [14] and semi-Markov process theory [15]. After analysing a true opera-
tion’s process, the authors developed a four-state simulation model employing Monte Carlo
methods. It was assumed that the operation of light utility vehicles is a mixed process, that
is, random-deterministic. Consequently, operation plans reflect the deterministic nature,
which is, however, interrupted by random events of a stochastic character [6]. This result
is from the planned and preventive technical maintenance strategy applied within the
operating system of the studied vehicle population. The proposed innovative simulation
model was verified based on determined probabilistic characteristics of individual oper-
ation, maintenance, and overhaul sub-processes. The model’s undoubted advantage is
its held ability to determine the values of functional readiness and technical suitability
indices not only relative to current operating conditions but also to enable forecasting of
their values in the case of hypothetically possible scenarios.

The approach to modelling an operation process presented in this paper supplements
the current state of knowledge, which is discussed in the form of a source literature review.
The iterative algorithm developed for the model based on Monte Carlo methods enables
simulating a process composed of both stochastic and deterministic sub-processes. The
achievement of particular operating states by vehicles in a transport system is carried out
according to probabilistic characteristics. The cumulative distribution functions of daily
mileage, repair time, and reliability function determine the course of the realisation of
stochastic processes in the system. Periodic maintenance is a process strictly determined
by the operating strategy. The numerical analyses carried out that make up part of this
study refer to the operation of a selected population of light utility vehicles; however, the
proposed model can also be applied to the analysis of other technical objects after appro-
priate modifications. It should also be stressed that the presented approach to simulation
modelling, as well as the analysis of other technical objects, has not previously been the
subject of research by other authors. The iterative algorithm developed is designed both to
assess the efficiency of the operation of the transport system under current conditions and
to forecast its performance under hypothetical conditions.

Additionally, the choice of the Honker 2000 as the subject of this study is justified by
the significant importance of light utility vehicles in military transport systems. Assessment
and prediction of the readiness and suitability of these technical objects are necessary for
the planning of training and combat operations. In the reality of constant change and
the emergence of new challenges, the proposed iterative Monte Carlo algorithm and the
four-state operation model are valuable tools in engineering and military practise. The
superiority of the proposed simulation approach over Markov and semi-Markov models
is the extrapolation of the model over a wide range of variability in the intensity of the
operation processes.

The purpose of this work is to develop a simulation model for the analysis, evaluation,
and prediction of the efficiency and reliability of vehicle operating processes in transport
systems. The main contributions of this paper are as follows:

• Development of a simulation model based on Monte Carlo methods;
• Implementation of the Monte Carlo model in the MATLAB environment;
• Validation of simulation models based on the analytical approach of a four-state

semi-Markov process;
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• Evaluation of the operation and maintenance processes of light utility vehicles using
the proposed indicators and sensitivity analysis resulting from changes in the intensity
parameters of the operational process.

This paper is divided into six sections. The literature review covers the current
state of knowledge and shows the research published by other authors. In section three,
several assumptions are made, and the simulation model based on Monte Carlo methods
is presented with estimations of the probabilistic characteristics of sub-processes that
determine whether a vehicle remains in individual operating states. The semi-Markov
approach was developed in section four. Section five presents the results of the simulations
and stochastic models. The Monte Carlo and semi-Markov models had almost the same
functional readiness and technical suitability indicators, which is why the sensitivity
analysis was developed for the above-mentioned models. In the end, the research is
summarised and our final conclusions are formulated.

2. Literature Review

Several research papers employ Monte Carlo models for reliability studies [16–20].
Zhang et al. [21] used the Monte Carlo simulation to estimate the optimal parameters of
a fault location model for wind turbines. Kallen [22] suggested a simulation model for a
renewable object repair process with characteristics consistent with the exponential and
Weibull distributions. Durczak et al. [23] used Monte Carlo techniques, Latin hypercube
sampling, and Iman–Conover methods to generate time-to-failure data from the Weibull
distribution. In contrast, the application of simulations within reliability studies of com-
puter networks by Benson and Kellner [1] enables estimating the mean time-to-failure in
an easier manner than with traditional methods. Simulation and computational methods
relative to power supply systems are compared in [24]. In the case of both methods, the
waveforms of the reliability function are very similar. Studies on the reliability of boat
positioning systems involve developing a Monte Carlo model based on the probabilistic
characteristics of its individual components [25]. A similar approach is presented in relation
to photovoltaic systems when determining the reliability function for the entire system [26].
Green et al. [27] developed a complex simulation algorithm based on the Monte Carlo
method and intelligent state space pruning (ISSP) combined with genetic algorithms (GA),
particle swarm optimisation (PSO), ant colony optimisation (ACO), and artificial immune
system optimisation (AIS). This solution reduced computational time by 50-90% com-
pared to the non-sequential Monte Carlo simulation in the reliability analysis of electrical
power systems.

Roslan et al. [28] developed a two-state reliability model, which was then verified
through sequential and non-sequential simulations. In terms of reliability index estimation
accuracy, the sequential Monte Carlo model turned out to be more effective than the
non-sequential version. Research on the technical readiness of rotary drilling machines
as renewable objects involved developing a simulation model based on Monte Carlo
methods and Markov chain theory [29]. Here, the parameters of the reliability function
were estimated based on times between failures. In their paper, for each 10 h period, it
was determined with an 80% probability that a system composed of ten drilling machines
will have five to eight such objects ready for operation. Whereas in [30], Monte Carlo
sequential algorithms were used to determine the remaining useful life. The Monte Carlo
Markov chain simulation algorithm [31] was developed to optimise maintenance policy
and resulted in a 10% reduction in total costs for every mile of track.

Zhang et al. [32] proposed a method combining Monte Carlo simulations and direc-
tional sampling to analyse object reliability sensitivity. This method is based on the nearest
Euclidean distance strategy. The accuracy and effectiveness of the proposed method were
proved through practical numerical examples. In turn, Zhang et al. [33] evaluated the
reliability of a power station by adopting a four- and five-state reliability model. They
demonstrate that an approach based on the sequential Monte Carlo method is more rigor-
ous than classical methods and that the calculated reliability indices adopt lower values.
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A novel method for evaluating the reliability of renewable objects is proposed in [5]; the
authors combined Monte Carlo methods with fault trees. In relation to the field of readiness
and reliability of military structures, the authors of [34] conducted Monte Carlo simulations
for three strategies for managing the platform operation processes, namely, replacing as
needed, re-inspection at a specified interval, and prognostics. The prognostic approach
optimised the operational readiness of military equipment by forecasting damage and
reducing logistics delays. In addition, determining the remaining functional period of
structures supports commanders in selecting appropriate platforms to implement future
missions, resulting in a reduced failure risk.

The issues related to the simulation modelling of transport systems are presented
in [35]. The authors analysed mass transit that provides transport services on 20 routes.
The performance characteristics of individual drivers and vehicle reliability were used to
optimise transport processes. Performing 10,000 simulation steps enable one to estimate
the expected number of unrealized trips and the level of reduction in operating costs
within a transport system, depending on the availability and reliability of the driver. The
same number of simulations were conducted in the case of the Markov Chain Monte
Carlo (MCMC) in [36], developed for a four-state phase space of the electrical vehicle
operation process. In another paper [37], a Monte Carlo simulation based on the probability
distribution function of the travel time was used to estimate the expected secondary delays
of the trips. In Table 1, some selected works on the application of the Monte Carlo approach
to reliability and readiness research for a spectrum of technical facilities and systems
are summarised.

Table 1. Review of literature on the Monte Carlo approach for reliability and availability analysis.

Methods Purposes of Research Case Studies Simulations Papers

Monte Carlo Reliability analysis Coated surface
Sampling of

inter-repair time
(500 samples)

[22]

Monte Carlo, Latin hypercube
sampling (LHS) and

Iman-Conover methods
Reliability analysis Agricultural tractors Sampling of

time-to-failure data [23]

Markov Chain Monte Carlo Reliability and
availability analysis

Rotary drilling
machines

Simulation of Markov
Chain transitions [29]

Markov Chain Monte Carlo
Global minimization of

the system failure
probability

Structural dynamic
systems under

stochastic excitation:
linear single-degree of
freedom system, linear

eight-story two
dimensional frame

structure and a
nonlinear three

dimensional bridge
structural

Random sampling of
many variables [17]

Markov Chain Monte Carlo Modelling of vehicle
use patterns Electric vehicles

Random sampling of
daily driving time

(105 trials)
[36]

Markov Chain Monte Carlo
and Sequential Monte Carlo

Assessment of
remaining useful life Milling machine

Sampling from
posteriori distribution

of states
[30]

Markov Chain Monte Carlo with
the Metropolis–Hasting

Algorithm
Reliability assessment Bridge health

monitoring

Sampling of points
to estimate failure

probability
[18]
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Table 1. Cont.

Methods Purposes of Research Case Studies Simulations Papers

Sequential Markov Chain
Monte Carlo

Optimisation of
preventive

maintenance schedule

Isolated Distributed
Cuban Power System

(wind turbines)

Simulation of
wind speed [38]

Sequential and
Non-sequential

Monte Carlo
Reliability assessment Distribution network

Simulation by sampling
of time-to-failure and

time-to-repair
[28]

Monte Carlo and Copula Power demand
prediction Electric vehicles

Simulation by sampling
start time, end time,

and distance travelled
[39]

Monte Carlo and
directional sampling

Reliability sensitivity
analysis

Headless rivet
and wing box structure

Random sampling data
(1 × 106 and 2 × 106) [32]

Deep Belief Network and
Monte Carlo

Calculate the reliability
of the model

Physically-based
thermal error model of

the servo axis in
machine tool

Random sampling data
(107 trials) of the

thermal characteristic
parameters

[16]

Iterative Monte Carlo and
semi-Markov approach

Assessing readiness
and forecasting in

various operational
scenarios

Transportation system
equipped with light

utility vehicles

Sampling of task
assignments, daily

mileages, failures, and
repairs based on CDFs
and reliability function

This paper

Unlike previous studies, this publication presents a simulation model that takes into
account random-deterministic processes. In the process of vehicle operation, periodic
maintenance was adopted according to the documentation, taking into account time in-
tervals or the amount of work performed in order to reliably reflect the phase trajectory
for the vehicle. A novelty in this publication is the development of a four-state model
adapted to the specificity of the Honker 2000 light utility vehicles, in accordance with the
adopted modelling goal. Furthermore, the intention of the authors was to check which
research method would prove to be more effective. Our findings suggest that the Monte
Carlo simulation model turned out to be a slightly better forecasting tool compared to the
semi-Markov model.

3. Monte Carlo Approach

All variables used for simulation modelling are listed in Table 2. A four-state vehicle
operation process space was assumed for the proposed modelling method. The importance
and description of individual states can be found in Table 3. Vehicle operation can be
understood in this case as a process of changes in the operational states implemented
within a calendar time. These changes are determined through operational strategy, op-
eration processes, reliability of system components, and the organisation and efficiency
of a technical system responsible for maintenance and operation. Due to the functional
specificity of military transport systems (in the case of a defined state space), the authors
adopted the assumption that on a given day, the vehicle is in exactly one operational state.
The phase space of the process contains states that are significant from the perspectives
of functional readiness and technical suitability. Compared to a nine-state model [15],
the four-state model is simplified by eliminating short-term operational states, such as
refuelling and maintenance performed both before and after the execution of the task. Fur-
thermore, operational states that involve a vehicle staying in a technical unsuitability state,
i.e., diagnosis (searching for damage causes) or awaiting repair or repair, are aggregated
into a single state defined as ‘repair’.
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Table 2. Notations and definitions.

Notations Definitions

X(t) Stochastic process
Tm Normative period between maintenance
Lm Normative mileage between maintenance
tm(t) Time since last periodic maintenance
lm(t) Mileage since last periodic maintenance
Θ Probability of assignment task
κ Redundancy
ld Daily mileage
ldmax Maximum daily mileage
lr Mileage since last failure
lf Mileage on the day of failure

G(ld) Cumulative distribution function (CDF) of
daily mileage

R(lr) Reliability function

F(lr)
Cumulative distribution function (CDF) of
failures

f (lr) Probability density function (PDF) of failures

H(i) Cumulative distribution function (CDF) of
repair time

q1, q2, q3, q4
Random values of the uniform distribution on
the interval (0, 1)

T(S1), T(S2), T(S3), T(S4) Sojourn times of state S1, S2, S3, S4
Kr Readiness indicator
Ks Suitability indicator
Nv Number of vehicles
Zi Number of iterations

Table 3. Operation process state space.

State Meaning Description

S1 Task execution Vehicle is assigned to perform transportation tasks.
S2 Awaiting a transport task Vehicle in reserve is waiting for a task.

S3 Periodic maintenance Periodic maintenance is required.
Vehicle is being serviced.

S4 Repair Vehicle has failed. Repair is completed or vehicle
is pending repair.

Developing probabilistic characteristics is the basis for constructing a proposed sim-
ulation model based on Monte Carlo methods. The analysis was conducted through
operational testing covering a sample of 19 Honker 2000 vehicles operated by the transport
system of a military unit. These vehicles are intended to transport passengers and cargo
weighing less than 1000 kg. They constitute a significant component of the transport
capabilities of the Polish Armed Forces.

A three-element subset of technical suitability states, where an object is not damaged
and does not require repair, was distinguished in the four-state operation model. This subset
contains a two-element subset of functional readiness states, where the vehicle is ready or
is performing transport tasks. Figure 1 is a graphical representation of the operational state
distribution, together with vectors symbolising possible inter-state transitions.
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Figure 1. State transition within the operation process.

On the basis of the simulation results, the efficiency of the operation processes is
assessed on the basis of suitably selected indicators. For the four-state model, two indicators
were proposed to describe vehicle readiness: availability and suitability. The readiness
index Kr corresponds to the probability that a technical object is in a subset of readiness
states, which for the four-state model refers to states S1 and S2. Technical suitability
expresses the condition of an object in which it is not damaged and repair is not required [15].
The technical suitability index Ks is the probability that the vehicle is in a subset of technical
suitability states, i.e., states S1, S2, and S3. The values of these indices are calculated
according to the following relationships:

Kr =
T(S1) + T(S2)

4
∑

i=1
T(Si)

, (1)

Ks =
T(S1) + T(S2) + T(S3)

4
∑

i=1
T(Si)

. (2)

3.1. Periodic Maintenance

Within the planned and preventive strategy for vehicle operation process management,
periodic maintenance tasks are implemented at strictly specified time and mileage intervals.
According to its assumptions, strictly defined maintenance tasks are performed after com-
pleting a specified amount of work, usually expressed in engine hours or kilometres [40,41].
However, it should be noted that all types of chemical, biological, and climatic factors acting
on technical objects favour the physical ageing of assemblies, subassemblies, mechanisms
and machinery components, as well as operating fluids [42,43]. This implies the need to
define maximum intervals between successive maintenance tasks, usually expressed in
months or years [44–48].

Such an organisation of vehicle maintenance circumscribes the deterministic nature of
implementing this sub-process. A mathematical description of an event involving process
X(t) reaching state S3 is expressed by the following relationship:

(tm(t) ≥ Tm ∨ lm(t) ≥ Lm)⇒ X(t) = S3. (3)

The incidence of state S3 is mainly affected by the intensity of the operation process,
which is determined by the probability of assigning a transport task to a vehicle and the
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daily mileage of vehicles. In the case of vehicles operated with low intensity, the frequency
of carrying out periodic maintenance tasks is mainly based on the intervals specified via
the Tm characteristic.

An undoubted advantage of the planned and preventive strategy is the possibility of adapting
a technical system to enable efficient implementation of periodic maintenance [49–51]. Due to
the determined interval of their implementation and a standardised scope of maintenance
activities, the duration of a vehicle’s stay in the state of S3 falls within a single day of work.

Maintenance principles for military vehicles are laid out in a catalogue of operational
standards [52], as well as manufacturer manuals. The interval between successive periodic
maintenance and servicing of Honker light utility vehicles has been determined by two
parameters: Tm = 365 days and Lm = 10,000 km. Vehicles are factory protected against
weather factors; however, the manufacturer indicates that periodic maintenance is required
at least once a year in the course of operation. In the case of lower operation intensity,
the determining factor in performing periodic maintenance is the loss of physicochemical
properties of operating fluids over time, resulting from the action of external factors.

In this study, we evaluated the operation and maintenance processes within the planned
and preventive strategy of operational management. Herein, the appearance of state S3 in a
simulation model is the result of the tm or lm variables reaching permissible values.

3.2. Operational Process

The magnitude of transport demand within an operation system determines the
operational intensity of the means of transport; ensuring an adequate level of reliability
and security of transport process implementation requires maintaining a certain number of
vehicles in a state of technical readiness—as backup for objects operated at a given time.
This state enables us to respond actively to unwanted vehicle failures [47]. This feature
is a particularly important functional aspect of military transport systems. However, an
increasing number of standby vehicles entails the costs of acquiring and maintaining a fleet
of cars [53,54].

The proposed method involves an introduced coefficient of operation task allocation
Θ, which describes the probability that a task is executed by a vehicle with an alignment
on a given day of operation. The Θ coefficient takes values from the range [0.0–1.0], and its
high value implies a significant percentage of the exploitation of transport resources within
an operation process and a low backup resource simultaneously. The mean redundancy
within a transport system can be expressed using the Θ coefficient in (4) as follows:

κ =
1−Θ

Θ
. (4)

During successive iterations in a Monte Carlo simulation, a computer-based random
number generator defines a certain number q1 from the range [0.0–1.0]. Drawing a q1
number lower than the Θ coefficient results in allocating a transport task at a given step of
a simulated operation process. Otherwise, a roadworthy vehicle remains as backup and
switches to the S2 state:

q1 > Θ⇒ X(t) = S2. (5)

In our study, a cumulative distribution function (CDF) G was used for the daily
mileage of vehicles that perform transport tasks to enable a stochastic description of the
intensity of technical service life exhaustion. Therefore, the probability distribution is fit on
the basis of operational needs knowledge.

At this step of the simulation, the generator draws a q2 number from the range [0.0–1.0].
The expected ld distance that the vehicle will cover on a given day is an argument for which
the value of the G CDF is q2 as follows:

ld = G−1(q2). (6)
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The assumption presented through formula (5) is burdened with a certain risk. Draw-
ing a q2 number very close to 1.0 may lead to a situation in which the ld argument takes
on an unrealistically high value. In reality, the maximum daily mileage value is limited
by technical and road conditions. Therefore, maintaining the credibility of a simulated
operation process requires introducing restrictions in the form of a maximum daily mileage
value, depending on the types of means of transport, infrastructure, and other conditions.

The operation process of military vehicles was analysed based on empirical data
collected as a part of operational studies covering a sample of 19 vehicles. These were
operated on an actual military transport system for a period of 3 years. The operation
process is particularly well documented, which enabled its reliable reconstruction.

Military transport systems are characterised by maintaining a high-level means of
transport reserve. Based on the observations of the operation process, the authors estimated
the value of the transport task allocation coefficient Θ to be 0.32. This value suggests that,
statistically, an average of 32% of operational vehicles are intended for task execution on a
single day, and more than two-thirds function as reserve vehicles and await being used
in an emergency situation. Accordingly, the probabilistic description of the functioning of
the task allocation system is a binomial distribution in which an event that involves the
allocation of a task to a vehicle is implemented with a probability equal to 0.32. On the
contrary, the probability that an operational vehicle will not perform any tasks on a given
day is 0.68.

The execution leads to the end of service life. Service life is measured in mileage
expressed in units of length. The variety of tasks within a system implies the random
nature of the daily mileage. In mathematical terms, the value of daily mileage is a random
variable that is described through an appropriate distribution. To determine probabilistic
characteristics, 4620 implementations of the random variable ld were used. These 4620 daily
miles were recorded during the 3-year operation period. They constituted the basis for esti-
mating the value of the empirical cumulative distribution function. The fit of exponential,
Weibull, gamma, and lognormal cumulative distribution functions to the empirical cumula-
tive distribution function value is shown in Figure 2; Table 4 lists CDFs for probabilistic
models describing the intensity of the vehicle operation process, together with the assessed
fit using Pearson’s correlation coefficient R. According to our results, the lognormal model
performed slightly better than the other models, obtaining a value of R = 0.9994.
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Table 4. Estimation of CDFs’ parameters of daily mileage.

Model CDF Parameters Estimation R

Exponential G(ld) = 1− exp(−λld) λ—scale λ = 0.0113 0.9976

Weibull
G(ld) =

1− exp
[
−
(

ld
α

)β
] α—scale

β—shape
α = 91.9967
β = 1.0984 0.9970

Gamma G(ld) = 1
Γ(k) γ

(
k, ld

θ

) k—shape
θ—scale

k = 1.2618
θ = 70.1488 0.9975

Lognormal
G(ld) =

1
2

[
1 + erf

(
ln ld−µ

σ
√

2

)] µ—log location
σ—log scale

µ = 4.0373
σ = 1.0131 0.9994

The domain of the operating intensity model CDFs is the range (0,+∞). In the event
of a Monte Carlo simulation drawing, a q2 number with a value very close to 1 and its
corresponding argument ld can take an unrealistic value. This issue requires setting the
maximum value of the ld variable at a level of 1000 km per day, based on empirical data
and the technical capabilities of the vehicles.

3.3. Reliability

The reliability of a technical object characterises its ability to operate correctly and
its resistance to failures and damage [55–57]. Within the proposed four-state operational
model, an object can switch from states S1–S3 to state S4—provided that it was assigned on
a given day with a transport task during the execution of which it experienced damage to at
least one of its mechanisms or elements. Mechanical vehicles, as renewable objects, can be
characterised through reliability models related to mileage between successive failures [12].

The reliability function reflects the probability of correct functioning from moment
0 to t [58–61]. In relation to vehicles subject to refurbishment, the function R(lr) is related to
the mileage lr, covered since the last repair, according to the relationship (7) [12] as follows:

R(lr) = P(L > lr). (7)

If at time t, the mileage of a vehicle since the last recorded failure is lr, while the
assigned transport task requires covering a distance ld, then the probability of its failure
during the execution of the task is expressed by Formula (8) as follows:

P{(L ≤ lr + ld)|(L > lr)} =
P(L ≤ lr + ld, L > lr)

P(L > lr)
=

lr+ld∫
lr

f (l)dl

1−
lr∫
0

f (l)dl

= 1− 1− F(lr + ld)
1− F(lr)

= 1− R(lr + ld)
R(lr)

. (8)

Monte Carlo simulation involves drawing a q3 number from the range [0.0–1.0]. The
probability that an event q3 is lower or equal to the value obtained from formula (8)
corresponds to the probability of a vehicle failure during the execution of a transport task
under the presented conditions. In such a situation, the means of transport switch to state
S4. Otherwise, the vehicle remains in state S1 and executes an assigned task according
to the plan. The rules for the occurrence of vehicle failure (S4) during the execution of
a transportation task consisting of covering the distance ld are described by Equation (9)
as follows:

q3 ≤ 1− R(lr + ld)
R(lr)

⇒ X(t) = S4. (9)

Otherwise, at time t, the stochastic process X(t) assumes state S1 according to Equation (10)
as follows:

q3 > 1− R(lr + ld)
R(lr)

⇒ X(t) = S1. (10)
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The authors of this study conducted research on the reliability of light utility vehicles
and published it in [12]. In this current work, the reliability function was estimated using
the Kaplan–Meier estimator based on the empirical data on mileages between failures. This
method is applied to determine the probability of the correct operation of the device based
on information that contains censored data. Figure 3a shows the results of the estimation
using a step graph.
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(b)—exponential model, (c)—Weibull model, and (d)—neural model [12].

The reliability function was approximated using the exponential, Weibull, and neural
models. Figure 3b–d is a graphical representation of function waveforms with reference
to estimated values. The accuracy of the fit measured through the correlation coefficient
R was greater than 0.99 for all models. Table 5 lists the analytical forms of the reliability
models used to perform the Monte Carlo simulation.

Table 5. Reliability functions [12].

Model Reliability Function R

Exponential R(lr) = exp(−0.000235 lr) 0.9945
Weibull R(lr) = exp

(
−0.000574 lr0.889) 0.9971

Neural R(lr) =
32.925260+1.786689 exp(0.000249 lr)

1+34.674828 exp(0.000249 lr)
0.9975

Despite the best-fit of the neural model to the empirical values of the reliability
function, it is only an interpolation in terms of the known miles between the failures
observed during the operation process. Outside this range, the approximating function is
flattened. For this reason, the expected value of the mileage between subsequent failures
cannot be calculated [12]. The application of a neural model for a Monte Carlo simulation
may also lead to the implementation of an unreal process after the vehicle exceeds the
right-hand boundary of the interval between failures, which constitutes a model limitation.
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3.4. Failure Diagnostics and Repair

In the four-state operational model, S4 corresponds to a situation where a vehicle is
not suitable for the execution of transport tasks. Restoring the technical suitability of an
object requires diagnostic actions that identify the mechanisms or elements to be repaired
or replaced, followed by repair activities. Unfit object recovery time depends on repair
capabilities (capacity) and the effectiveness of the material supply subsystem (part delivery,
availability, and time).

A probabilistic description of the S4 implementation is the cumulative distribution
function of H for the duration that a vehicle remains in a technically unsuitable state [62,63]:

H(i) = P(I ≤ i). (11)

The probability of an event involving vehicle repair on an i-day after failure is calcu-
lated according to formula (12) as follows:

P{(I ≤ i)|(I > i− 1)} = P(I ≤ i, I > i− 1)
P(I > i− 1)

=

i∫
i−1

h(u)du

1−
i−1∫
0

h(u)du

=
H(i)− H(i− 1)

1− H(i− 1)
= 1− 1− H(i)

1− H(i− 1)
. (12)

The course of a Monte Carlo simulation involves a sequence of successive iterations
within the technical recovery sub-process. Each subsequent step includes drawing a
number q4 from a standard range of [0.0–1.0] based on comparing the values of q4 with the
probability of completing a repair process in the i-step of the simulation, which corresponds
to successive calendar days. The technical recovery process is completed at the i iteration,
in the event of relationship (13):

q4 ≤ 1− 1− H(i)
1− H(i− 1)

. (13)

Otherwise, the vehicle remains in state S4.

q4 > 1− 1− H(i)
1− H(i− 1)

⇒ X(t) = S4. (14)

The time-to-repair the vehicle after it reaches a state of unsuitability primarily depends
on the complexity of the repair process and numerous factors occurring within the technical
system. The total duration of a vehicle remaining in state S4 is the total time to diagnose
the causes of the failure, the physical implementation of the repair process, and the logistic
time associated with acquiring spare parts and waiting for the availability of technical
personnel. Within the proposed four-state model, all actions involving an unfit vehicle are
classified as state S4.

The probabilistic characteristic required for conducting a Monte Carlo simulation
is the cumulative distribution function (CDF) for the time a technical object remains in
state S4. For this purpose, as part of the operational study of light utility vehicles, the
authors gathered documentation and used it to develop an empirical database that includes
technical recovery times. In our study, 100 repairs were recorded during the 3-year opera-
tion period. They constituted a basis for estimating the value of the empirical cumulative
distribution function. Figure 4 shows the fit of exponential, Weibull, gamma, and loga-
rithmic normal cumulative distribution functions to the empirical cumulative distribution
function value. Table 6 lists estimated CDFs parameters with an assessed fit using Pearson’s
correlation coefficient R.
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Table 6. Estimation of repair time CDFs parameters.

Model CDF Parameters Estimation R

Exponential H(i) = 1− exp(−λi) λ—scale λ = 0.0704 0.9207

Weibull H(i) = 1− exp
[
−
(

i
α

)β
]

α—scale
β—shape

α = 5.0784
β = 0.4612 0.9924

Gamma H(i) = 1
Γ(k) γ

(
k, i

θ

) k—shape
θ—scale

k = 0.3144
θ = 45.1562 0.9846

Lognormal H(i) = 1
2

[
1 + erf

(
ln i−µ

σ
√

2

)] µ—log location
σ—log scale

µ = 0.4768
σ = 2.3254 0.9907

3.5. Monte Carlo Models of Light Utility Vehicle Operation Process

Probabilistic characteristics with a coefficient representing the quality-of-fit to empir-
ical values of at least R = 0.99 were selected to validate the simulation model. Periodic
maintenance is the only determined process within the operation system. Transport tasks
are assigned according to a binomial distribution with a success probability equal to the
value of the Θ coefficient. The exhaustion process of the technical life of the service is
measured by the distance covered by a vehicle. Daily mileage is understood as a random
variable and is presented as a cumulative distribution function for the exponential, Weibull,
lognormal, and gamma distributions. The reliability function is the result of previous
research discussed in [12], which involved developing three reliability models. Due to the
limitations of the neural model, two other distributions, i.e., exponential and Weibull, are
applied to describe the vehicle failure process. On the other hand, the repair process was
characterised by Weibull and lognormal distribution functions for the random variable of
the time the vehicle was in a state of technical unsuitability.

The general Monte Carlo model developed was validated on the basis of all possible
combinations of characteristics exhibited by individual processes that occur within a
military transport system. Table 7 lists sixteen models with assigned characteristics.
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Table 7. Monte Carlo models of military vehicle operation processes.

Monte Carlo
Model Maintenance Assignment

of Tasks
Operational

Process Reliability Repair

MC1 Deterministic Binomial Exponential Exponential Weibull
MC2 Deterministic Binomial Exponential Exponential Lognormal
MC3 Deterministic Binomial Exponential Weibull Weibull
MC4 Deterministic Binomial Exponential Weibull Lognormal
MC5 Deterministic Binomial Weibull Exponential Weibull
MC6 Deterministic Binomial Weibull Exponential Lognormal
MC7 Deterministic Binomial Weibull Weibull Weibull
MC8 Deterministic Binomial Weibull Weibull Lognormal
MC9 Deterministic Binomial Lognormal Exponential Weibull
MC10 Deterministic Binomial Lognormal Exponential Lognormal
MC11 Deterministic Binomial Lognormal Weibull Weibull
MC12 Deterministic Binomial Lognormal Weibull Lognormal
MC13 Deterministic Binomial Gamma Exponential Weibull
MC14 Deterministic Binomial Gamma Exponential Lognormal
MC15 Deterministic Binomial Gamma Weibull Weibull
MC16 Deterministic Binomial Gamma Weibull Lognormal

3.6. Software Implementation

A diagram of the proposed method is illustrated in Figure 5. A preliminary stage
of simulation implementation is to define the characteristics of processes associated with
vehicle operation and to determine the basic simulation parameters, that is, the number of
vehicles and the number of iterations conducted. The simulation is then started while the
initial value randomisation is maintained for each vehicle.
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The first simulation phase involves verifying whether vehicle operating parameters
determine periodic maintenance. If this condition is satisfied, the vehicle switches to the S3
state. Otherwise, a Monte Carlo draw takes place, and it is determined whether a transport
task has been assigned for this vehicle to be executed in the simulated step. If such a task
is not assigned, the vehicle enters the S2 state. Otherwise, the simulation draws the daily
mileage that the vehicle needs to cover to perform the assigned task. In the next phase, the
algorithm checks if there was any vehicle failure during the execution of the task. If such a
failure does not occur, the object enters the S1 state. The appearance of a failure results in
classifying the vehicle as being in the S4 state, where it remains until the repair sub-process
is completed.

The proposed method for modelling simulation of a vehicle operation process was
implemented within the MATLAB environment. The application pseudocode is shown
as Algorithm 1.

Algorithm 1: Pseudocode of Monte Carlo simulation for the four-state operation process.

Input: Reliability function R(lr), CDF of daily mileage G(ld), probability of assignment task
Θ, CDF of repair time H(i), maintenance parameters Lm and Tm, maximum of daily mileage
ldmax, number of vehicles Nv, and number of iterations for each vehicle Zi
Output: Trajectory X(t), sojourn times T(S1), T(S2), T(S3), T(S4), readiness Kr,
and suitability Ks

1 for z = 1: Zi do
2 set t = 1, set random integer values of lm, tm, lr
3 while t ≤ Zi do
4 if lm ≥ Lm then
5 Periodic maintenance X(t) = S3, T(S3) = T(S3) + 1
6 lm = 0, tm = 0
7 t = t + 1
8 elseif tm ≥ Tm then
9 Periodic maintenance X(t) = S3, T(S3) = T(S3) + 1

10 lm = 0, tm = 0
11 t = t + 1
12 else
13 q1 = rand
14 if q1 > Θ then
15 Awaiting for task X(t) = S2, T(S2) = T(S2) + 1
16 t = t + 1
17 else
18 q2 = rand
19 G(ld) = q2, find ld,
20 ld (ld > ldmax) = ldmax
21 q3 = rand
22 if q3 > probability of failure then
23 Task realization X(t) = S1, T(S1) = T(S1) + 1
24 lr = lr + ld, lm = lm + ld, tm = tm + 1
25 t = t + 1
26 else
27 Failure X(t) = S4, T(S4) = T(S4) + 1
28 set random value lf → [0.0, ld]
29 lm = lm + lf, tm = tm + 1
30 t = t + 1
31 q4 = rand
32 i = 1



Energies 2023, 16, 2210 16 of 31

33 while q4 > probability of repair in i-th iteration do
34 if t < Zi then
35 Repair of vehicle in progress X(t) = S4, T(S4) = T(S4) + 1
36 tm = tm + 1
37 i = i +1
38 q4 = rand
39 t = t + 1
40 else
41 End of simulation; vehicle inoperable
42 end if
43 end while
44 Vehicle repaired in i-th iteration
45 lr = 0
46 t = t + 1
47 end if
48 end if
49 end if
50 end while
51 end for
52 Calculate readiness Kr = [T(S1) + T(S2)]/[T(S1) + T(S2) + T(S3) + T(S4)]
53 Calculate suitability Ks = [T(S1) + T(S2) + T(S3)]/[T(S1) + T(S2) + T(S3) + T(S4)]
54 return X(t), T(S1), T(S2), T(S3), T(S4), Kr, Ks

4. Semi-Markov Approach

Semi-Markov processes are a generalisation of homogeneous Markov processes in
terms of distributions of the individual states’ durations. Markov models assume ex-
ponential distributions, significantly narrowing the spectrum of their applications [64].
Furthermore, their use without statistical verification may lead to significant errors in the
results obtained, as demonstrated by real case studies in [11,15]. Semi-Markov models are
a solution to this problem because they permit distributions of time characteristics [15,65].

The basic description of the semi-Markov process is the Q(t) renewal kernel matrix,
consisting of products of the conditional probability pij and distribution functions of the
condition duration distribution of state Si prior to transition to state Sj, according to
the dependence [66,67]:

Q(t) =


0 Q12(t) · · · Q1(k−1)(t) Q1k(t)

Q21(t) 0 · · · Q2(k−1)(t) Q2k(t)
...

...
. . .

...
...

Q(k−1)1(t) Q(k−1)2(t) · · · 0 Q(k−1)k(t)
Qk1(t) Qk2(t) · · · Qk(k−1)(t) 0

, (15)

whereas:
Qij(t) = pijFij(t). (16)

where pij means the probability of transition from the Si state to the Sj state and Fij(t) is the
distribution function of time in the Si state prior to the transition to the Sj state.

An embedded Markov chain is constructed for a semi-Markov process over continuous
time. It is a description of the transition states of the process without taking into account
the real time in each state. The possibility of a transition from the Si state to the Sj state is
assumed for an embedded Markov chain, provided that i 6= j. The matrix of conditional
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probabilities of interstate transitions P may have elements greater than zero only for
allowed transitions, which can be written with the formula:

P =


0 p12 · · · p1(k−1) p1k

p21 0 · · · p2(k−1) p2k
...

...
. . .

...
...

p(k−1)1 p(k−1)2 · · · 0 p(k−1)k
pk1 pk2 · · · pk(k−1) 0

, (17)

under the assumption of meeting the condition of the stochastic matrix [68,69]:

k

∑
j=1

pij = 1. (18)

Figure 6 shows the transition diagram of the embedded Markov chain for the four-state
phase space of operational light utility vehicles. The designations of the states correspond
to the assumptions shown in Table 3.

Energies 2023, 16, x FOR PEER REVIEW 18 of 33 
 

 

 

Figure 6. Transition diagram for the embedded Markov chain in the four-state semi-Markov 

model. 

Constructing an embedded Markov chain based on an empirical process waveform 

implies the need to acquire numerical data on interstate transitions. For this purpose, it is 

justified to construct a population matrix of interstate transitions N, according to equation 

(19) as follows: 

( )

( )

( ) ( ) ( )

( )

kk

kk

k k k k

k k k k

n n n

n n n

n n n

n n n

−

−

− − −

−

 
 
 
 

=  
 
 
 
 

N

12 11 1

21 22 1

1 1 1 2 1

1 2 1

0

0

0

0

. (19) 

Values in N matrix correspond to the total number of observed interstate transitions 

over the analysed process execution time, while nij means a transition from Si to Sj state. 

The probability of transitions pij in the stochastic matrix P can be acquired by using 

the values of the population matrix for interstate transitions N by estimating [70–72] ac-

cording to Equation (20) as follows: 

=

=



ij

ij k

ij
j

n
p

n
1

, 
(20) 

whereas, the standard estimation errors SE(pij) of the probabilities pij [73,74] were calcu-

lated from formula (21) as follows: 

( )
( )ij ij

ij n

ijj

p p
SE p

n
=

−
=

 1

1
. (21) 

The values of ergodic probabilities for an embedded Markov chain πj are calculated 

by solving the matrix Equation (22) [68] as follows: 

( )T −  =P I Π 0 , (22) 

assuming that the standardization condition is met: 

Figure 6. Transition diagram for the embedded Markov chain in the four-state semi-Markov model.

Constructing an embedded Markov chain based on an empirical process waveform
implies the need to acquire numerical data on interstate transitions. For this purpose,
it is justified to construct a population matrix of interstate transitions N, according to
Equation (19) as follows:

N =


0 n12 · · · n1(k−1) n1k

n21 0 · · · n2(k−1) n2k
...

...
. . .

...
...

n(k−1)1 n(k−1)2 · · · 0 n(k−1)k
nk1 nk2 · · · nk(k−1) 0

. (19)

Values in N matrix correspond to the total number of observed interstate transitions
over the analysed process execution time, while nij means a transition from Si to Sj state.

The probability of transitions pij in the stochastic matrix P can be acquired by using the
values of the population matrix for interstate transitions N by estimating [70–72] according
to Equation (20) as follows:

pij =
nij

k
∑

j=1
nij

, (20)
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whereas, the standard estimation errors SE(pij) of the probabilities pij [73,74] were calculated
from formula (21) as follows:

SE
(

pij
)
=

√√√√ pij
(
1− pij

)
∑n

j=1 nij
. (21)

The values of ergodic probabilities for an embedded Markov chain πj are calculated
by solving the matrix Equation (22) [68] as follows:(

PT − I
)
·Π = 0, (22)

assuming that the standardization condition is met:

n

∑
j=1

πj = 1. (23)

If an embedded Markov chain exhibits ergodicity and there are expected values E(Ti)
of state residence times, the values of ergodic probabilities pj for a semi-Markov process
are determined using expression (24) as follows:

pj =
πjE

(
Tj
)

n
∑

i=1
πiE(Ti)

=

πj
n
∑

k=1
pjkE

(
Tjk

)
n
∑

i=1

(
πi

n
∑

k=1
pikE(Tik)

) , (24)

where πi is the ergodic probability of an embedded Markov chain for the Si state and E(Tik)
is the expected value of the direct transition time from the Si state to the Sk state.

5. Results and Discussion
5.1. Monte Carlo Simulations

Simulations were performed for the real operating conditions of the transport system
analysed. The operation processes of 19 light utility vehicles were simulated over a pre-
dicted 20-year operation period as set out in operational standards for each of the 16 Monte
Carlo models [52]. Figure 7 shows sample waveforms of the simulated operation process
for selected vehicles and Monte Carlo models.
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Figure 7. Examples of simulation results: (a)—vehicle No. 4 in MC1, (b)—vehicle No. 13 in MC6,
(c)—vehicle No. 19 in MC10, and (d)—vehicle No. 14 in MC14.

The simulated operation of individual vehicles may show clearly different courses.
Repairs of vehicles No. 4 in MC1 and No. 13 in MC6 took place shortly after a failure
occurred. On the contrary, vehicle No. 19 in MC10 and No. 14 in MC14, after several
failures, remained in an unsuitable state for a prolonged time, which adversely affected the
object readiness index values.

Figure 8a–d shows detailed simulation results of the MC1 model. During a 20-year
operation period, all vehicles must cover distances in the range of 150,000.0 to 200,000.0 km,
which is shown in Figure 8a. In reference to the operational potential specified in the
Catalogue of Operational Standards at a level of 230,000.0 km, our work reveals that the
current operation intensity can be maintained for the entire estimated operation period.
Furthermore, the number of failures for individual objects (Figure 8b) fell within the range
of 30 to 60, while the average number of failures per vehicle was 45.68. Functional readiness
and technical suitability were quite varied, with each vehicle exhibiting values of the Kr
and Ks indices greater than 0.80, as illustrated in Figure 8c,d. The simulation results of all
models (MC1–MC16) are presented in Appendix A.
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5.2. Semi-Markov Model

An estimation of the conditional transition probability matrix was carried out using
Equations (17)–(20), based on data collected from the real operation process of 19 light utility
vehicles. During a 3-year period of operation, 7763 interstate transitions were observed for
the study sample, whereas the numbers of transitions between states were represented by
the N matrix:

N =


0 3641 27 94

3729 0 70 0
9 97 0 0
24 63 9 0

. (25)

The result of the estimation is the P matrix presented below:

P =


0 0.9678 0.0072 0.0250

0.9816 0 0.0184 0
0.0849 0.9151 0 0
0.2500 0.6562 0.0938 0

. (26)

According to Equation (21), with an increase in the number of transitions from the
Si state, the standard error SE(pij) decreases. For this reason, the standard error is higher
for operational states in which the technical object has been observed to be relatively rare.
However, for all conditional probabilities, the SE(pij) did not exceed the value of 0.05, as
shown in Equation (27), so the results are considered acceptable [15,75,76].

SE =


0 0.0029 0.0014 0.0025

0.0022 0 0.0022 0
0.0271 0.0271 0 0
0.0442 0.0485 0.0297 0

. (27)

The expected values of the interstate transition times E(Tij) were estimated as arithmetic
averages of the empirical transition times, which are represented by the T matrix (28):

T =


0 12.63 2.23 14.00

72.23 0 129.5 0
187.03 4.44 0 0
16.28 518.84 124.98 0

. (28)

The ergodic probabilities πj of the embedded Markov chain were calculated using the
matrix equation (29) with the normalisation condition (23) as follows:

(
PT − I

)
·Π =


−1 0.9678 0.0072 0.0250

0.9816 −1 0.0184 0
0.0849 0.9151 −1 0
0.2500 0.6562 0.0938 −1

 ·


π1
π2
π3
π4

 =


0
0
0
0

. (29)

Then, based on the probabilities p and the times E(Tij), the ergodic probability values
pj of the semi-Markov model were calculated using the relation (24). Figure 9a,b shows the
results of the calculations for the embedded Markov chain and the SMM, respectively.

The πj values of the embedded Markov chain contain information about the frequency
of occurrence of states in the operation process without taking into account the time
duration. In these terms, the most frequent states are S1 and S2, each above 48%. The SMM
pj values refer to the temporal stay of vehicles in states S1–S4, which is the basis for the
calculation of readiness and suitability indices. At random time t, the vehicle will be in
state S2 with the highest probability (more than 77%).
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5.3. Comparison of the Results

The results of all the simulations are in Table 8. The values of the readiness and
technical suitability indicators were compared with the results of the semi-Markov models
(SMM). The ergodic probabilities determined for a four-state SMM constituted grounds
to determine functional readiness and technical suitability indices, which reached values
of 0.9015 and 0.9073, respectively. The results of all simulation models did not differ
from SMM by more than 6%, which demonstrates the high precision of the developed
models. Given the above, MC1 turned out to be the best four-state model. Its readiness and
suitability indices differed from the boundary values of the semi-Markov model by 0.70%
and 0.34%, respectively.

Table 8. Simulation and results of the semi-Markov model.

Simulation

Readiness Kr Suitability Ks

Monte
Carlo

Semi-
Markov

Percentage
Error (%)

Monte
Carlo

Semi-
Markov

Percentage
Error (%)

MC1 0.9078 0.9015 0.70 0.9104 0.9073 0.34
MC2 0.8766 0.9015 −2.76 0.8790 0.9073 −3.12
MC3 0.9337 0.9015 3.57 0.9363 0.9073 3.20
MC4 0.9195 0.9015 2.00 0.9221 0.9073 1.63
MC5 0.9142 0.9015 1.41 0.9167 0.9073 1.04
MC6 0.8735 0.9015 −3.11 0.8760 0.9073 −3.45
MC7 0.9329 0.9015 3.48 0.9355 0.9073 3.11
MC8 0.8791 0.9015 −2.48 0.8816 0.9073 −2.83
MC9 0.9163 0.9015 1.64 0.9189 0.9073 1.28
MC10 0.8545 0.9015 −5.21 0.8571 0.9073 −5.53
MC11 0.9257 0.9015 2.68 0.9284 0.9073 2.33
MC12 0.8727 0.9015 −3.19 0.8753 0.9073 −3.53
MC13 0.9393 0.9015 4.19 0.9414 0.9073 3.76
MC14 0.8895 0.9015 −1.33 0.8916 0.9073 −1.73
MC15 0.9419 0.9015 4.48 0.9440 0.9073 4.04
MC16 0.8597 0.9015 −4.64 0.8617 0.9073 −5.03
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The relatively low frequency of maintenance and service leads to minor differences
between the Kr readiness index and the Ks suitability index. From the perspective of vehicle
operation and satisfying transport needs, the Kr readiness index is very important.

5.4. Functional Readiness

Functional readiness defines the probability that a technical object will remain in a
state of technical suitability where it can fully implement tasks according to its intended use.
Figure 10 shows a functional readiness graph for a car fleet on individual days throughout
a simulated operation process. It was defined as a percentage of vehicles in either state
S1 or S2. Maintaining the Kr(t) indices at an adequately high level is significant from the
perspective of safely providing the transport capacity for the operational system. Within the
simulation, this index took on a value of 0.55–0.70 through its several iterations. Therefore,
more than 70% of the vehicles were ready for operation within the transport system for
most of the operation period.
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Figure 10. Instantaneous readiness index Kr(t) obtained via simulation of MC1.

The analysis covered the impact of the number of iterations of the simulated pro-
cess of operating 19 vehicles that form a transport system according to functional readi-
ness. Figure 11 shows the mean value of the Kr index within the measured iteration
range [0, t], while t consecutively takes the values of integers in the range of [1, 7300].
At the initial stage of the simulation, functional readiness was found to remain high and
then started to decline. After conducting more than 1000 iterations, the Kr index began to
gradually stabilise at a level of approximately 0.91. This value came about due to the occur-
rence of recorded failures and, consequently, damaged vehicles remaining in the state of
technical unsuitability.
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Figure 11. Mean values of the Kr readiness index within the range [0, t] obtained by MC1 simulation.

5.5. Sensitivity Analysis of Monte Carlo Model

A sensitivity analysis of the MC1 model was conducted in order to determine the
impact of functional readiness and technical suitability indices depending on the intensity
of vehicle operation. The intensity operation is defined by the probability of assigning the
transport task Θ and the expected daily mileage value during the execution of the task. The
simulated operation process was implemented for specified ranges of considered variables,
while at the same time, maintaining the true characteristics of other sub-processes.

Table 9 shows the results of the sensitivity analysis for the Θ coefficient, which takes
values from the range [0.10–0.90]. With the minimum vehicle utilisation rate at an average
level of 10% of vehicles per day, the daily functional readiness and technical suitability
indices reached values of approximately 0.97. However, with an increase in the number
of daily operated vehicles, these indices decline until reaching values of approximately
0.80 for a probability of 90% for transport task allocation. Figure 12 shows linear approxi-
mations of the Kr and Ks indices depending on the Θ coefficient, carried out using the least
squares method. The match of linear approximating functions with simulated data was
R2 = 0.9916 for the Kr index and R2 = 0.9910 for the Ks index. According to the approximate
functions, an increase in the Θ coefficient by 0.01 leads to a reduction in the values of the
indices Kr and Ks by approximately 0.002.

Table 9. Readiness and suitability indicators obtained by sensitivity analysis of the Θ index.

Θ Kr Ks

0.10 0.9695 0.9704
0.20 0.9547 0.9564
0.30 0.9309 0.9333
0.40 0.9073 0.9104
0.50 0.8750 0.8788
0.60 0.8670 0.8715
0.70 0.8501 0.8553
0.80 0.8289 0.8347
0.90 0.8031 0.8094
0.10 0.9695 0.9704
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Table 10 lists the results of the sensitivity analysis for the expected daily mileage
ld over a variability range of 50.0–150.0 km. Figure 13 shows linear approximations of the
Kr and Ks indices depending on the expected daily mileage ld, which exhibited fit to the
simulated data at a level of R2 = 0.9580 and R2 = 0.9554, respectively. In this paper, an
increase in the expected daily mileage by 1.0 km leads to a decrease in the value of the
functional readiness and technical suitability indices by approximately 0.0008.

Table 10. Readiness and suitability indicators obtained by sensitivity analysis of expected daily mileage.

Expected Daily Mileage (km) Kr Ks

50 0.9445 0.9461
60 0.9476 0.9495
70 0.9431 0.9452
80 0.9348 0.9371
90 0.9097 0.9123

100 0.9094 0.9122
110 0.9049 0.9080
120 0.8993 0.9027
130 0.8838 0.8873
140 0.8768 0.8806
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6. Conclusions

This article presents an original Monte Carlo operation process simulation model for
light utility vehicles operated by a military transport system. Based on an analysis of the
empirical course of the process and the results of previous research, the authors identified
a four-state phase space. The planned and preventive strategy for operational management
introduces a deterministic element occurring within the stochastic process of changes in
the operational state. In the case of military vehicles, the deterministic element is the
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frequency of periodic maintenance and service defined in the vehicle operation manual
and the catalogue of operational standards.

The theoretical simulation model was implemented within the MATLAB software. Its
validation was based on probabilistic characteristics estimated on the basis of empirical
data. In this work, the simulated course of a stochastic process for 19 vehicles over a
predicted 20-year operation period allowed the estimation of the functional readiness index
and technical suitability index values in the range of [0.8545–0.9419] and [0.8571–0.9440],
respectively. The relative differences between the results of 16 simulation models and the
semi-Markov model were less than 6%. Therefore, this minor disproportion confirms the
high usefulness of Monte Carlo methods for modelling the operation process.

Moreover, unlike Markov and semi-Markov models, Monte Carlo methods enable
consideration of the behaviour of a technical object in hypothetical scenarios that are
different from standard operating conditions. This consideration allows for extrapolating
the obtained results. The case study involved analysing the sensitivity of the best-fit
MC1 model in terms of the impact of vehicle operation intensity on the values of the
Kr and Ks coefficients. Based on the spot results of the analyses, the authors performed
an approximation with linear functions using the least squares method. Accordingly, an
increase in the operation utilisation coefficient of 0.01 entails a decrease in the Kr and Ks
coefficient by an average of approximately 0.002. On the other hand, an increase in expected
daily mileage according to an exponential distribution of 1.0 km generates a decrease in the
Kr and Ks coefficients of approximately 0.008.

An undoubted advantage of the proposed model is the relatively small set of empirical
data required for its validation. The assumption of process discretization related to both
states (four states) and time (single-day time intervals) implies the need to learn the
probabilistic characteristics that determine changes in operational states. The adopted
assumptions lead to a simplification of the analysed process, which results in omitting short-
term situations and states that are insignificant from the perspectives of both functional
readiness and technical suitability.

The proposed approach based on the iterative Monte Carlo algorithm can be imple-
mented in both military and civilian transport systems, as well as industrial machinery.
A practical aspect of the algorithm’s application is the ability to assess and predict the
readiness and suitability of technical objects and systems.

The developed simulation model does not take into account the seasonality of the
operation process. Seasonal fluctuations may concern the sub-process of operation, periodic
maintenance, and repair implementation. In addition, the social life cycle significantly
impacts the intensity of vehicle operation on non-working days (Saturdays and Sundays)
relative to other days of the week. A similar phenomenon is associated with maintenance
and repair sub-processes, which are implemented primarily from Monday to Friday. The
proposed Monte Carlo model does not classify successive iterations as individual days of
the week. Expanding the developed model will be the direction of further research within
this field.
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