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Abstract: Direct-drive permanent magnet machines are ideal candidates for remote renewable
applications, due to their independence from gearboxes and minimization of maintenance needs.
However, faults may still appear in the generator of such a machine and affect its operation and
production. Not only can demagnetization cause a catastrophic breakdown if left unchecked, but
it also directly impacts the output quality of generators. As such, demagnetization is a topic of
great interest. This paper investigated the sensitivity of three diagnostic methods—current signature
analysis (CSA), Park’s vector approach (PVA), and extended Park’s vector approach (EPVA)—for
demagnetization fault detection on a coreless permanent magnet generator.
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1. Introduction

In response to concerns about sustainability and climate change, the world has wit-
nessed a tremendous acceleration in efforts to switch to clean, sustainable energy over the
past ten years. Energy-related emissions account for two-thirds of global greenhouse gas
emissions [1]. This suggests that the vital element of any solution must be clean electric
energy. With the public and private sectors for green energy research showing patterns
of increased overall funding [2], a wide variety of energy harvesting systems have been
proposed and put into practice. The use of renewable technology has increased to the
point that it is now widely available and dependable—for example, wind turbines. As
permanent magnet (PM) technology applications increase, the technology itself grows in
popularity. Due to ease of construction and cheaper maintenance, direct-drive turbines
have also grown popularity and replaced gearbox-driven turbines.

Despite how well-designed a machine may be, it is nevertheless susceptible to failure,
due to the acting stresses known as TEAM (thermal, electric, ambient, and mechanical). In
conjunction with inherent machine asymmetries and tolerances originating from manufac-
turing, operating stresses may lead to faults. One critical rotor fault type is demagnetization,
because a PM machine needs a higher current to sustain the rated load under demagnetiza-
tion conditions. This leads to increased losses and increased operating temperature, further
demagnetizing the rotor until final breakdown occurs [3,4].

Some researchers have proposed design methods to delay demagnetization faults [5,6].
However, a great deal of research has focused on the development of reliable prognostic and
diagnostic approaches to forecast machines’ health status and discover faults at the earliest
occurrence [7–12]. This is essential for ensuring the machines’ durability and dependability,
especially mission-critical equipment. Predicting and preventing machine failure, in an
industrial environment, requires understanding of the nature and causes of failure. Dur-
ing a demagnetization fault, a machine’s flux distribution is asymmetrical, reducing the
induced voltage and necessitating greater torque, in the case of a PM generator, to serve
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the rated load. In their early stages, demagnetization problems do not affect the operation
or performance of the generator. Higher temperatures, on the other hand, might accelerate
insulation weakening and deterioration, resulting in shorted turns that generate more heat.
Consequently, these factors amplify the severity of demagnetization [3,13,14]. These faults
are progressive; if they go undiscovered, they will lead to catastrophic failure [15].

Detecting demagnetization is essential, as is differentiating it from other faults. That
includes those with similar signatures, such as rotor eccentricity and shaft or load mis-
alignments, all of which—like demagnetization—affect air-gap flux and flux linkages as
a function of mechanical speed [16,17]. As the stator current exerts a defining influence
during demagnetization faults, several techniques have been developed to monitor the
health of electrical machines.

Fault detection in an electric machine can be broadly classified into three categories:
model-based methods, signal-processing methods, and data-driven intelligent diagnosis
algorithm-based methods [18]. Signal processing methods, such as current signature analy-
sis (CSA), have been extensively applied in induction motors and adapted to permanent
magnet machines [19]. These techniques benefit from reduced intrusiveness, technological
and economic viability, and reliance exclusively on the machine’s electrical signals. The
operation only requires steady-state stator current—which can easily be collected from the
output terminal without the need for any particular sensor—and conversion of the signal
from the time domain to the frequency domain using the fast Fourier transform (FFT) of the
time series data. CSA, however, has the disadvantage of requiring specialized equipment,
such as a current probe and analysis software, which can be expensive and complex to
operate. Additionally, the interpretation of the results may require a high level of expertise
and experience, which can be challenging for some operators.

Several works in the literature referred to the following equation to determine the
current sideband components due to demagnetization [15,20]:

fdm =

(
1± k

p

)
fs where k = 1, 2, 3 . . . (1)

In (1), p represents the number of poles and fs denotes the fundamental frequency
at the nominal speed of 100 rpm; in this case, the fundamental frequency was 26.67 Hz.
However, the issue with this formula is that it does not consider the geometry of the
machine and the winding configuration, which can conceal some fault signatures. In
addition, findings have demonstrated that specific fault harmonics can cancel each other
out, depending on the coil configuration, perhaps even leading to a false negative diagnostic
alarm [21].

Another setback is fault discrimination, as some faults carry the same harmonic
signature as others. It is well known that eccentricity faults will give rise to identical
harmonic spectra. The challenge is to discriminate between these two faults to avoid
misdiagnosis [22]. Consideration also needs to be given to the machine configuration since
it affects the performance of CSA. Iron core saturation can affect the diagnosis, as well,
although this issue was not applicable to this machine due to the lack of iron in the design.

The Park’s vector approach (PVA) requires measurement of the 3-phase current com-
ponents: ia, ib, and ic to calculate the Park’s vector components, id and iq. The calculation is
described in (2) and (3). The method is completed when the locus of the vector is plotted.
If the d and q components contain just the fundamental harmonic, as per (4) and (5), and
assuming balanced conditions, the locus of the PVA is a circle. Any distortions caused
by faults affecting the machine’s magnetic field will be expressed by harmonics in the
currents, and will eventually lead to a noncircular locus that can provide information for
fault identification.

id =

√
2
3

ia −
√

1
6
(ib − ic) (2)

iq =

√
1
2
(ib − ic) (3)
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The main drawback of the PVA is that it does not easily distinguish fault severity,
especially in early fault conditions. An extension of the traditional PVA is the extended
Park’s vector approach (EPVA), which relies on monitoring the Park’s vector modulus. The
3-current components are determined with the following equations:

iA = I1cos(ω1t) +
∞

∑
n= k

p

Incos(ω1t) (4)

where n = k/p, k = 1, 2, 3 . . . with k not taking values equal to p, 3 × p, 5 × p...;

ib = I1cos(ω1t− 120◦) +
∞

∑
n= k

p

Incos(nω1t− n120◦) (5)

where n = k/p, k = 1, 2, 3 . . . with k not taking values equal to p, 3 × p, 5 × p...;

ib = I1cos(ω1t− 240◦) +
∞

∑
n= k

p

Incos(nω1t− n240◦) (6)

where n = k/p, k = 1, 2, 3 . . . with k not taking values equal to p, 3 × p, 5 × p...
In addition to detecting distortion in the shapes of Park’s vector patterns, FFT is

applied to generate modulus spectra. The advantage of this method is that it takes all three
currents of the stator into account simultaneously; therefore, the harmonic index is richer
and may be more reliable.

This paper compared the SCA, PVA, and EPVA techniques for their detection capabili-
ties, specifically as those related to demagnetization faults. The local demagnetization of a
20 kW coreless synchronous generator was analyzed and compared to a healthy machine
using both simulation and experimental setups. The paper was structured as follows: the
modeling and analysis of the machine, under healthy and demagnetization fault conditions,
as well as the details of the experimental setup, were presented in Section 2. The obtained
numerical results were analyzed in Section 3. Finally, analyses of experimental results are
presented in Section 4, followed by discussion and conclusions.

2. Materials and Methods

The Institute of Energy Systems at the University of Edinburgh created a radial flux
synchronous generator known as C-GEN [23–25], which was the basis of this comparative
study. It featured a double rotor and a stator without a core, resulting in a lightweight, mod-
ular, and economic generator for various renewable energy applications. This generator’s
specifications are shown in Table 1.

Table 1. Parameters of the C-Gen generator under study.

Parameter Value

Rated power 21.5 kW
Rated speed 100 rpm

Magnet material N42 NdFeB
Frequency 26.67 Hz

No of phases 3-phase
No of poles 16 pole pairs

No of coil per phase 8 × concentrated coils
No of turns 205 turns

Figure 1a illustrates the C-Gen generator, a direct-drive, coreless, radial flux gener-
ator featuring a double rotor. It was developed specifically for wind energy harvesting
applications. The absence of iron in the stator contributed to the machine’s overall low
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level of weight and lack of cogging torque at low speeds. The winding on the generator
was constructed out of two series of connections, each of which was made up of four
parallel branches from the same phase. These branches were connected to a 10-kW load,
and the neutral line was left unconnected. For comparison, the machine was operated at
the nominal speed of 100 revolutions per minute under healthy and faulty conditions. All
coils were arranged in a non-overlapping, star-connected configuration. Figure 1b depicts
a cross-section of the machine. Again, the comparison was carried out with the nominal
speed set at 100 revolutions per minute, under various load conditions ranging from 1 kW
to 10 kW. This machine was chosen because it demonstrated the harmonic cancellation
mechanism discussed in [21].
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Figure 1. The tested C-Gen PM generator: (a) the real generator, (b) the generator with one magnet
module removed, and (c) the FEA model of the machine with an arrow pointing at the faulty magnet.

A generator model was constructed for finite element analysis (FEA) using Siemens’
Magnet software. In this model, the geometrical and material properties of the C-Gen
generator were taken into account, but the winding overhang was ignored, as the winding
overhang was relatively small compared to the effective magnet sweep length. It was set
to run at 100 rpm for the duration of 3000 ms, with 0.1 ms timesteps for all conditions.
The actual machine, in healthy condition, and the FEA model are shown in Figure 1a,b.
Demagnetization was achieved by removing one module from the rotor, as depicted in
Figure 1c, with the cross-section shown in Figure 1d. Again, the simulation parameters
were set to match the healthy condition simulation, for fair comparison. The arrow in the
Figure pointed to the location where one of the magnets was removed. The individual coil
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resistance and the coil connection configuration were set up to be as close to the actual
machine as possible. This ultimately resulted in a realistic depiction of the machine’s
behavior during FEA modeling and experimental testing, both of which were conducted
under identical operating conditions during the healthy and faulty cases. A flux sensor,
in the form of a 1000-turn coil, was positioned outside of the outer rotor to measure the
stray flux.

Step-by-step instructions for obtaining the results are shown in Figure 2, which illus-
trates the flow of simulation and experimentation. The model was simulated for five cycles,
with 6000 steps per cycle, under different loads and speeds, in order to replicate various
operating situations. The voltage, current, torque, and flux sensor voltage were tabulated,
and it was established that, at rated speed, the simulation results largely matched the actual
machine-measured values, as shown in Table 2. The FEA model of the healthy machine
satisfactorily reflected the actual machine, within 10% deviation, respectively, as confirmed
by comparative readings.
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Table 2. Comparison of machine output parameters between healthy and faulty.

Parameter Simulation Experiment

Voltage 292.41 291.37
Current 17.20 16.89
Torque 1540.77 1518.33

Efficiency 93.52% 92.85%

The experimental setup was comprised of a generator connected to a test rig. An
induction motor powered the test rig, and the variable frequency drive controlled the speed
of the induction motor. In addition, a torque transducer was positioned between the two
machines. Voltage and current readings were obtained via the output terminal wired to
a data acquisition system. The sampling rate was set to 50,000 samples per second with
20-ms intervals for 20 s.

One of the exterior magnets was removed to reproduce the faulty condition, resulting
in a 50% demagnetization level (total per stator coil), as depicted in Figure 1c. Unfortunately,
as a matter of practicality, the entire module, which consisted of both magnets and back
iron, had to be removed, since the magnets were quite powerful, and bonded to the
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iron, causing an imbalance in the experimental machine. However, this did not influence
demagnetization behavior, since experimental results corresponded with FEM results.

The efficiency results for both simulation and experiment were tabulated for compari-
son. The waveform data were then processed through the different diagnostic techniques
(CSA, PVA, and EPVA) presented in the simulation and experimental sections, respectively.

3. Results

The generator was set to supply 3-phase symmetrical resistive loads with five different
levels. More specifically, Load 5 was set to supply a load of 15 kW, which corresponded to
a phase resistance of 17.3 Ω. The simulation results in Table 3 showed that the efficiency
of the healthy generator decreased as the load requirements increased. This was expected
because the increase in load caused more current to flow, which increased the joule losses of
the stator. On the other hand, the trend of efficiency behavior, as a function of load during
faulty conditions, was exactly the opposite. The torque demand increased while the output
voltage decreased. Thus, the faulty machine was likely to be less efficient than the healthy
one, regardless of the load.

Table 3. Simulation measurement results.

Condition V1
(V)

V2
(V)

V3
(V)

I1
(A)

I2
(A)

I3
(A)

Torque
(Nm)

Pout
(kW)

Pin
(kW) Efficiency

Healthy load 1 309.96 309.96 309.95 1.82 1.82 1.82 163.39 1.70 1.71 99.09%
Healthy load 2 307.94 307.92 307.93 3.62 3.62 3.62 324.38 3.35 3.40 98.52%
Healthy load 3 306.94 306.91 306.92 4.51 4.51 4.51 404.11 4.16 4.23 98.21%
Healthy load 4 302.01 301.93 301.98 8.88 8.88 8.88 795.27 8.05 8.33 96.61%
Healthy load 5 292.47 292.33 292.42 17.20 17.20 17.20 1540.77 15.09 16.13 93.52%

Demagnetized load 1 304.73 304.74 304.72 1.79 1.79 1.79 221.81 1.64 2.32 70.55%
Demagnetized load 2 302.74 302.75 302.73 3.56 3.56 3.56 377.42 3.23 3.95 81.85%
Demagnetized load 3 301.75 301.76 301.75 4.44 4.44 4.44 454.49 4.02 4.76 84.41%
Demagnetized load 4 296.89 296.90 296.89 8.73 8.73 8.73 832.61 7.78 8.72 89.20%
Demagnetized load 5 287.50 287.51 287.50 16.91 16.91 16.91 1553.32 14.59 16.27 89.68%

During the experiment, the generator’s output was connected to a three-phase resis-
tive load bank, and measurements were taken at five different load levels, comparable to
the load levels from the simulation. Load 5 corresponded to 15 kW, to ensure compara-
bility with FEM. Table 4 presents the experimental results, showing a very high degree
of consistency between experimental and simulation results, with comparable patterns of
efficiency drop for healthy generators as load demand increased and the exact opposite
trends after demagnetization. A similar pattern was observed in the simulation results for
the increased torque required. The voltage decreased upon demagnetization because there
was less magnetizing flux; as there was one less magnet, there was a consequent decrease
in voltage.

3.1. Current Signature Analysis (CSA)

A fast Fourier transform was applied to the current in phase A from simulation and
experimental data to perform current signature analysis. Figure 2 presents the results of
the CSA under nominal load, comparing the results between FEM and experiment under
healthy and faulty conditions. The spectra for other load cases are presented in Appendix A
and B, respectively. The simulation results are shown in Figure 3a,b. The results agreed
with the harmonic cancellation mechanism from reference [19]. Under faulty conditions,
only the amplitudes of 0.5 fs, 2 fs, and 3.5 fs increased, which revealed the fault.
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Table 4. Experimental measurement results.

Condition V1 V2 V3 I1 I2 I3 Torque Pout Pin Efficiency

Healthy load 1 309.06 309.70 296.04 1.74 1.73 1.76 159.50 1.60 1.67 95.53%
Healthy load 2 307.45 308.34 294.71 3.44 3.43 3.45 314.51 3.13 3.29 95.06%
Healthy load 3 304.63 305.34 291.62 6.82 6.79 6.83 622.43 6.14 6.52 94.27%
Healthy load 4 303.07 303.84 290.26 8.48 8.45 8.49 773.45 7.60 7.99 93.84%
Healthy load 5 295.51 304.80 291.12 16.91 16.86 16.91 1518.33 14.76 15.90 92.85%

Demagnetized load 1 303.79 304.79 291.10 1.66 1.70 1.69 223.71 1.51 2.34 64.65%
Demagnetized load 2 302.05 303.04 289.52 3.36 3.41 3.42 373.86 3.04 3.91 77.59%
Demagnetized load 3 298.60 299.86 286.59 6.61 6.72 6.74 661.25 5.92 6.92 85.51%
Demagnetized load 4 296.95 298.04 285.06 8.19 8.33 8.37 803.88 7.30 8.42 86.70%
Demagnetized load 5 288.23 289.43 277.74 16.27 16.55 16.69 1517.08 14.12 15.89 88.84%
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As the experimental results revealed (shown in Figure 3c,d and Appendix B), as
the load decreased, the noise level increased, rendering the fault signature unreliable
for diagnosis, with just 0.5 fs appearing to be a reliable indicator (Figure 3d). The noise
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observed in the experimental spectra derived from the vibration of the machine; however,
when compared to the simulation’s results, the noise could not be observed because the
simulation did not account for rotor imbalance. Due to the mechanical imbalance caused by
the fault implementation, the first sidebands of the fundamental significantly increased in
amplitude. However, they were not demagnetization related, as shown by the simulation
results earlier.

3.2. Park’s Vector Approach (PVA)

Park’s vector approach results were plotted in MATLAB using Equations (2) and (3).
As shown in Figure 4, there were only minor differences in the loci of healthy and faulty
cases. During a demagnetization fault, the loci radii grew smaller. Specifically, it was
separated into three arc segments, with two arcs of varying radii separating each section.
Figure 4 illustrates how loci could be utilized for fault identification. When the load level
changed, the radii of the loci changed as well, but the asymmetrical distribution remained
the same in the faulty generator, as illustrated in Appendices C and D. The main issue with
this method was that it had low sensitivity to early faults and could have been influenced
by other machine asymmetries. Therefore, an improved alternative should be examined.
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Experimental validation, as shown in Figure 4c,d, revealed a similar pattern with
FEM, where the locus radius decreased and separated into three arc segments as the load
decreased, albeit with an increase in noise. Considering load variation, the distribution
of the loci also remained unchanged. Different load levels were compared, as shown in
Appendix D. The thickness of the circle increased as the load level decreased. We also noted
a reduction in noise as the load increased.

3.3. Extended Park’s Vector Approach

The extended Park’s vector approach (EPVA) provided a variety of signatures and
more information as the harmonic amplitude and additional harmonics were captured
in faulty conditions. The spectra were normalized to the PVM signal’s maximum value
(DC component). When the demagnetization fault occurred, multiple signatures of the
fault were present. Specifically, the k fs ± n fs

4 , were generated, with important amplitudes.
The amplitude differences between healthy and faulty conditions exceeded 50 dB, thus
providing a very reliable diagnostic outcome. It appeared that EPVA was more sensitive to
faults than the other two methods because of the DC component and harmonics with twice
the frequency of current. These resulted in a higher amplitude of the signal when ia, ib, and
ic substituted for id and iq, as indicated in (7) and (8). The spectra for the additional load
cases are shown in Appendix C.
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Applying the extended Park’s vector approach (EPVA), as shown in (9), to the ex-

perimental model yielded harmonic components and signatures that matched simulation
results for both healthy and faulty conditions, to a great extent.
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where n = k/p, k = 1, 2, 3 . . . with k not taking values equal to p, 3 × p, 5 × p...
Figure 5a,b, respectively, depict the spectra of healthy and faulty loads at a nominal

load. It was evident that, when demagnetization faults occurred, the amplitude difference
could be as high as 20 dB—specifically with the 3

4 * fs, 1
2 * fs, and 1

4 * fs harmonics components.
Comparing experimental results, as in Figure 5c,d, to the simulation results, the other
component visible in the spectra was deemed complementary because of the mechanical
imbalance resulting from the removal of one single magnet module. The spectra for the
different load instances are provided in Appendix F. Demagnetization had the same effect
on those harmonics components as it did on the other.
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4. Discussion

The simulated and experimental results of the three condition monitoring methods
all demonstrated their ability to detect demagnetization faults. The evaluation metrics
used in this study were the sensitivity levels of each detection technique when identifying
demagnetization faults. These were determined by comparing the results of the simulated
and experimental data of three techniques: CSA, PVA, and EPVA. CSA was found to be
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less sensitive, as fewer harmonics were affected by the fault, and other harmonics easily
masked the fault signature. PVA, although it did not provide any obvious signs of fault
apart from the three arc segments, could have potential for further development as a
detection method. In contrast, EPVA was found to be the most sensitive to faults, as it
increased the amplitude of the harmonics of the fault, for a given fault severity, by squaring
the two currents, summing them, and then taking the root of the signal.

Comparing the efficiency of a healthy generator to that of a faulty one revealed that,
due to the magnetic asymmetry in the machine and the parallel connection of the coils
in each phase, the back EMF of each coil could differ. This led to different coil currents
in each parallel path and resulted in divergent trends in efficiency. These decreased with
increasing loads in healthy conditions, but exhibited the opposite trend in demagnetization
conditions. To maintain the voltage balance across a parallel group of coils, a circulating
current was generated wherein one coil supplied current to the next coil, resulting in an
increase in current due to Joule losses.

The experimental runs revealed that noise levels increased with decreasing load for all
methods, indicating that these methods were more sensitive when the load was low. Under
high load conditions, it was difficult to detect the fault; the loci grew much thicker due
to the noise generated by the low load scenario. Comparing all three diagnostic methods,
EPVA was better suited for a wider variety of load conditions, both at high and low loads.
It appeared that the extended Park’s vector approach (EPVA) was more sensitive to faults,
compared to the other two methods, i.e., current signature analysis (CSA) and Park’s
vector approach (PVA). This was attributed to its ability to identify the DC component and
harmonics with twice the frequency of current. This resulted in higher signal amplitude of
the signal, making EVPA more sensitive to faults.

The DC component, which was a constant voltage or current, was not present in
the other two methods, making fault detection less sensitive. The harmonics, with twice
the frequency of current, were caused by the nonlinearity of the system and exhibited a
higher amplitude than other harmonics. By squaring the two currents, summing them, and
then taking the root of the signal, EPVA amplified the amplitude of the harmonics of the
fault for a given fault severity. This rendered it more effective at detecting faults, even in
situations where the noise level was high or the load was low. In summary, EPVA’s ability
to identify the DC component and harmonics with twice the frequency of current, along
with its method of amplifying the amplitude of the harmonics, made it more sensitive to
fault detection than the other two methods.

5. Conclusions

This paper examined and compared three different techniques for detecting demag-
netization in a coreless synchronous generator. This was undertaken because, if demag-
netization goes undetected, generators can lose efficiency and may even suffer from a
catastrophic failure due to increased heat generation. The three techniques evaluated in the
paper were: current signature analysis (CSA), Park’s vector approach (PVA), and extended
Park’s vector approach (EPVA).

To evaluate the sensitivity of each detection technique, a healthy FEM model of a
coreless permanent magnet generator was used as a benchmark. This model was used to
predict the likely diagnostic content in the current spectra before testing the predictions
against experimental data. To simulate different levels of demagnetization, five different
loads were modeled using FEM and then introduced into the model with a load profile
similar to that of a healthy case.

The results of the comparison showed that EPVA was the superior method for de-
tecting demagnetization due to its ability to unambiguously identify faults and its high
sensitivity to faults.
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