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Abstract: The problem of global warming and climate change has attracted global attention, and
reducing the concentration of CO2 in the atmosphere is an important step towards solving the prob-
lem. This paper mainly introduces the current development status, research hotspots, challenges and
some emerging technologies of carbon capture, utilization and storage (CCUS). Among CO2 capture
technologies, solvent absorption technology is currently the most mature and widely used technology,
among which ionic liquid technology has great application prospects because its molecular structure
can be designed and different functional groups can be connected. The surface functionalization of
metal–organic frameworks in the adsorption method endows them with excellent CO2 adsorption
capacity. In CO2 transportation, temperature and pressure must be considered in pipeline transporta-
tion, because they will affect the phase state of CO2 transportation. The impact of impurities on CO2

pipeline transportation is a challenge that affects pipeline design and transportation safety. In CO2

utilization, the key to enhanced oil recovery, gas recovery and displacement of coalbed methane is to
increase the recovery rate and increase the storage capacity at the same time. Only by strengthening
the research on the adsorption behavior between CO2 and CH4 and revealing the relevant mechanism
can innovative technologies be developed. The chemical utilization of CO2 has formed many routes,
but they all lack certain advantages. Most scholars are working on catalysts for CO2 conversion,
especially copper-based catalysts that can convert CO2 into methanol. The conversion rate of CO2

can be effectively increased through doping or process improvement. The coupling of electrocatalytic
technology and renewable energy is an important development direction in the future. In CO2

storage, geological storage is currently the most important method, especially in saline aquifers.
There are currently critical issues concerning reservoir integrity and leakage potential that should
be further investigated. CO2 leakage will cause serious environmental problems, and the common
monitoring methods are reviewed and discussed in this paper. Finally, the research status, hotspots
and cooperation networks of CCUS are summarized by using CiteSpace software in order to help
the development of CCUS technology. In addition, through the review and analysis, it is found
that CCUS is faced with challenges such as low capture efficiency, difficulties in transformation and
utilization, high operating costs, lack of strong support policies, and lack of international cooperation,
which restrict the further development of CCUS.

Keywords: CCUS; capture; utilization; transport; storage

1. Introduction

In the past few decades, due to human activities such as fossil fuel power generation,
more and more CO2 in the atmosphere has been caused, and the greenhouse effect has
become more and more obvious. This poses a huge threat to human and global security. At
present, the CO2 concentration in the atmosphere has exceeded 400 ppm, which is about
40% higher than before industrialization, and the surface temperature has increased by
about 0.8 ◦C [1]. However, it is almost impossible to replace conventional power plants
with clean energy power generation in the short term. Moreover, the International Energy
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Agency reported that although affected by the COVID-19, global carbon emissions have
plummeted. However, it is expected that with the gradual improvement of the epidemic
situation in various countries, carbon emissions will rise further, and there is no sign that
peak carbon emissions have yet been reached. In this case, to achieve the goal of controlling
the temperature rise to 2 ◦C, we must accelerate the transformation of the energy system.
In addition to vigorously developing new energy sources, carbon capture, utilization and
storage (CCUS) technology has also attracted the attention of the academic community.
This is an emerging technology with the potential to reduce CO2 emissions on a large
scale. It is considered to be the key technology for mitigating climate change and has
attracted great attention from governments, industry and academia in recent years. As
shown in Figure 1, CCUS technology refers to the selective removal of CO2 from the air
flow of emission sources (power plants, steel plants and cement plants) by using capture
systems, and then the CO2 is transported to the storage site through pipelines for storage
or utilization in the plant. CCUS can help better manage CO2 concentrations.
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The development level of CO2 capture technology is the key to the whole CCUS
technology. It mainly uses methods such as solvent absorption, solid adsorption, membrane
separation and low-temperature separation to separate CO2 in the mixed gas from other
components. CO2 transport plays a connecting role in CCUS technology, which connects
carbon capture with storage and utilization. It can ensure the safe and economical operation
of the CCUS system. Pipeline transportation is the most common mode of transportation.
The cost of transporting one ton of CO2 is 1–10 USD/km. The demand for CO2 pipeline
construction will increase significantly in the future. The utilization of CO2 has attracted
extensive attention. It is currently mainly used for enhanced oil and gas recovery, but
people are paying more attention to other utilization methods of CO2, including chemical
industry raw materials, mineralization, biological utilization and the food industry. People
have developed a variety of conversion routes and methods to convert CO2 into chemicals,
but most of them are in the pilot stage, mainly because of the high conversion cost and
low conversion efficiency. The amount of CO2 used every year is very small, which is far
lower than the emission of CO2. Moreover, the used CO2 will be re-released at the end of
the product life cycle. But its importance lies in the indirect reduction of CO2 emissions by
avoiding the use of fossil carbon. In the future, if we want to achieve the goal of carbon
neutrality, CO2 storage will still be the main strategy. CO2 storage can be divided into
geological storage and ocean storage. Geological storage is the most common form of
storage, especially in saline aquifers. It sequesters CO2 from the atmosphere, and over time
the CO2 is converted into carbonate minerals for permanent storage.

CCUS technology has achieved remarkable development in recent years. It can
ensure large-scale low-carbon utilization of fossil energy. It is a necessary solution for
the decarbonization of industries that are having difficulty reducing emissions. There
are more than 30 CCUS programs in operation around the world. Among them, North
America is dominated by CO2 flooding. In Europe, ocean storage of CO2 is the main
focus. Most of these commercially operated projects use chemical absorption technology
or physical absorption technology to capture CO2 and use pipeline transportation or
ship transportation technology to transport it. At present, relevant research on CCUS is
constantly increasing, but most of them are focused on one side, as shown in Table 1, and
few articles can systematically and comprehensively review various techniques in CCUS. A
detailed review of various technologies in CCUS will help people better understand CCUS
technology and help in its development. In addition, CCUS also faces many challenges in
each link, which restricts the implementation of CCUS projects. By analyzing the existing
problems and challenges of CCUS technology, this paper points out the future development
direction of CCUS technology.

Table 1. Summary of CCUS-related literature.

Authors Content Year References

Yao et al.
This paper mainly introduces the latest progress of China’s CCUS after 2019
and finds that China’s CCUS technology has made significant progress in

recent years.
2023 [6]

Hong et al.

This paper summarizes the CCUS system from the technical and economic
perspectives, introduces the global CCUS projects, and introduces the
progress of various technologies in detail, focusing on the economic

comparison of various technologies.

2022 [7]

Liu et al. The CCUS path in China was studied, mainly introducing the current
situation of CCUS, emission reduction demand and potential cost. 2022 [8]

Shiyi et al.
Combed the technological development process and industrialization
progress of CCUS-EOR, and analyzed the problems and challenges of

CCUS-EOR in China.
2022

Chen et al. The risks of CCUS technology in finance, technology, environment, health
and safety are introduced. 2022 [9]
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Table 1. Cont.

Authors Content Year References

Shen et al. The low-temperature separation technology is introduced to capture CO2,
and the existing problems are summarized. 2022 [10]

Zhan et al.
Various utilization modes of CO2 are introduced, the progress of CO2

utilization projects is discussed, and the key challenges and problems are
studied.

2020 [11]

In this review, we followed the following steps: First, we used keywords such as CCUS,
CO2 capture, CO2 transportation, CO2 utilization and CO2 storage to search the Web of
Science core database. The search content does not include books and core papers, and the
period covered is 2006–2021. Then, by simply reading the abstract, we screened the relevant
literature. In this step, we screened 558 pieces of literature. Finally, we further screened
the downloaded literature by careful reading and reduced the number to 265 articles. The
screening criteria were to see whether they are closely related to the theme of this review.
Finally, this paper will examine CCUS technology in detail through four parts: CO2 capture,
CO2 transport, CO2 utilization and CO2 storage based on the 265 articles. This paper
mainly introduces the current development status, research hotspots, challenges and some
emerging technologies of CCUS technology. At the same time, CiteSpace software is
used to measure and analyze these documents and analyze the research status, trends
and cooperation.

2. CO2 Capture

According to the combustion process of fossil fuels and the technical basis of the CO2
capture system, carbon capture can be simply divided into three processes: post-combustion
capture, pre-combustion capture and oxyfuel combustion capture. Post-combustion capture
mainly refers to the capture of CO2 from the waste gas produced by the combustion of fossil
fuels or other carbon-containing fuels. It is currently the most widely used carbon capture
strategy. Its technology is currently highly mature and has a large number of commercial
applications [12]. Compared with pre-combustion capture and oxyfuel combustion capture,
it has several advantages, for example, the transformation of CO2 emission sources is
small, it can be quickly applied to existing power plants, and the later maintenance cost
is small. It also has a small impact on production activities and high flexibility [13]. Of
course, the carbon capture efficiency is low due to the low content of CO2 in the gas after
combustion [14]. At the same time, the separation effect will also be affected because the
gas after combustion contains other impurities. In conclusion, post- combustion capture
technology needs to develop efficient and ideal adsorption materials, and improve the
energy efficiency of post-combustion carbon capture equipment. At present, most research
focuses on post-combustion capture strategy [15]. Common capture technologies are shown
in Figure 2, which will be described in detail below.

2.1. Solvent Absorption Technology

Solvent absorption technology is the most widely used CO2 capture technology at
present, which is mainly used for post-combustion capture and pre-combustion capture.
Due to its good separation effect, low application cost and relatively mature technology, it
is the key technology to implement the “Zero Emissions Energy Strategy”. In this article,
we will divide solvent absorption into the physical absorption method, chemical absorption
method and the physical–chemical absorption method according to whether physical and
chemical reactions occur in the process of solvent absorption. In addition, since the current
research focus has been extended to the use of solvent mixtures, we will also discuss them
in this article.
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Figure 2. CO2 capture technology.

2.1.1. Chemical Absorption Technology

Chemical absorption technology mainly uses a liquid solution to absorb CO2 through
a chemical reaction, and the absorbed CO2 is released for storage or utilization through
reverse decomposition. Typical CO2 chemical absorption technology is shown in Figure 3,
which mainly relies on the absorption tower to remove CO2 in the flue gas, and relies on
the stripping tower to desorb and regenerate [16].
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In chemical absorption technology, commonly used solvents mainly include ammonia,
potassium carbonate, amino solvent and alkaline solvent [17]. Among them, amino solvents
are considered to be the most developed among the currently studied solvents and are
widely used in post-combustion carbon capture (PCC). Its disadvantage is that the amine is
easily degraded during long-term operation, and its capture property is reduced [18]. It has
the advantages of high chemical reactivity with CO2, low production cost and large-scale
stable operation [19]. Ammonia aqueous solution is superior to conventional ammonia
solution in CO2 capture, so it is a good substitute. However, due to its high volatility, it
will escape into the airflow, so there are still technical obstacles [16].

Chemical absorption technology has some applications, but there are still some prob-
lems to be solved. For example, compared with solid adsorption technology, its energy
consumption is high, compared with physical absorption technology, its efficiency is low,
the absorbent suffers evaporation loss and oxidative degradation, and the absorbent will
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cause corrosion to equipment, etc. In practical application, the negative effects of SOx,
NOx and oxygen on absorbents should also be considered in developing more appropriate
models [20]. In order to overcome these shortcomings, many scholars began to study some
additives and mixtures (such as piperazine (PZ) and PZ derivatives). Reducing the energy
consumption of chemical absorption technology is an important research direction for the
future. Energy consumption can be effectively reduced by process improvement (heat
integration strategy) or by using solvents with high heat absorption.

2.1.2. Physical Absorption Technology

Physical absorption technology can be applied when CO2 and liquid solvents do
not undergo obvious chemical reactions, and its operation is based on Henry’s Law [20].
Physical absorption is suitable for use under high pressure and low temperature so that
the solubility of the gas in a liquid solvent will be greater [16]. The physical absorption
method has a simple process, high operating pressure, and can capture some other harmful
gases, but the recovery rate of CO2 is low, which is usually applied to situations where the
requirements for gas purification are not high.

Physical absorption methods usually include the propylene carbonate method, the
polyglycol dimethyl ether method and the low-temperature methanol washing method.
Different physical absorption methods have different advantages and disadvantages, see
Table 2 for their comparison. Physical solvent has good application in integrated gasification
combined cycle (IGCC) power generation facilities, with high capture efficiency and low
energy loss [16,21].

Table 2. Comparison of physical absorption methods.

Method Propylene Carbonate
Method

Polyethylene Glycol
Dimethyl Ether Method

Low-Temperature Methanol
Washing Method

Applicable conditions 3~7 Mpa
>25 ◦C

1.5~14 Mpa
1~25 ◦C

3~8.1 Mpa
−10~−70 ◦C

Characteristic

the solvent is cheap and
non-toxic, suitable for

absorbing CO2 from natural
gas and crude hydrogen

the process flow is simple, the
operation flexibility is large,

the one-time purification
degree is high, and the total
energy consumption is low

methanol is cheap and easy to
obtain, with good selectivity,

thermal stability and chemical
selectivity, and low

operating cost

Chemical absorption technology and physical absorption technology have different
advantages and disadvantages. Chemical absorption technology is suitable for absorbing
CO2 at low pressure, and physical absorption technology applies to absorbing CO2 at high
pressure. In chemical absorption technology, due to the chemical reaction between CO2
and solvent molecules in forming chemical bonds, it is highly selective to CO2. In physical
absorption, although there is a weak interaction between CO2 and solvent, its regeneration
energy is low [22]. Therefore, is there a method that can combine the advantages of these
two methods? For this reason, people began to study solvent-mixing technology.

2.1.3. Solvent Mixed Absorption Technology

Single solvent systems have been deeply studied, and many properties of solvents
have been defined. At present, the research focus has been on the research and development
of solvent mixtures, which can be developed by mixing various solvents and synergistic
effects with accelerants. At present, promising solvent mixtures include amine-based
blends, NH3-based blends, K2CO3-based blends and deep eutectic solvents. These blends
mainly combine the advantages of different solvents. For example, ethanolamine sulfolane
water is an amino blend, which combines physical and chemical solvents, and has the
advantages of both methods. Alcohol amine is a chemical solvent, which can absorb organic
sulfur in the mixed gas and can also dissolve part of H2S and CO2. Sulfolane is a physical
solvent, which can absorb CO2 in the mixture. This solvent has a wide application range,
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low CO2 content in purified gas and low corrosivity [22]. The mixture of MEA + MDEA
is a typical synergistic effect. The reaction rate is increased by adding MEA, and the
regeneration energy is reduced by adding MDEA.

Deep eutectic solvent is a new green solvent developed to overcome the high price
and toxicity of traditional ionic solvents. Usually, two components are mixed according
to a certain molar ratio, and the melting point of the eutectic solvent formed is usually
lower than that of each component. Deep eutectic solvents have many advantages, such
as low price, easy degradation, and little environmental pollution, and are suitable for
large-scale preparation [18,23]. The most common deep eutectic solvent is a combination of
quaternary ammonium halide and hydrogen bond donor [24,25]. At present, the research
and development of deep eutectic solvents are still in the initial state. Although much
progress has been made, there is still some distance to go before large-scale commercial use.

2.1.4. Ionic Liquid Absorption Technology

An ionic liquid is a kind of “green solvent”, which has the advantages of wide oper-
ating pressure, low corrosion, and easy separation of products. The designability of its
molecular structure creates opportunities for the design of ionic liquids. By connecting
different functional groups, ionic liquids for different purposes can be obtained [26]. The
common functional groups include amine, fluorine atom, hydroxyl, etc. The introduction
of cation in an amino group is more effective, and ionic liquids with multiple amine sites
usually have higher CO2 absorption capacity than ionic liquids with one primary amine
group. Ionic liquids containing hydroxyl groups have good separation performance of CO2
at low pressure [27]. Xu [28] proved that the addition of super bases during the preparation
of ionic liquids can effectively improve their ability to capture CO2.

Of course, in addition to the influence of functional groups, the length of the alkyl
chain and the type of anion will affect the CO2 absorption capacity and viscosity of the
ionic liquid [26,29]. Ionic liquids usually have high viscosity, especially those containing
amino groups. This is usually due to the formation of hydrogen bonds in ionic liquids.
The viscosity of ionic liquids can be reduced by introducing hydrogen receptors, or by
mixing with organic solvents [27,30]. H2S and CH4 need to be separated before CO2 capture
because they will reduce the solubility of CO2 and the selectivity of ionic liquids [31].

Although ionic liquids have great application prospects in CO2 capture, most of the
current applications of ionic liquids are limited to laboratories. Ionic liquids are expensive
and the production process is complex, which are the main factor hindering the large-scale
application of ionic liquids [32]. In addition, the potential toxicity and non-degradability
of ionic liquids also hinder the large-scale application of ionic liquids. Thermodynamic
models of CO2 and ionic liquid systems also present challenges that require further study
in the future.

2.2. Solid Adsorption Technology

The solid adsorption technology is mainly realized by the intermolecular attraction
between the gas or liquid and the active point on the solid adsorbent. The adsorption of
CO2 by an adsorbent is usually realized by physical adsorption or chemical adsorption [33].
Good adsorbent, regeneration process and adsorption cycle time are required in the adsorp-
tion process [34]. This paper will mainly discuss the research progress of solid adsorbents
by reviewing: carbon-based adsorbents, porous materials and other adsorbents.

2.2.1. Carbon-Based Adsorbent

Carbon-based sorbents mainly refer to materials composed of carbon atoms, which
are simple to prepare and low in cost. They are usually used to capture CO2 under high
pressure because the adsorption capacity of CO2 usually increases with the increase of
pressure. The amount, size and distribution of voids in carbon-based adsorbents play
an important role in CO2 capture. By adding various functional groups on the surface
of the carbon-based adsorbent, its carbon capture performance can be optimized [35]. In
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the carbon matrix, increasing the pH of some parts of the surface will change the charge
distribution on the surface and enhance its adsorption capacity [36]. The interaction
between carbon-based adsorbents and CO2 is very weak, so this presents a challenge for
the selectivity and capacity of carbon-based adsorbents, especially at high temperatures
and low partial pressures. Common carbon-based adsorbents include biochar, activated
carbon and graphene-based adsorbents.

Biochar has a high specific surface area, micropore, porosity and various functional
groups. Its structure and surface properties determine that it is an excellent CO2 adsorbent.
Biochar is an environmentally friendly and economical material [34,37–40]. Activated
carbon is a kind of widely used carbon-based adsorbent. Its adsorption capacity is lower
than that of zeolite or molecular sieve, and it will decrease significantly with the increase in
temperature [33,41]. Activated carbon raw materials have a wide range of sources, with a
wide range of pore size distribution and pore structure, and its manufacturing cost also
has huge advantages [42]. Activated carbon produced by biomass containing heteroatoms
(Such as O, S, P and N) can better absorb CO2 [43]. Activated carbon can be divided into
physical activated carbon and chemical activated carbon according to the activation mode.
Different reaction conditions and activated chemicals will affect the physical and chemical
properties of activated carbon, such as specific surface area, surface functional groups,
shape, etc. [44–49]. Future research work on activated carbon will focus on improving its
adsorption capacity and selectivity at low CO2 partial pressure and producing adsorbents
with adjustable active surface area and pore size. Graphene-based adsorbent is a carbon
nano material, because its two-dimensional and hexagonal-filled lattice structure is similar
to a honeycomb single carbon layer, and the active functional groups on the surface make
it have good physical and chemical properties [50–53]. Graphene has a poor CO2 adsorp-
tion effect, and its adsorption performance can be enhanced through activation, because
activation can make graphene produce a three-dimensional structure, giving it a large
surface area [54]. At present, the most effective graphene-based adsorbent is PANI/HEG
(polyaniline/hydrogen exfoliated graphene), which has good cycle performance [55]. Fu-
ture research on graphene is mainly aimed at improving its CO2 adsorption capacity by
attaching different functional groups and heteroatoms to its surface.

2.2.2. Porous Material

At present, many porous materials are widely studied for carbon capture. Porous
materials have the advantages of high absorption efficiency and large adsorption capacity.
The pore diameter, geometric shape and specific surface area of porous materials will
affect the CO2 capture effect. The commonly used porous materials include zeolites, metal–
organic frameworks (MOFs) and mesoporous materials.

MOFs are emerging crystalline porous materials, which have the advantages of high
pore volume, structural diversity, easily adjustable pore structure and surface functional-
ization [56,57]. MOFs are widely used in gas storage, drug delivery and heterogeneous
catalysis, but their application in the selective adsorption of gas is one of the most active
research fields at present [41]. MOFs can be functionalized by different methods to improve
their CO2 adsorption capacity. Common methods include adding polar functional groups,
opening metal sites and modifying with Lewis basic sites [41,56,58]. These methods can
better exploit the tailorability of MOFs, making them possess excellent CO2 adsorption
capacity. However, the cost of production and utilization of MOFs is too high at present, so
it is difficult to use them on a large scale. In addition, the synthesis process of MOFs will
cause environmental pollution, which also limits its application. In the future, reducing
its synthesis cost and environmental pollution during the synthesis process are the main
research directions.

Zeolite is a porous crystalline material composed of aluminosilicates, and most zeolites
for CO2 capture are synthetic. Synthetic zeolite can control its porosity and crystallinity in
the process of synthesis, so it has more advantages than natural zeolite in capturing CO2.
The zeolite frame is of a microporous structure, and its pore size can be adjusted, so the
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zeolite for CO2 adsorption can be customized [59]. When most zeolites encounter water
molecules, their CO2 capture performance will decline. However, the hydrophobicity of
zeolites with a higher silicon–aluminum ratio will be enhanced, and the hydrophobicity can
also be increased by introducing hydrophobic functional groups [60]. Although synthetic
zeolite has good trapping performance, its application is restricted by its high synthetic
cost and environmental pollution.

During the past decade, mesoporous materials have become favorable candidates for
CO2 capture materials. Common mesoporous materials include mesoporous silica and
mesoporous metal oxides. Silica is one of the most abundant substances in the world. Meso-
porous silica is usually prepared by the Stöber method, and its pore diameter and specific
surface area can be easily adjusted [59]. Mesoporous silica is a CO2 adsorbent suitable for
amine loading. The rich hydroxyl groups on the surface of silica are conducive to amine
functionalization and improve its CO2 adsorption capacity [61]. Common mesoporous
metal oxides include TiO2, MgO, alumina and cerium oxide [62–64] in which mesoporous
ceria has the largest CO2 adsorption capacity. TiO2 can also quickly absorb CO2.

2.3. Membrane Separation Technology

Membrane separation technology can generally be divided into gas separation mem-
brane and gas absorption membrane. The working principles of the two membranes are
shown in Figure 4. The gas separation membrane (Figure 4a) is mainly used to separate gas
by permeating one or more gases from one side of the membrane to the other side through
the selectivity of the membrane. The driving force is the pressure difference of the gas to
be separated on both sides of the membrane. The gas absorption membrane (Figure 4b)
is mainly used to selectively absorb gas through a chemical absorption solution, and the
membrane only serves to isolate gas and absorption solution.
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Gas separation membranes can be divided into three categories: inorganic membranes,
organic polymer membranes and mixed matrix membranes. The relationship between the
selectivity and permeability of most polymer membranes is shown in Figure 5. The perme-
ability of polymer membranes with high selectivity is generally poor. In order to solve this
problem, people began to study mixed matrix membranes. Norahim et al. [66] discussed
the influence of different fillers on composite membranes. For example, mixing carbon
nanofibers with polysulfone can improve its selectivity and permeability. The dendriform
mixed matrix membrane is composed of polyether block amide (PEBA), polyethylene
glycol (PEG) and nano-X zeolite, its CO2 permeability and selectivity increase with the
increase of feed pressure and PEG loading [67]. Some studies have shown that the addition
of MOF can improve the performance of mixed matrix membranes in CO2/CH4 separation,
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but there are still challenges in its preparation, such as poor compatibility and defects in
the membrane matrix [68]. In the future, the commercialization of membrane separation
technology can be accelerated by strengthening the research on mixed matrix membranes.
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The gas absorption membrane mainly relies on the selectivity of the absorption liquid
to achieve the purpose of separating and absorbing CO2. Under ideal conditions, the
gas absorption membrane operates in a non-wetting mode, so there should be only a gas
phase in the membrane pore. In order to ensure that the liquid phase will not penetrate
the membrane pores, microporous membranes made of highly hydrophobic polymers are
usually used [65,69–71]. Improving the hydrophobicity of the membrane is the key to
solving the problem of membrane wetting. The direct use of highly hydrophobic materials
will increase the cost. Usually, a thin layer of such materials is coated on the cheaper
membrane to reduce the cost. Another method is to improve the hydrophobicity of the
membrane by changing the surface roughness and surface tension energy [72]. In addition
to studying membrane materials, an in-depth understanding of wetting mechanisms related
to membrane performance and operating conditions should also be gained.

Membrane separation technology can also be divided into promoted membranes
and non-promoted membranes. The action mechanism of a non-promoted membrane
mainly depends on the “solution diffusion” transport process. In addition to the “solution
diffusion characteristics”, the transport promotion membrane also includes an active
transport mechanism to improve the permeability and selectivity of membrane materials.
Supported liquid membranes (SLMs) are the first kind of transport-promoting membranes
developed. They are non-dispersive liquid membranes, which mainly fill the pores of
porous materials with liquid through capillary force as a selective material. It is generally
divided into two types: mobile carrier and fixed carrier [73]. When ionic liquids are used
to fill the pores, ionic liquids are mobile carriers, usually called SILMs. The interaction
between ionic liquids and carriers will affect the distribution and separation performance
of ionic liquids on carrier pores. For example, SILMs with hydrophobic carriers are more
stable than SILMs with hydrophilic carriers [74,75]. Ahmad et al [70]. found that the higher
the content of the ionic liquid in the membrane, the lower its selectivity. When using
nano porous or porous oxide as the base membrane, the selectivity and permeability of
ionic liquids can be enhanced [76]. The fixed-position carrier membrane uses the inherent
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chemical reaction with the fixed position to “jump” CO2 from one fixed carrier to the next
through the membrane during CO2 capture. The research and development of promoted
membranes are helping to improve permeability and selectivity [77].

2.4. Other Technologies
2.4.1. Low-Temperature Separation Technology

Low-temperature separation technology is a green method, which uses the differ-
ence of relative volatility of each component in raw materials to separate each component
by distillation [78]. Sreenivasulu et al. [79] compared several low-temperature separa-
tion methods and found that condensation rotary separation is the only feasible option,
with less energy loss and higher CO2 separation yield. Belaissaoui et al. [80] studied the
mixed membrane low-temperature process for CO2 capture after combustion. The results
showed that when the imported CO2 concentration was 30%, compared with the single
low-temperature method, the mixed process could effectively improve energy efficiency.
Xu et al. [81] studied a cryogenic capture system to capture CO2 in the flue gas of an
LNG power generation system. This system can make full use of the cold energy of LNG
during gasification. The results show that if the flue gas temperature can be reduced to
below −140 ◦C, the CO2 recovery rate can reach 90%. Song et al. [82] summarized the
existing low-temperature CO2 capture technology and concluded that low-temperature
separation technology is more competitive only when low-cost cold energy is available.
Low-temperature separation technology is only suitable for high-concentration CO2 flow
(above 90%), not for dilute CO2 flow. In the future, we should optimize the operation
parameters and process of the low-temperature capture system and make full use of the
cold energy of the remaining gas after capture [10].

2.4.2. Microalgae

Among photosynthetic organisms, microalgae capture CO2 through its photosyn-
thesis, which is a potential and promising candidate organism for carbon capture. The
photosynthetic rate of microalgae is higher than that of terrestrial plants. Its cell structure is
simple, its growth rate is fast, and its environmental adaptability is strong. Therefore, CO2
biological fixation through microalgae is more effective than that of terrestrial plants. Mean-
while, algae have a carbon-enrichment mechanism that inhibits photorespiration [82,83].
Song et al. [84] summarized the existing absorption-microalgae composite CO2 capture
technology and concluded that the absorption microalgae composite CO2 capture technol-
ogy can overcome the shortcomings of traditional absorption and microalgae fixation, that
is, the absorption technology has high energy consumption for regeneration and low CO2
solubility in microalgae solution. It is very promising to use microalgae to directly capture
CO2 in the flue gas generated by fossil fuel power plants or steel plants. Thomas et al. [85]
discussed four strategies for biological mitigation of CO2 in flue gas, and they concluded
that it is the most economical to supply flue gas directly to the microalgae photobioreactor,
but it is necessary to select appropriate microalgae species to withstand the composition
and high temperature of flue gas. It is also found that directly injecting flue gas into the
pond containing microalgae can increase biomass productivity by 30%, which may be
due to the presence of supplementary nutrients in the flue gas, resulting in the fertilizer
effect [86]. Of course, CO2 capture by microalgae also has disadvantages. It requires specific
geological and geomorphic structures, expensive separation equipment, uncertainty and
long-term leakage risk. Therefore, in order to apply the microalgae capture technology on
a large scale, it will be necessary to develop carbon source treatment technologies with
different chemical forms and distribution characteristics, improve the utilization rate of
industrial waste gas and optimize the cultivation process [87].

2.4.3. Chemical Looping Combustion Technology

The basic principle of chemical looping combustion technology (CLC) is to decompose
the traditional combustion of direct contact reaction between fuel and air into two gas-solid



Energies 2023, 16, 2865 12 of 48

reactions with the help of an oxygen carrier. The fuel and air do not need to contact, and
the oxygen in the air is transferred to the fuel by the oxygen carrier. The oxygen carrier
is periodically oxidized and reduced with air and fuel. CLC technology is considered the
most cost-effective CO2 capture technology with the least energy loss. Its flow chart is
shown in Figure 6. Oxygen carriers are usually transition metal oxides, because they are
easy to reduce and reoxidize, and are suitable for recycling between two reactors [88,89].
Sajen et al. [90] studied the mixture of transition metal oxides (Such as CuO) and man-
ganese oxides in CLC and found that the mixed oxides showed good activity for the
oxidation of syngas fuel. Adanez et al. [91] compared the carbon capture efficiency of in
situ gasification chemical chain combustion process (iG–CLC) and oxygen uncoupling
chemical chain process (CLOU) under different reactor temperatures and different coals.
The results show that the carbon capture efficiency and combustion efficiency of CLOU
are better than those of iG–CLC. Hu et al. [92] compared various commonly used oxygen
carriers and concluded that calcium oxide is an ideal CO2 carrier material with low cost,
non-toxic and renewable. Among many chemical chain combustion reactors, a fluidized
bed reactor is considered to be the best choice for large-scale application of chemical chain
combustion technology. The fluidized bed reactor provides high solid circulation, which
makes the fuel fully contact with the oxygen carrier in the fuel reactor, providing sufficient
oxidation and reduction time for the oxygen carrier [93].
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2.4.4. Electrochemical Technology

Electrochemical technology mainly uses an electrochemical reaction to selectively
separate CO2 from the mixture, absorb and release CO2 through electrolyte solution, and
regenerate electrolytes with an ionic conductive membrane. This method can capture CO2
at atmospheric concentration levels, low pressure and low temperature, with low energy
demand. Most electrochemical methods capture and recover CO2 by moving the pH value
of the working solution between acidic and alkaline pH values [94]. Muroyama et al. [95]
reviewed the research progress of electrochemical separation of CO2 and found that elec-
trodialysis using liquid electrolytes to capture solution is the most intensively studied
electrochemical method at present.

Fuel cells and their hybrid system are one of the effective technologies to reduce CO2
emissions, which have the advantages of being clean and efficient. A high-temperature
fuel cell is an electrochemical device, which is usually composed of an electrolyte, anode
and cathode. Common high-temperature fuel cells mainly include solid oxide fuel cells,
molten carbonate fuel cells and direct carbon fuel cells. Wang et al. [96] compared and
introduced these three fuel cells and their application prospects in carbon capture in detail.
Although there are still many challenges in the application of high-temperature fuel cells
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(such as the need to scale up fuel cell modules, and the high cost and safety of fuel cells),
high-temperature fuel cells are still an excellent strategy for CO2 emission reduction in
power plants.

Zhang et al. [97] gave an overview of a new high-temperature electrochemical CO2
transfer membrane. They compared several membranes made of different materials and
evaluated some CO2 capture reactors based on these membranes. At the same time, the
concept of electrochemical CO2 capture and conversion film was successfully demonstrated
on a laboratory scale. Bae et al. [98] modified a seawater battery system for desalination
and carbon capture. As shown in Figure 7, the system is mainly composed of three
compartments: desalination, sodium collection, and carbon capture. The compartments
are separated by sodium ion superconducting ceramic membranes. By charging and
discharging the system, sodium ions are transferred from the desalination compartment
to the carbon capture compartment, and hydroxide (OH−) ions are formed in the carbon
capture compartment at the same time, and the hydroxide (OH−) ions and Na+, Ca2+,
Mg2+ React with CO2 introduced in the atmosphere to form metal carbonate, to achieve the
purpose of capturing CO2. The biggest shortcoming of this system at present is that the
reaction of chlorine analysis is relatively difficult, and silver foil is temporarily used as a
collecting electrode.
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3. CO2 Transport

After the CO2 is separated from the flue gas, it must be transported to a storage site
for storage or a factory for processing and utilization. Regardless of the ultimate fate of
CO2, a safe, reliable and economically viable CO2 transportation system is a key link in the
realization of CCUS technology. At present, the main transportation methods of CO2 are
tanker transportation, pipeline transportation and ship transportation. Different shipping
methods are suitable for different shipping situations. Example: A power plant with a
design life of more than 23 years that produces CO2 suitable for pipeline transportation.
For some short cycles CO2 transportation, tanker transportation and ship transportation
are more competitive [1]. The amount of CO2 and the distance between the way of CO2
capture and the storage location are critical to the choice of CO2 transport mode. In this
section of the review, we will focus on pipeline transportation and ship transportation.



Energies 2023, 16, 2865 14 of 48

3.1. Pipeline Transportation Technology

Pipeline transportation is the most economical way to transport large quantities of CO2.
At present, the length of global CO2 pipelines exceeds 8000 km, and most of these pipelines
are located in the United States. However, this length is far from meeting the demand
for CO2 pipeline transportation under the carbon-neutral target, and a large number of
CO2 pipelines need to be built in the future. This section summarizes the research on
CO2 pipeline transportation from three aspects: transportation status and process, pipeline
design and flow assurance, and transportation safety and risk [99,100].

3.1.1. Conveying Status and Process

CO2 has low critical temperature and pressure and is prone to phase changes. Its
transport forms include gas transport, liquid transport, dense phase transport and super-
critical transport. When multi-phase flows in the pipeline, CO2 is easy to change phase and
causes pipe cavitation, so CO2 is usually transported in single-phase. Similar to oil and
gas pipelines, CO2 also needs to be supplied with pressure through a compressor or pump
to meet the purpose of transmission. Through practice, it is found that gas transportation
and liquid transportation are more suitable for short-distance pipelines, and dense phase
transportation and supercritical transportation are more suitable for long-distance pipelines.
Among them, supercritical transportation and dense phase transportation are more eco-
nomical [101]. Figure 8 shows the process flow diagram of these four conveying modes.
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Some scholars and institutions have conducted some research on CO2 pipeline trans-
portation [102]. Zhang et al. [103] found that the low critical temperature (31.1 ◦C) of CO2 is
an important feature, and the control system temperature and pressure directly determine
the process design and pressure loss of the system. Under favorable climatic conditions,
CO2 transport in the supercooled liquid state can significantly save energy. At the same
time, they also found that CO2 has the largest safe transport distance. Lu et al. [104] de-
termined the flow transmission range of different pipe diameters according to the phase
change during the transportation of liquid CO2. Drescher et al. verified the ability of
the Schlumberger flow assurance tool OLGA and SINTEF Energy Research’s in-house
CFD tool to simulate the decompression behavior of a CO2 pipeline. Their simulation
results are consistent with the experiment. However, OLGA and SINTEF deviate from the
experimental results in terms of simulated temperature [105].

3.1.2. Pipeline Design and Flow Assurance

The efficient transmission of CO2 from source to sink requires the adequate design of
the CO2 transportation pipelines. The length of the pipeline should be minimized when
designing the pipeline. Longer pipelines also require larger diameters, which will increase
the construction and operation costs of the pipeline. The pipe diameter should not be too
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small. The pipe diameter determines the transmission capacity. Too small a diameter will
cause too high a CO2 flow rate, increasing pressure loss and corrosion of the pipe wall [106].
Therefore, the most reasonable pipe diameter is the minimum pipe diameter to meet the
CO2 transmission requirements [107]. Mohammadi et al. [108] proposed a cost optimization
framework for a CO2 transportation system and concluded that pipe diameter and horizon-
tal angle are important parameters for pipe design. When designing the CO2 pipeline, the
wall thickness of the pipeline should also be considered. Different transportation modes
will also affect the wall thickness design of the pipeline. Teh et al. [109] found that under
the same conditions in other cases, the wall thickness required for CO2 liquid transportation
is less than that required for CO2 supercritical transportation. When the captured CO2 is
stored, differences in potential reservoir capacity and injection capacity may significantly
change the economy and design of the CO2 transport system. Wang et al. [110] proposed a
decision tree-based method by analyzing some cases, which can quickly and accurately
estimate the best reservoir selection and pipeline design without any optimization.

Temperature and pressure are the key factors to control CO2 pipeline transportation.
Changes in temperature and pressure will change the phase state of CO2 and affect the
normal operation of the pipeline [111]. In recent years, many scholars began to study
it. Lu et al. [101] found that under the same operating conditions, the pressure drop of
a CO2 pipeline is lower than that of natural gas pipeline, but its temperature drop is
larger, so hydrates are more likely to be generated in a CO2 pipeline. The existence of
impurities will affect the thermophysical properties of CO2, thus affecting the pipeline
transportation of CO2 [112]. Lee et al. [113] studied the in-tube heat transfer coefficient
and compressor power consumption with impurity CO2. It was found that both the heat
transfer coefficient and the compressor power consumption followed the trend of pure
CO2, but were influenced by the type and amount of impurities. Baik et al. [114] studied
the pressure drop of CO2 + CH4 in the pipe under seawater conditions. With the decrease
of CO2 mole fraction, the average pressure drop in the pipe increases, and the pressure
drop of CO2 + CH4 increases with the increase of mass flow rate. Teh et al. [109] studied
the difference between the transportation of liquid CO2 and supercritical CO2 at ambient
temperature. The authors believe that as long as the liquid CO2 pipeline is buried deep
enough in the soil with poor thermal conductivity, it does not need to keep the trunk line
warm, and the same amount of CO2 is transported at the same distance. Liquid CO2 is
superior to supercritical CO2.

3.1.3. Transportation Safety and Risk

At present, most of the existing CO2 pipelines are located in less densely populated
areas, but in the near future, CO2 pipelines may span densely populated areas. As CO2 is
toxic at a certain concentration, the harm of CO2 at different concentrations to the human
body is shown in Figure 9 [115]. At present, the safety and risk research of CO2 pipelines
mainly includes three aspects: the impact of impurities on CO2 pipeline transportation, the
corrosion of CO2 pipeline and the accidental leakage of CO2 pipeline [116].

In the process of carbon capture, due to the different sources and capture methods of
CO2, there are often different types of impurities in the pipeline CO2 fluid. The allowable
limit of impurities in CO2 depends on the geological conditions of the storage formation
or the use specifications [117,118]. The content of impurities is usually very low, but the
existence of a small number of impurities will also have an adverse effect on the safe
operation of the pipeline [119,120]. Zhao et al. [120] believed that the equation of state
is very important for calculating the heat transfer and pressure drop of a CO2 pipeline.
The PR equation of state applies to pure CO2. For CO2 mixtures containing impurities,
the mixture parameters of the PR equation of state must be determined first. The authors
also found that the effect of CH4, H2, NO2 and other impurities on phase equilibrium
is different. Peletiri et al. [118] studied the influence of impurities on the flow of CO2 in
the pipeline. The authors found that nitrogen had the greatest influence on the pressure,
temperature and other physical parameters of CO2 in the pipeline, while H2S had the least
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influence on CO2. Wetenhall et al. [121] found that adding NO2 and SO2 would reduce the
diameter of the pipe in question, and the higher the content of impurities, the smaller the
pipe diameter required.
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Supercritical CO2 pipeline is prone to corrosion risk, which affects the safe operation of
pipeline [122]. Cui et al. [123] found that water content is the key factor affecting corrosion,
and controlling the water content below the critical water content is the most economical
and effective method to reduce corrosion. At the same time, the authors also found that
among the impurities contained in CO2, NO2 had the most serious corrosion effect on CO2
pipelines. When multiple gas impurities exist at the same time, there will be a synergistic
effect, which will have a more serious impact on corrosion. Tang et al. [122] summarized
the metal corrosion problems under the combination of various impurities and studied
the corrosion mechanism of synergistic effect and the formation mechanism of corrosion
products. Sim et al. [124] found that the corrosion mass loss increased with the increase in
water concentration, especially when the water concentration was greater than 1000 ppmw.

Pipeline leakage is also a potential risk during pipeline transportation. CO2 pipeline
leakage may cause damage to the surrounding environment, which mainly depends on
the total amount of CO2 released and the concentration reached near the leakage [125].
Herzog et al. [126] simulated the leakage and release process of an onshore high-pressure
CO2 pipeline with CFD. Under the specific conditions for which it is set, the extent of the
plume increases with increasing temperature. The height of the plume increases with time
and depends on the release pressure and the size of the leak. Within a certain range, the
size of the leak hole has a much greater effect on the plume height than the release pressure.
Joshi et al. [127] found that after the leakage of the CO2 pipeline, all solid formations were in
the expansion zone, and there were no solid formations in the pipeline. This also avoids the
possibility of crack propagation caused by solid polymer in the pipeline. At the same time,
the authors also found that 55% of the excessive dense gas concentration was observed
near the obstacle compared with the concentration on the flat terrain. Xie et al. [128] found
through experiments that supercritical CO2 showed a highly under-expanded jet structure
during the leakage process, and with the increase of the leakage size, the typical structure
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disappeared. In the process of leakage, the mass loss of supercritical CO2 is greater than
that of gaseous CO2.

3.2. Ship Transportation Technology

The CO2 ship transport technology mainly refers to the transport of captured CO2
to the designated place through a CO2 carrier. Currently, only four CO2 carriers are
put into operation in the world, mainly for the food service industry. The research on
ship transportation technology mainly focuses on its economy. Jung et al. [129] found
that the cost of CO2 transportation by pipeline system in Korean offshore CCS projects
is lower. However, with the development of CO2 carriers, the cost may be lower than
that of pipeline transportation. When the distance of CO2 ocean transportation exceeds
350 km, the cost of ship transportation is lower than that of pipeline transportation [130].
Roussanaly et al. [131] analyzed the transportation costs of CO2 carriers with pressures of
7 Barg and 15 Barg respectively. The authors found that for all the transportation distance
and annual transportation volume combinations considered, 7 Barg transportation has
more price advantages.

In a word, CO2 transport is an important link between carbon capture and storage.
Pipeline transport technology and ship transport technology apply to large-scale CO2
transport. The comparison between these two technologies is shown in Table 3. Although
the development of CO2 transport technology is relatively mature, however, it is still
necessary to continue to improve and study the impact of impurities on CO2 pipelines and
the analysis of CO2 leakage consequences.

Table 3. Carbon Dioxide transportation alternatives [132].

Transporation Method Conditions Phase Capacity REMARKS

Pipelines 4.8–20 Mpa
283–307 K

gas, liquid,
supercritical,
dense phase

~150 Mt CO2/year
8000 km of pipeline

transport in operation

• higher capital costs, lower operating costs
• low-pressure system is 20% more expensive

than dense phase transmission
• well-established for EOR USE.

Ships 0.65–4.5 Mpa
221–283 K liquid >70 Mt CO2/year

• higher operating costs, lower capital costs
• currently applied in the food and brewery

industry for smaller quantities and
different conditions

4. CO2 Utilization

In recent years, the utilization of CO2 has received more and more attention. The best
way to remove CO2 is to use CO2 to make valuable products. At present, the global annual
CO2 emissions exceed 32 billion tons, but the CO2 utilization is less than 200 million tons.
From this point of view, the utilization of CO2 is unlikely to significantly reduce the content
of CO2 in the atmosphere, but people pay more attention to the economic or environmental
benefits of the process. Therefore, the utilization of CO2 is considered a stepping stone for
the large-scale implementation of CCUS technology [133–135].

CO2 can be used in a variety of ways, including technical, biological or chemical.
CO2 can be directly used in energy production to help improve oil recovery, directly
used as raw material for chemicals, and directly used as raw material for bioenergy pro-
duction. CO2 can also be directly used in the food processing industry. These uses are
discussed below [136,137].

4.1. Strengthen Energy Production Technology

Energy such as fossil fuels is the material basis for the survival and development of
human society. The traditional fossil fuel recovery technology and recovery efficiency are
limited, and the work efficiency is not high. The use of CO2 in the recovery of fossil fuels
can not only effectively improve the recovery rate, but also play a role in CO2 storage. As
shown in Figure 10, CO2 can be used to exploit oil, natural gas and coal bed methane.
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4.1.1. Enhanced Oil Production Technology

It is more and more important for the petroleum industry to enhance the oil recovery
(EOR) process. CO2-enhanced oil recovery technology refers to a technology that uses CO2
as the oil-displacement medium to improve oil recovery. This technology has been applied
for decades. The United States is an early country in the world to study and apply CO2
flooding technology. Stewart et al. [139] found that in the North Sea oilfield, CO2 flooding
can maximize the production of mature oilfields, and CO2 flooding can be used to produce
low-carbon oil. More than 90% of reservoirs in the world are suitable for CO2–EOR [135]. In
the process of CO2–EOR, the most important is the mixed phase of CO2 and crude oil [140].
CO2 flooding technology mainly includes miscible flooding and immiscible flooding. At
present, immiscible flooding technology is rarely used, and the most ideal technology
is miscible flooding. Miscible flooding can achieve the highest oil recovery during CO2
flooding. The minimum miscibility pressure (MMP) is very important for the miscible
flooding of CO2. The lower miscibility pressure is beneficial to the economic operation of
CO2 flooding projects.

CO2 flooding has become one of the most commonly used EOR methods. Many
scholars have begun to study the influencing factors of CO2 flooding and how to improve
the recovery factor of CO2 flooding. Cao et al. [141] found that in the process of CO2
immiscible flooding, the oil recovery rate increases with the increase of pressure. When the
pressure exceeds the minimum miscible pressure, the oil recovery rate slightly increases
and finally stabilizes near a maximum value. The wettability of the reservoir will also
affect the recovery factor of CO2 flooding, and the recovery factor of oil–wet cores is higher
than that of water–wet cores [142]. Hamidi et al. [143] studied the effect of ultrasonic-
assisted CO2 flooding on oil recovery. Under an appropriate injection rate, ultrasonic-
assisted CO2 flooding can improve oil recovery. In addition to research on enhanced oil
recovery, monitoring downhole and blowdown emissions from CO2 displacement and
strengthening risk management need to be considered. At the same time, we should speed
up the construction of the CCUS–EOR technical standard system to promote the rapid and
profitable development of the entire industry chain.

4.1.2. Strengthening Gas Production Technology

Enhanced gas production technology mainly refers to injecting CO2 into a gas reservoir
or shale reservoir in supercritical form to enhance gas recovery (CO2–EGR), while storing
CO2. The key to improving natural gas recovery by CO2 is to control the miscibility of CO2
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and CH4. CO2 and natural gas are miscible at any ratio, which will reduce the displacement
of CO2 on natural gas and reduce the recovery of natural gas. At the same time, CO2–EGR
does not apply to all gas fields [144,145]. Gas mixing can be limited by good reservoir
management and production control measures [146].

As unconventional natural gas, shale gas has attracted worldwide attention in recent
years. As a new shale gas development technology, CO2 flooding of shale gas is developing
rapidly [120]. About 20~80% of natural gas can be stored in shale gas reservoirs in the form
of adsorption. The properties, moisture, temperature, pressure and other conditions of
shale gas reservoirs will affect the adsorption behavior of CO2 and CH4. In reservoirs with
more micropores, the preferential adsorption of CO2 may be higher. When the pressure
increases, the preferential adsorption of CO2 will become weaker [147]. However, the
increase in CO2 injection pressure will increase the recovery of CH4 and the storage of
CO2 [148]. The CO2 content in the injected gas also has a great influence on the desorption
of natural gas from rocks [149]. When supercritical CO2 is injected into shale, the porosity
and specific surface area of shale will also increase with time and pressure. At the same
time, the pore structure and surface chemistry in shale will also change, resulting in a
decline in the adsorption capacity of shale for CO2 and methane [150,151].

During CO2 flooding of shale gas, the recovery depends on the relative affinity of
CO2 and CH4 in their mixture. Therefore, the adsorption study of the mixed gas is of
great significance for CO2 flooding shale gas. Song et al. [152] found that the isothermal
adsorption capacity of CH4/CO2 decreased with the increase in temperature, and the
adsorption capacity of CO2 was greater than that of methane. Qi et al. [147] found that
the total adsorption capacity of the CH4/CO2 mixture is between two single components.
The shape of the isothermal adsorption curve of the mixed gas is similar to that of a
single component with a high concentration or strong adsorption affinity. When CO2
is injected into shale, the interaction between adsorbed gas and the nanopore structure
may lead to shale expansion, fracture closure and reduction of permeability of the shale
formation [153,154]. Lu et al. [155] found that the increase in CO2 pressure will make the
expansion of shale samples first increase and then decrease. The maximum expansion of
shale will gradually decrease with the increase in CO2 temperature. Strengthening the
research on CO2 adsorption behavior is helpful to the development of CO2-enhanced gas
recovery technology [156].

4.1.3. Technology of Displacing Coalbed Methane

The technique of displacing coalbed methane is to use CO2 as an adsorbent and inject it
into the coal seam to improve the recovery rate of coalbed methane by taking advantage of
the characteristic that its adsorption capacity on the surface of the coal body is higher than
that of methane (CO2–ECBM). At present, most CO2–ECBM projects are implemented in
deep coal seams, because the coal in deep coal seams cannot be economically exploited, and
the possibility of injected CO2 returning to the atmosphere is small [157,158]. Displacing
shale gas, after CO2 is injected into coal seams, the pore structure and chemical and physical
properties of coal will also change, affecting the effect of displacing coalbed gas [159]. The
decrease of coal seam permeability is the main problem in the whole process. The reduction
of coal seam permeability will affect the production rate of CH4, the injection amount and
the injection pressure of CO2. The expansion of coal after CO2 adsorption is the main
reason for this situation [160].

The properties of coal seams and injected CO2 affect the expansion of coal bodies. The
higher the coal grade is, the more favorable it is for CO2 to displace CH4 [160]. The
increase in coal seam temperature will lead to the increase of kinetic energy of CO2
molecules and the decrease of CO2 adsorption capacity, thus reducing CO2 reserves and
CH4 production [161,162]. Compared with gaseous or subcritical CO2, supercritical CO2
is more easily affected by coal seam temperature [163]. With regard to temperature, the
combined effects of thermal expansion, thermal cracking and gas phase transition should
also be considered [164]. The presence of water in coal seams also significantly affects the
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adsorption and desorption of CO2 and CH4. Water, CH4 and CO2 in coal compete with
each other in the adsorption position, which affects the effect of displacing coalbed methane.
The H2O molecules on the coal will induce the expansion of the coal matrix, resulting in
the reduction of the porosity and permeability of the coal seam. Water molecules trapped
in the pores may also block the channel for CH4 desorption from coal [165–167].

Hou et al. [161] found that the injection pressure of CO2 affects the displacement and
migration rate of CH4, and increasing the pressure can increase the storage of CO2 and the
recovery of methane. Increasing temperature or pressure will also shorten the adsorption
equilibrium time of CO2 and CH4 [168]. Perera et al. [169] found that under higher
CO2 injection pressure, pore elasticity will increase porosity, which is more influential
than adsorption expansion. However, some scholars found that higher CO2 injection
pressure may also lead to coal matrix expansion, which will reduce the permeability of
coal seams, and the reduction of supercritical CO2 will be greater [160,163]. Therefore, the
CO2 injection pressure should be reasonably determined according to the actual situation
of the coal seam. The captured CO2 usually contains impurities (Such as N2). Injecting
mixed gas (CO2/N2) can improve the replacement efficiency of CH4 and promote the
recovery of CH4 [170–172]. In the process of CO2 flooding coalbed methane, compared
with gaseous CO2 flow, supercritical CO2 flow can exchange better with CH4, and the sweep
efficiency of supercritical CO2 injection is higher, resulting in a longer expansion period.
The effectiveness of supercritical CO2 in CH4 recovery has nothing to do with the maturity
or grade of the coal seam [169,173,174]. The viscosity of gaseous CO2 increases with
temperature, while the change of supercritical CO2 is the opposite. Because the temperature
of the underground coal seam is higher, compared with gaseous CO2, supercritical CO2 has
a stronger sliding capacity and a shorter contact time with the coal matrix, which reduces
its adsorption capacity [162].

4.1.4. Enhanced Geothermal Technology

Geothermal is a good alternative energy. CO2-enhanced geothermal technology
(CO2–EGS) uses supercritical CO2 as the heat transfer fluid and uses a method similar to
hydraulic fracturing to activate the cracks in the rock so that CO2 can extract heat from the
rock through the rock. Supercritical CO2 has many advantages. First, it has a large expan-
sion rate and low viscosity, thereby reducing the power consumption of fluid circulation
and improving the speed of fluid circulation. Secondly, CO2 is a non-polar solvent, which
will reduce the dissolution of rock minerals and eliminate scaling problems. Finally, CO2
may be an attractive fluid for heat, so it has advantages in accelerating energy uptake. In
the process of geothermal exploitation, attention should also be paid to the influence of
CO2 injection temperature and pressure. Lower CO2 injection temperature is favorable
for thermal extraction [175]. The higher the CO2 injection rate, the worse the heat transfer
effect. Therefore, when the CO2 injection rate is high enough, the heat transfer between
the wellbore and the surrounding reservoir can be ignored, thus extending the service
life [176]. The nature of the reservoir will also affect CO2–EGS. Wang et al. [177] found
that lower reservoir permeability and initial reservoir temperature are more favorable for
CO2–EGS. And with the increase of formation permeability, the efficiency of heat extraction
increases, but the rate decreases. The rock chemical and mechanical interaction caused
by supercritical CO2 in the pores will affect the flow behavior, change the porosity and
permeability of the reservoir, and affect the energy extraction process, but the current
research in this field is less [178].

4.2. Chemical Conversion Technology

CO2 chemical conversion technology mainly uses CO2 to produce fuels and chemicals,
which can provide additional value and may store CO2 [179]. Due to the thermodynamic
stability and kinetic inertia of CO2 molecules, the direct synthesis of CO2 usually has the
disadvantages of low synthesis efficiency and harsh reaction conditions. At present, only a
few chemicals in industry are made of CO2. Although the utilization potential of CO2 as a
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chemical raw material is limited, it can reduce the dependence of the chemical industry on
traditional fossil fuels. Table 4 is an example of chemicals currently used for CO2 synthesis
at the pilot scale as summarized by Burkart et al. [134]. In the following section, we will
introduce some CO2 conversion methods and their future challenges.

Table 4. Selected examples of chemicals currently synthesized from CO2 on a pilot plant scale.
a Reproduced with permission from [134], American Chemical Society, 2019.

Chemical Company (Location) Scale Per Year b

Carbon monoxide (via SOEC) c Haldor-Topsoe (Lyngby, Denmark)/
Gas Innovations (La Porte, TX, USA) 12 Nm3/h

Methanol Carbon Recycling International (Reykjavík, Iceland)
Mitsui Chemical Company (Tokyo, Japan)

4000 tons
100 tons

Methane Audi (Ingolstadt, Germany) 1000 tons

Fuels (via CO2-based Fischer-Tropsch) Sunfire (Dresden, Germany)
INERATEC (Espoo, Finland)

3 tons
200 L

Oxalic acid Liquid Light/Avantium (Amsterdam, The Netherlands) 2.4 tons
a A pilot plant is defined as a pre-commercial system, which produces a chemical or fuel on a smaller scale than a
full plant and is used for learning purposes. b Amount of product that is produced per year. c SOEC = solid oxide
electrolyzer cell.

4.2.1. Raw Materials for the Chemical Industry

At present, scholars and institutions around the world have developed many chemical
routes for CO2 utilization. Most of these routes only consider the possibility of synthesis
and do not consider the reduction potential or potential profitability of CO2. The direct
conversion of CO2 is mostly to reduce CO2 to CO through reverse water gas shift (RWGS)
reaction, and then to hydrogenate CO to the required chemicals [180]. Otto et al. [181]
evaluated 123 reaction routes of CO2 conversion into chemicals. The authors selected the
types of these reactions that can meet the standards based on the potential of reducing
the amount of CO2 and the economic benefits of synthesis. Among the six selected bulk
chemicals (methanol, formaldehyde, formic acid, oxalic acid, urea and dimethyl ether),
five of them are CO2 and H2 reactions. Therefore, CO2 catalytic hydrogenation is the most
potential technology and the technology most likely to be applied on a large scale in a
short term. Figure 11 shows the different transformation routes of applying renewable
energy to CO2 hydrogenation. Kondratenko et al. [182] analyzed the current situation
of converting CO2 into chemicals through catalytic hydrogenation, photocatalysis and
electrocatalysis. Among them, the catalytic hydrogenation of CO2 to methanol and methane
has formed a commercial scale, while electrocatalysis and photocatalysis still require
significant technological and catalytic progress [183]. At the same time, the authors also
mentioned that the most critical problem of catalytic hydrogenation is the need for cheap
and clean H2. This is also the development trend of CO2 catalytic hydrogenation in the
future. Although the large-scale application of CO2 electrocatalysis technology still faces
challenges, with the development of technology, it is considered to be one of the most
promising technologies in the future. Many researchers have proposed various methods
to promote the development of electrocatalysis technology, such as increasing active sites
on electrodes, using alloy catalysts, etc. [184–186]. Park et al. [185] believed that low
productivity and product separation difficulties caused by low current density and Faraday
efficiency were the main factors hindering the large-scale application of electrochemical
conversion. However, by introducing cutting-edge equipment (zero gap electrolytic cells,
etc.), large-scale application of electrochemical conversion can be possible. In addition, the
lack of in situ observation of the reaction mechanism and active sites during electrocatalytic
experiments also hindered its development. Coupling electrocatalytic technology with
renewable energy is an important development direction in the future.
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In order to utilize CO2 efficiently, catalysts are usually used to reduce the activation en-
ergy during the chemical conversion of CO2 [188,189]. At present, research on CO2 catalytic
reduction focuses on the formation of C1 products. Different C1 products are controlled
by the reduction degree, which is also a major challenge [134]. The preparation method
of the catalyst usually affects its specific surface area, particle size, metal dispersion and
other properties, thus affecting the activity and selectivity of the catalyst [190]. Therefore,
an appropriate preparation method must be selected when preparing the catalyst [191].
Doping and alloying of foreign atoms can change the surface morphology of the catalyst,
which is an effective method to improve the activity and selectivity of the catalyst [186]. At
present, the price of catalysts is relatively expensive, and the conversion rate is not high,
continuous and stable production is difficult, so the future needs more in-depth research.

For renewable energy, the utilization of CO2 is a great opportunity to help it inject into
the chemical production process [187]. At the same time, renewable energy sources such
as wind energy and solar energy have shortcomings such as intermittency and anti-peak
shaving, and their introduction into the CO2 conversion process is considered to be an ideal
method for efficient electric energy storage and conversion [186]. As shown in Figure 12,
CO2 photocatalytic conversion is to convert CO2 into valuable products by using renewable
energy (solar energy) under mild reaction conditions. This process will not pollute the
environment and does not require additional energy [192]. Titanium dioxide is the most
commonly used catalyst in photocatalytic reactions, but it also has its limitations, such
as low efficiency and activity of the catalyst. This problem can be effectively solved by
doping, semiconductor coupling, cocatalyst modification, design of photo reactor and other
methods [192–195]. If the price of renewable energy continues to fall, it will be possible to
use renewable energy for CO2 use through catalytic methods in the future.

The use of CO2 for fuel production can reduce the use of traditional fossil fuels. This
process usually requires a reforming reaction, such as reforming CO2 and CH4 to produce
synthesis gas. At present, dry reforming (DRM), partial oxidation (PO) and steam reforming
(SRM) have been proposed for reforming methane to obtain syngas. The reaction equations
of the three methods are as follows:

DRM: CH4 + CO2 → 2CO + 2H2 ∆H298K = +247 KJ/mol (1)

PO : CH4 +
1
2

O2 → CO + 2H2 ∆H298K = −22.6 KJ/mol (2)

SRM: CH4 + H2O→ CO + 3H2 ∆H298K = +228 KJ/mol (3)
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It can be seen from the reaction formula that the oxidant used in the three methods
is different, and the oxidant used in DRM is CO2. Therefore, it is considered to be the
most promising technology [136]. However, DRM is a highly endothermic reaction that
needs to be carried out at high temperatures. Therefore, it may induce CH4 decomposition,
CO disproportionation and other side reactions, leading to coke deposition, adsorption
on the catalyst surface, and ultimately leading to catalyst deactivation and reduction
of conversion [196]. The formation of coke can be reduced by controlling the reaction
temperature and feed ratio [197]. Aramouni et al. [198] believed that bimetallic catalysts
formed by adding a small amount of precious metals or other non-precious metals to
cheap non-precious metals can show good performance in catalysis. This can not only
overcome the shortcomings of rapid deactivation of non-precious metals and high coke
but also reduce the price of catalysts. At the same time, the authors think that Co–Ni
bimetallic catalyst has great development potential in the future. The reforming of CO2
and methane is not only affected by the catalyst, Ayodele et al. [199] found that the partial
pressure of reactants (CO2 + CH4) will also have a great impact on conversion, yield and gas
production ratio. Although DRM is considered a technology with environmental potential,
its development is limited by its extremely high reaction temperature, long reaction time,
requirements for pure CO2 and catalyst deactivation [136].

CO2 can also be used to produce biofuels such as methanol (CH3OH) and dimethyl
ether (CH3OCH3). Methanol is widely used in various chemical industries. Although
compared with gasoline, its energy content is low. However, due to its excellent cooling
effect and extremely high anti-knock ability, it is suitable for vehicles driven by internal
combustion engines [133,200]. At present, methanol production by CO2 hydrogenation
catalysis is the most studied, and its reaction formula is shown in (4):

CO2 + 3H2 → CH3OH + H2O ∆H298K = −49.5 KJ/mol (4)

Although it has good thermodynamic properties, it still needs to use appropriate
catalysts to overcome the obstacle of high activation energy. At the same time, a highly
selective catalyst should be used in the reaction process to avoid generating other hydro-
genation products (such as higher alcohols) [201]. In methanol synthesis, the efficiency
of using a Cu catalyst alone is not high, while the supported Cu-based catalyst shows a
strong loading effect. Cu/ZnO catalysts have been widely studied for CO2 hydrogenation
to methanol [202]. ZnO can not only enhance the adsorption of CO2 on the surface of
Cu but also promote the dispersion of copper, thus improving the reactivity of Cu [203].
Kattel et al. [204] studied the active sites on the Cu/ZnO catalyst. They believed that the
surface oxidation of ZnCu alloy occurred during methanol synthesis, which oxidized the
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surface Zn to ZnO, making the activity of ZnCu and ZnO/Cu the same under the same
Zn coverage. The addition of oxides to the Cu/ZnO catalyst can effectively improve the
performance of the catalyst. The most commonly used oxide is Al2O3 [205]. Due to the
rich oxygen utilization rate and good ion exchangeability of the ZrO2 surface, it is also
often studied for binding with Cu/ZnO. The hydrophilicity of ZrO2 is weaker than that
of Al2O3, which can improve the dispersion and stability of Cu. In addition, ZrO2 can
increase the alkalinity of the catalyst, which is conducive to improving the selectivity of the
catalyst [206]. In addition to improving traditional Cu/ZnO-based catalysts, many scholars
are also developing new catalytic systems [207].

Dimethyl ether (DME) is also widely used in the chemical industry, and it is also an
effective substitute for fossil fuels. In addition, it produces less NOx, SOx and particulate
matter during combustion, which has little environmental pollution. At the same time, its
cetane number is higher than that of methanol, so it is more suitable as a substitute for
diesel [208]. DME is usually produced by indirect synthesis and direct synthesis, as shown
in Figure 13. Indirect synthesis is to first synthesize methanol through synthesis gas and
then dehydrate methanol to produce dimethyl ether. The reaction equations are shown in
(5) and (6). Direct synthesis is catalyzed by CO2 hydrogenation, and the reaction formula is
shown in (7).
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Methanol synthesis:

CO + 2H2 → CH3OH ∆H298K = −93.6 KJ/mol (5)

Methanol dehydration:

2CH3OH→ CH3OCH3 + H2O ∆H298K = −23.4 KJ/mol (6)

Direct synthesis of dimethyl ether:

2CO2 + 6H2 → CH3OCH3 + 3H2O ∆H298K = −122.2 KJ/mol (7)

Chen et al. [210] studied the reaction characteristics of the indirect synthesis of DME.
The indirect method is to produce methanol through synthesis gas, and there is inevitably
CO2 in the synthesis gas. The authors found that the existence of CO2 would reduce the
yield of DEM. Therefore, CO2 should be separated before synthesis, but this will increase
the cost of DEM manufacturing. Samimi et al. [211] proposed a new two-stage spherical
reactor based on methanol dehydration to dimethyl ether, aiming at reducing pressure
drop and recompression cost and increasing dimethyl ether yield. Compared with the
traditional reactor, the reactor can effectively improve the yield. However, the industry
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generally prefers to use a single-pot synthesis technique for dimethyl ether synthesis to
reduce production costs [212]. Chen et al. [213] conducted thermodynamic analysis on the
direct synthesis process and indirect synthesis process of dimethyl ether and studied the
effects of two different methods on the synthesis of dimethyl ether. The authors think that
direct synthesis has a lower thermodynamic limit and is more suitable for the synthesis of
dimethyl ether. Zhang et al. [214] used Aspen Plus to simulate the direct syngas to DME
synthesis coupled with tri-reforming reactions. The tri-reforming can maximize the use
of CO2 and reduce the use of external energy. The system is most favorable for operation
under low temperature and high pressure. Through simulation, the authors find that this
process is an economical and feasible method to utilize CO2.

CO2 can not only be reformed with methane to produce syngas but also be directly
hydrogenated to produce methane. The reaction formula is shown in (8).

CO2 + 4H2 → CH4 + 2H2O ∆H298K = −252.9 KJ/mol (8)

Compared with other CO2 conversion methods, CO2 methanation has many ad-
vantages. It can directly use existing natural gas pipelines for transportation. As far as
thermodynamics is concerned, CO2 methanation is the most favorable, so this reaction
is much faster than other CO2 conversion reactions. Sahebdelfar et al. [215] studied the
thermodynamic equilibrium analysis of CO2 methanation. The results show that CO2
methanation has a high conversion rate at a low temperature of 200~300 ◦C. Above 350 ◦C,
equilibrium conversion can be achieved by using the most advanced catalyst, which shows
the potential and importance of catalyst improvement. Ni-based catalyst is the most
frequently studied catalyst in CO2 methanation. Because of its low price, it has more
commercial value. Tada et al. [216] performed CO2 methanation on four supports, CeO2,
α-Al2O3, TiO2, and MgO (all containing 10% metallic Ni), and observed their effects on CO2
conversion rate and CH4 selectivity. It can be seen from Figure 14 that compared with other
catalysts, Ni/CeO2 catalyst has a higher CO2 conversion rate, and its selectivity to CH4 is
close to 1 at a low temperature (250~400 ◦C). Graca et al. [217] studied CO2 methanation
over catalysts containing Ni and Ce supported on HNaUSY zeolite. The authors found
that the performance of the catalyst was better with the increase of Ni content, and the
presence of Ce further improved the activity and selectivity of the catalyst. In recent years,
many researchers have developed a new dual-functional material (DFM) that combines
adsorption and methanation functions for the co-capture and methanation of CO2. This
material can combine the two processes of CO2 adsorption and hydrogenation in a single
reactor [218]. Although the reaction of CO2 methanation is simple, the reaction mechanism
is difficult to establish. Even for CO methanation, there is still no consensus on the kinetics
and mechanism [219].
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4.2.2. Mineralization

The mineralization of CO2 is not only an effective way of utilization but also can
effectively fix CO2. Both natural silicate ores and alkaline solid waste can be used for
CO2 mineralization. However, the use of natural ores for CO2 mineralization is costly
and challenging [220]. In contrast, the use of alkaline solid waste for mineralization has
become an attractive approach. Because it has high reactivity and inherent alkalinity and
is easy to obtain. Common alkaline solid wastes include steel slag, cement and concrete
waste, etc. Accelerating CO2 carbonization by using alkaline solid waste can not only
capture CO2 efficiently from industrial flue gas but also form various products, such as
CaCO3 and MgCO3. As shown in Figure 15, CaCO3 and MgCO3 can be widely used in
cosmetics, pharmaceuticals, construction, paper making and other industries. This can
not only solve the problem of alkaline solid waste treatment but also make effective use
of CO2 [221]. Recently, the use of steel slag for CO2 mineralization has aroused great
research interest. Among many alkaline solid wastes, steel slag has the highest CO2 storage
potential [222]. Ukwattage et al. [223] studied the influence of CO2 pressure, temperature
and water–solid ratio on the CO2 mineralization of steel slag. The authors found that the
higher the CO2 pressure, the faster the carbonization, and the more water in the reactor, the
better the sealing effect. At the same time, the temperature has a dual effect, and about 50 ◦C
is the optimal temperature for the reaction system. The National Academy of Sciences
believes that mineral carbonization is one of the effective methods for CO2 utilization,
because of its large scale, energy saving and thermodynamic advantages. Through life
cycle analysis (LCA), it was found that mineral carbonization can effectively reduce net
CO2 emissions [224]. The process of CO2 mineralization requires grinding, heating and
slurry stirring, which consumes a lot of energy. In the future, the energy in the exothermic
reaction should be recovered to compensate for the energy consumption in the process of
CO2 mineralization, to make the CO2 mineralization economical.
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4.3. Biological Utilization Technology

CO2 mineralization and CO2 biological utilization technology can not only effectively
utilize CO2, but also achieve CO2 fixation. It mainly uses plants or autotrophic microor-
ganisms to convert CO2 into useful products under specific conditions. Among them,
microalgae have attracted great attention. 1 kg algal biomass can fix about 1.83 kg CO2 [11].
We have introduced the advantages of microalgae in Section 2. It can be used to capture CO2
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and grow in a CO2-rich environment. The harvested algal biomass can be used to produce
biofuels. It is considered a substitute for fossil energy and can alleviate the global energy
crisis. Figure 16 shows the process required to convert microalgae into biofuel. Different
methods can be used to convert microalgae into biofuel (such as biodiesel, bioethanol,
etc.) [225]. Biomass can be selectively converted into different biofuels according to their
quality and composition. For example, sugar-rich biomass is suitable for the production of
bioethanol, and saturated lipid-rich biomass is suitable for the production of biodiesel [209].
However, from the current research results, it is uneconomical to use microalgae to produce
biofuels. This is mainly because a large amount of energy is required in the process of
extracting lipids from algae cells and transesterification. Algal culture is one of the focuses
of research. Culture temperature, CO2 concentration, salinity, light and pH value will
affect the process of CO2 fixation by microalgae [11,226]. Different microalgae species are
suitable for different environments. ArunK. Vuppaladadiyam et al. [227] believed that the
CO2 fixation rate of microalgae was too low, and it was necessary to improve the CO2
absorption rate or use cheap photobioreactors to compete with mature CCS technology.
Otherwise, cultured microalgae are more suitable for conversion into biofuels or chemicals.
Bioutilization technology also includes bioelectrochemical systems (BES) [228]. Its essence
is to use microorganisms as catalysts to conduct synthesis reactions in the electrochemical
cell. Compared with chemical catalysts, biocatalysts have higher specificity and versatil-
ity [229]. One possible application of the bioelectrochemical system is the electrochemical
reduction of CO2 to methane, but there are still many challenges [230]. In recent years, the
absorption-microalgae composite CO2 capture technology has attracted more attention,
because it can overcome the key challenges of high regeneration energy consumption and
low CO2 concentration in the microalgae solution. Future research should focus on the
combination of alkaline solution absorption and microalgae transformation synergistic
mechanism [84].
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4.4. Beverage and Food Processing

Food-grade CO2 is mainly used to produce carbonated beverages, deoxidized water,
dairy products and food preservation. Liquid CO2 and dry ice are mainly used for the
preservation of foods that need freeze-drying. The production of beer, soft drinks and
sparkling wine will also consume a large amount of liquid CO2 [11]. CO2 can also be used
as a solvent to extract hops, decaffeinate coffee and tea, and extract spices and essential
oils from plant materials. Compared with traditional solvents, CO2 as a solvent has many
advantages, such as being non-toxic, highly stable, low cost, renewable, easy to prepare,
etc. Moreover, the amount of CO2 used as a solvent is less than that of a conventional
solvent. [136] Conde-Hernandez et al. [231] compared three extraction methods of rosemary
essential oil, steam distillation, hydro distillation and supercritical CO2, and found that
supercritical CO2 extraction had higher antioxidant activity and oil yield. ZuKnik et al. [232]
optimized some parameters (such as temperature, pressure, flow rate and extraction time)
in the process of supercritical CO2 extraction of lycopene to improve the yield of lycopene.
Finally, CO2 can also be used for sterilization. Traditional hot pasteurization will affect
the nutritional value and color of food. More and more scientists have begun to study
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non-thermal pasteurization technology, and high-pressure CO2 (HPCD) is one of them.
It can be carried out at a temperature lower than that of traditional heat treatment. The
germicidal efficacy of HPCD has been extensively tested on various microorganisms, so
this process can be applied to the food industry. However, the lack of research on its impact
on food quality hinders its development [233].

5. CO2 Storage

CO2 storage technology is essential to mitigate global warming. It is the best option
for reducing atmospheric CO2 in the short to medium term. IPCC (2014) estimated that
5000~10,000 million tons of CO2 must be captured and stored every year by the middle of
this century. CO2 storage can be simply divided into geological storage and marine storage.

5.1. Geological Storage

In Section 3, it was stated that CO2 can be used to improve the recovery of oil, natural
gas and coalbed methane, and injected CO2 can be permanently stored there. In addition,
depleted oil and gas reservoirs can also be directly used to store CO2, but this will not
produce economic benefits. The geological storage of CO2 is the main storage method of
CO2 at present. As shown in Figure 17, geological storage sites mainly include depleted oil
and gas field reservoirs, deep saltwater layers and non-exploitable coal seams. Depleted
oil and gas reservoirs are considered to be the best storage sites for the following reasons:
(i) some existing infrastructure can be utilized, including injection wells and pipelines, etc.;
(ii) the oil and gas reservoir itself has good sealing property and can store CO2 for a long
time; (iii) CO2 can help enhance oil recovery. Saltwater layer storage also has its unique
advantages, such as more CO2 stored, more economical storage process, wide distribu-
tion, etc., which is considered to have the largest CO2 storage potential. The technologies
involved in the storage process include a comprehensive survey, site selection, potential
evaluation, drilling technology, injection technology, numerical simulation technology,
monitoring technology, CO2 escape plugging technology and safety risk assessment. The
development of these technologies can better optimize injection strategies, evaluate reser-
voir capacity, predict CO2 migration and diffusion, reduce uncertainty and manage leakage
risks [234–236].
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Before geological storage, the storage site must be carefully selected. A good storage
site generally includes: sufficient porosity and thickness, tight and complete cap rock, good
injectability and stable geological environment, etc. [238] During saline aquifer storage,
the location of the aquifer is equally important to the storage process. Too shallow may
cause CO2 leakage. Too deep will increase the injection pressure of CO2, thus increasing
the cost. The chemical composition of aquifer water and formation rock also varies with
the location of the aquifer. This will affect the chemical reaction of CO2 in the aquifer and
then affect the mineral structure. At present, the research on CO2 geological storage mainly
focuses on the storage mechanism, storage potential evaluation and storage numerical
simulation, and there is less research on the selection of geological storage areas. This
is because the selection of the storage site is not easy, and there are many factors to
consider. Lu et al. [239] based on the site selection for CO2 storage in the Ordos Basin
of China, determined the favorable and candidate areas for CO2 geological storage by
comprehensively considering technology, safety, reservoir and other aspects. At the same
time, the authors also put forward the site selection and sequencing method of CO2
geological storage, which provides a reference for the selection of CO2 geological storage
in carbonate reservoirs. Hsu et al. [240] developed a multicriteria decision-making model
with eight evaluation criteria to select CO2 storage sites and applied the ANP method to
this for the first time. This method can rank potential CO2 storage sites and be used for
pre-screening of CO2 geological storage sites. Mi et al. [241] analyzed the factors affecting
CO2 storage based on the characteristics of the Junggar Basin in China and established an
adaptability evaluation index system for CO2 storage. At the same time, the adaptability of
CO2 geological storage in the Junggar basin is being evaluated by combining AHP and a
fuzzy comprehensive evaluation method. Through the evaluation results, the location with
the best suitability is determined.

There are also many mechanisms involved in CO2 geological storage, and the effec-
tiveness of the CO2 storage mechanism determines the efficiency of geological storage [242].
The geological storage of CO2 is affected by many factors, such as temperature, pressure,
CO2 injection rate, the salinity of formation water, mineral composition of formation rock,
formation thickness, formation dip, contact angle, interfacial tension and porosity, etc. The
higher the pressure, the higher the solubility of CO2 in brine. This is mainly because the
higher the pressure, the greater the thrust. The higher the temperature, the lower the solubil-
ity of CO2 in the brine. This is mainly because the higher temperature provides the system
with heat energy. When it overcomes the bond energy between CO2 molecules and brine
molecules, the solubility of CO2 starts to decrease [243,244]. Wildenschild et al. [245] found
that a lower CO2 injection rate can store more CO2. Jing et al. [246] found that the CO2
storage is inversely proportional to the formation dip. At the same time, the larger the dip
angle is, the more obvious the influence on CO2 migration distance is. Because accelerating
the dissolution of CO2 in brine can reduce the risk of leakage, some scholars have proposed
some new technologies to accelerate the dissolution of CO2 [247]. Hassanzadeh et al. [248]
proposed a method to accelerate the dissolution of CO2 in brine. This method can increase
the dissolution fraction of CO2 in 200 years from 8% to 50% by injecting salt water into the
top of CO2.

As shown in Figure 18, when CO2 is injected into the reservoir for the first time, the risk
of leakage is very high. When storing CO2, the main problem is to consider the potential
leakage during injection and whether CO2 will leak over time. Therefore, when CO2 is
stored for a long time, the caprock must have good sealing capacity. The low permeability
of the caprock is critical to prevent CO2 leakage [237]. When CO2 leaks, CO2 itself will not
affect the quality of groundwater, but the dissolution of CO2 will reduce the pH value of
groundwater, thus enhancing the dissolution of minerals. Some minerals contain harmful
trace elements, which may affect the quality of groundwater [249]. When storing CO2 in
the saltwater layer, the chemical reaction of CO2 dissolution in the formation fluid and
the interaction of CO2 water rock should also be considered [250]. Jayasekara et al. [250]
believed that one of the main problems of saline water reservoir storage was that the cap
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rock degradation and change caused by geochemical reaction led to the activation of faults
and fractures, which led to the reverse migration of injected CO2 through the cap rock.
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Some monitoring technologies can be used to monitor and predict the potential mi-
gration path and escape point of CO2, so as to prevent CO2 leakage. Geophysical and
geochemical methods are widely used in CO2 leakage monitoring [252]. Among the geo-
physical methods, the geoelectric method is often used to monitor CO2 migration, because
the subsurface resistivity is affected by CO2 [253]. Using 4D (delayed) seismic data is
the most reliable method to determine the migration mode of CO2 in the reservoir and
can be used to track the evolution of CO2 plumes [1,251]. Pressure monitoring during
CO2 injection and storage is a key tool. During the injection process, pressure monitor-
ing combined with InSar technology can effectively monitor the leakage of CO2 into the
caprock [236]. Zeidouni et al. [254] proposed a leak detection and characterization method
through pressure monitoring. They first gave the relationship between the pressure change
of the upper aquifer and the leakage parameters. Then monitor the pressure of the upper
aquifer through the monitoring well, and analyze the pressure response caused by the
leakage to locate and characterize the leakage. At the same time, more accurate information
can be obtained by increasing the number of monitoring wells. Zeidouni et al. [255] studied
the feasibility of CO2 leakage detection by monitoring temperature changes. The authors
found that the temperature will increase when the brine leaks, while the temperature
will decrease when the CO2 leaks. Therefore, the leaking fluid can be distinguished by
monitoring the temperature change. The strength of the temperature signal is affected by
the leakage speed. Reducing the leakage speed will reduce the strength of the temperature
signal. At the same time, the temperature change caused by the leakage only covers a small
area around the leakage path, so temperature monitoring along the potential leakage path
is most useful. Isotopes are also used for monitoring CO2 leakage, which can detect low
level CO2 leakage [256]. Magnier et al. [257] found that carbon isotopes in some reservoirs
are not enough to track CO2 leakage on the surface, and they found that inert gas is more
suitable for monitoring leakage. Remote sensing technology can also be used to monitor
CO2 leakage, commonly used to measure surface deformation, temperature anomaly and
vegetation damage [258].

5.2. Ocean Storage

The ocean can absorb a large amount of CO2 through the natural exchange be-
tween water and the atmosphere. The storage capacity of seawater is estimated to be
5000~10,000 GtC. However, the process is slow and limited to surface seawater, so some
scholars have suggested that the CO2 ocean storage process can be accelerated and the
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ocean’s ability to absorb CO2 can be improved by directly injecting CO2. Therefore, this sec-
tion will focus on direct injection strategies that can be applied on an industrial scale. The
way to implement ocean storage of CO2 is shown in Figure 19. Usually, CO2 is transported
to the storage site by ship or pipeline and injected into the ocean. The phase state and
density of CO2 are different with different injection depths, and the storage effect is also
different. Generally, with the increase of CO2 injection depth, the retention of CO2 increases.
Above 500 m, CO2 is gaseous and below it is liquid. The density of CO2 above 3000 m
is less than that of seawater, and the density of CO2 below 3000 m is greater than that of
seawater. Therefore, when CO2 is injected above 3000 m, CO2 will rise due to positive
buoyancy, causing part of CO2 to float to the surface water before dissolution and enter
the atmosphere again [259]. When CO2 is injected below 3000 m, CO2 should be subject to
negative buoyancy and sink, so a liquid CO2 “lake” will be formed on the seabed, thereby
minimizing the risk of CO2 leakage. Although compared with geological storage, marine
storage seems to be safer. However, most CO2 will dissolve in the surrounding seawater
before reaching the seabed, and the CO2 “lake” may also be disturbed by the ocean current.
In addition, due to the influence of chemical potential, the CO2 “lake” will also continue
to dissolve, which will change the CO2 concentration and pH value of the seabed and
affect the marine ecosystem [260]. And the more concentrated the emission of CO2, the
greater its potential impact [261]. Widdicombe et al. [262] studied the impact of seabed
CO2 leakage on macrobenthic animals. The authors found that CO2 leakage will have a
significant impact on seabed animals, but the impact may disappear soon. The seabed
fauna community will quickly recover to its original state, depending on the species of
fauna and the characteristics of the habitat. Some scholars proposed storing CO2 in deep-
sea sediments, where CO2 is in a liquid state and its density is higher than the overlying
interstitial fluid so that the injected CO2 remains gravitationally stable. This overcomes the
problem of CO2 escaping due to its buoyancy when geologically storing CO2 [263].
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Another CO2 storage method is to store CO2 through hydrate. Under the conditions
of high pressure and low temperature in the deep sea, the interaction between CO2 and
seawater will be conducive to the formation of CO2 hydrate. CO2 molecules in CO2 hydrate
are locked in solid cages formed by water molecules, preventing CO2 from dissolving into
seawater. The formation and stability of CO2 hydrate are affected by the depth and ocean
thermal gradient. Figure 20 shows the phase equilibrium of CO2 hydrate superimposed
on the hydrothermal gradient of the ocean and the geothermal gradient of the seafloor. It
can be seen from the figure that in seawater, CO2 hydrate is formed and stable in the area
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bounded by AB, while in sediment, the stable area is bounded by BC. The exact depth of
these points is affected by the specific water and geological conditions at each location [260].
When CO2 is injected into deep-sea sediments, the formation of CO2 hydrate will reduce
the effective porosity and permeability, thus blocking the flow of liquid CO2 and acting
as the second sealing cap above the injection site [2]. Li et al. [2] studied the formation
mechanism of a self-sealing cap related to CO2 hydrate and discussed the feasibility of
storing CO2 in deep-sea sediments. Through modeling, it is found that the critical time
of CO2 leakage has a strong correlation with reservoir properties and wellbore injection
conditions. Qanbari et al. [264] found that the formation of CO2 hydrate and the gravity
stability of CO2 can prevent the leakage of CO2 in the upper part of marine sediments. If
CO2 is injected into the appropriate ocean depth and sediment depth, CO2 can be reliably
sealed in the sediment. As with geological storage, CO2 monitoring is also required during
ocean storage to prevent CO2 leakage. Shitashima et al. [265] proposed a method for
detecting and monitoring CO2 leakage from the seabed. The steps of this method are
summarized in Figure 21. The first is to detect CO2 leaks using seafloor-based acoustic
section tomographic scanning. Once a leak is detected, the pH/pCO2 sensor and side scan
sonar installed on the autonomous underwater vehicle (AUV) are used to map the leakage
point. Finally, the remote underwater vehicle (ROV) or automatic elevator, or the Towing
Multi Layer Monitoring System (TMLMS) are used to monitor the CO2 diffusion behavior.
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6. Outlook and Challenges

CiteSpace is a bibliometric software, which has been applied in different research fields
in recent years. It can be used to analyze co-citation relationships, cooperative relationships,
topic co-occurrence and future development trends. In this section, CiteSpace (V6.1) is used
as the research tool and visual analysis is used to study 265 pieces of literature reviewed
above. Through visual analysis, we can deeply understand the current research focus and
future research direction in the field of CCUS.

6.1. Keyword Co-Occurrence and Cluster Analysis

Keywords are a high-level summary of the article and the core research content of the
literature. Through the keyword co-occurrence map, we can analyze the current research
hotspots and grasp the future research direction. The larger the node, the more frequently
keywords appear. Therefore, it can be seen from Figure 22 that the current research focus
in this field is CO2 capture and storage. Among them, in CO2 capture, the adsorption
method is the research hotspot, while activated carbon is the research hotspot in the
adsorption method. The main reason is that the price of activated carbon is low and the
source is wide, which can significantly reduce the cost of carbon capture. Ionic liquids
and metal–organic frameworks are also the current research hotspots, mainly because they
can be functionalized by introducing functional groups and other methods to improve
their CO2 capture capacity. In CO2 storage, the injection process has been studied more,
because the risk of CO2 leakage during the injection process is the highest. As for storage
sites, the saline aquifers are the focus of current research, mainly due to their large storage
potential, wide distribution and fewer restrictions. CO2 utilization has not formed such
a large node as storage and capture, because there are many CO2 utilization routes, and
there are no particularly advantageous utilization routes, all of which have more or fewer
disadvantages. At present, the research focuses on the catalyst for CO2 chemical conversion
and the production of biofuels. Copper-based catalysts have attracted more attention. It
is widely used in CO2 catalytic hydrogenation to methanol. Methanol can be used to
supplement or partly replace petroleum fuels, so methanol from CO2 has broad application
prospects and is of great significance to the utilization of CO2. Using microalgae and other
microorganisms to convert CO2 into biofuels is also a research hotspot. It can also be used
to replace traditional petroleum fuels, and these biofuels may be carbon negative.
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Based on the keyword map, CiteSpace is used for clustering analysis, and the clustering
map shown in Figure 23 is obtained. It can be seen from Figure 23 that the cluster module
value Q = 0.7714 > 0.3, and the cluster average contour value S = 0.8951 > 0.5, indicating that
the cluster is reasonable and the cluster structure is significant. Cluster analysis generated
a total of 13 categories. Cluster 0 # is an ionic liquid, which is a new “green solvent” and
is widely used in the field of gas absorption. At present, the research focus in this field is
to connect ionic liquids with specific functional groups to obtain functional ionic liquids,
so as to improve their CO2 capture capacity. Of course, reducing the production price of
ionic liquids is also the future research direction. Cluster 1 #, 7 #, 11 # and 14 # are all
about CO2 storage. The main reason is that CO2 storage technology is one of the most
effective technologies to achieve the goal of carbon neutralization, and it can store a large
amount of CO2. On the other hand, when CO2 is sequestered, it can also be used for oil
displacement, and coalbed methane displacement, generating additional economic benefits.
Therefore, it has attracted extensive attention from all countries in the world. Cluster 2 #
assessment is also related to CO2 storage. Before CO2 storage, the reservoir capacity needs
to be evaluated to ensure that the reservoir has the capacity to store CO2 on a large scale. It
is also necessary to evaluate the integrity of the caprock to prevent CO2 leakage through the
caprock. The hydrogeological environment and geological structure of the storage area also
need to be assessed to ensure long-term storage of CO2. Cluster 9 # is a carbon credit, which
is an important tool to slow down global warming. Carbon credit trading takes carbon
emission allowances as a scarce resource and has commodity attributes for public trading,
which is the core economic means to achieve carbon emission reduction. But the current
carbon credits lack a unified standard, hindering globally coordinated action on climate
issues. At the same time, in addition to the influence of market factors, policy factors
are more likely to affect the carbon trading market. Therefore, it is necessary to establish
a globally unified carbon emissions trading system, establish a sound carbon emissions
trading market supervision system, and accelerate the construction of a mature carbon
trading market. Cluster 10 # is mineral carbonization, which is similar to CO2 flooding. It
can not only effectively fix CO2, but also may generate additional benefits. Mineralization
of alkaline solid waste is the future research direction, mainly because of its low cost, and it
can also play a certain role in the utilization of solid waste to achieve a win-win situation.
It can also be seen from the side that CO2 storage, which can generate economic benefits,
is the focus of global scholars. Cluster 12 # is a nanoparticle. The main application of
nanoparticles is the solid adsorption technology of CO2. Porous organic polymers (POPs),
metal–organic frameworks (MOFs), mesoporous materials, etc. belong to the category of
nanomaterials. Nanomaterials have large chemical activity and surface energy and are
easy to combine with foreign atoms to form stable structures. As an adsorbent, it has
the following advantages: super adsorption capacity, Wide application range of pH, and
high selectivity. Therefore, nanomaterials are the development focus of solid adsorption
technology in the future.

6.2. Analysis of Cooperation Networks between Countries and Institutions

From Figure 24, it can be seen that the countries with the largest number of publications
are China (77), the United States (50), Australia (43), Malaysia (19), the United Kingdom (18),
India (15), Japan (15), South Korea (13), Canada (13), Iran (9) and Germany (9). In addition
to Australia and Malaysia, the carbon emissions of the remaining nine countries are among
the top ten in the world. This shows that these big carbon-emitting countries have all
noticed the impact of greenhouse gases (especially CO2) on the Earth’s environment. At the
same time, these countries have also taken action to support some institutions and scholars
to study how to reduce the CO2 content in the atmosphere. The number of papers published
by China, the United States and Australia is far ahead of other countries, indicating that
these three countries have more research on CCUS. As can be seen from Figure 24, China
has more cooperation with Australia and the United States, while other countries have less
cooperation. On the whole, there is little cooperation between countries at present, and
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international cooperation needs to be strengthened in the future to jointly tackle global
warming. It can be seen from Figure 25 that the institutions with more documents (only
those with more than four documents) mainly include: Monash Univ (20), Chinese Acad
Sci (13), Univ Melbourne (6), Univ Sains Malaysia (5), China Univ Petr East China (4),
Carnegie Mellon Univ (4), Cranfield Univ (4), Kunming Univ Sci & Technol (4), Chongqing
Univ (4), Dalian Univ Technol (4), Curtin Univ (4). These institutions are all universities,
and mainly universities from Australia and China. Among them, Monash University in
Australia and the Chinese Academy of Sciences in China are far ahead of other universities
in terms of the number of papers issued, which shows that these two universities are at the
forefront of CCUS research. Monash University has more cooperation with the Malaysian
University of Science and other universities such as Carnegie Mellon University, Cranfield
University and other American and European universities, while the Chinese Academy of
Sciences has less cooperation with other universities. In general, the overall cooperation
density is low, and all universities and institutions should actively cooperate to jointly cope
with global warming.
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6.3. Keyword Highlighting Analysis

It can be seen from Figure 26 that from 2012 to 2016, the mass transfer process of CO2 is
a research hotspot, and the capture and storage of CO2 involve the mass transfer of CO2. The
research on the mass transfer process can help capture and store CO2 better. The research
hotspot from 2013 to 2014 is hydrogen production, mainly because catalytic hydrogenation
of CO2 is the most potential technology in CO2 chemical conversion, but the source of
hydrogen is a problem. Only by using renewable energy to produce clean hydrogen, can it
really play a role in the utilization of CO2. The research hotspot in 2014–2015 is simulation.
Using software to simulate CO2 transport and storage processes can help CCUS technology
develop faster. The research hotspot in 2015–2017 is transformation. Through a chemical
reaction, mineralization and biological utilization, CO2 can be transformed into useful
products to reduce the CO2 content in the atmosphere. The research hotspot in 2016–2017
is water, and saline water layer has received extensive attention due to its huge storage
potential. The research hotspot in 2016–2018 is a CH4 model for making it from CO2 that can
not only reduce the CO2 content in the atmosphere but also solve the global energy crisis,
which can be said to be killing two birds with one stone. At present, the main problem is
the transformation cost and efficiency. The model mainly refers to the decision-making
model, which is used for the selection of CO2 storage sites. Because the selection of a CO2
storage site is affected by many factors, and each factor is crisscrossed, it is difficult to make
the optimal choice only by subjective inference and experience. Therefore, a decision model
is established to select the storage site of CO2. In recent years, the research focus in the
CCUS field is CO2 storage and supercritical CO2. As mentioned earlier, CO2 storage is an
indispensable part of achieving the goal of carbon neutrality. Supercritical CO2 has both
gaseous and liquid properties, which makes it widely used. Therefore, it is also the current
research hotspot.

6.4. Challenge

Based on the above overview of CCUS technology, the current challenges faced by
CCUS technology are as follows:

(1) Technology
At present, CCUS technology has some disadvantages, such as high energy consump-

tion of traditional chemical absorption technology, evaporation and oxidative degradation
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of absorbent, which increase the operation cost. The CO2 selectivity of physical absorption
technology is weak. New capture technologies such as ionic liquids are expensive and
complicated to manufacture. The process of solid adsorption technology is complicated,
and it is difficult for a single set of equipment to ensure the long-term operation of the
process, with high investment. Low-temperature separation technology has high energy
consumption, and microalgae, chemical chain combustion and electrochemical technology
are difficult to achieve long-term stable operation. At the same time, the flue gas contains a
lot of impurities, which will affect the efficiency of CO2 capture. These impurities will also
affect CO2 pipeline transportation and threaten the integrity of the pipeline. At present,
there is little research in this area, which needs further in-depth study. In CO2-enhanced
energy production, the miscibility of CO2 and CH4 will reduce the recovery of CH4 and
increase the exploitation cost. CO2 will also affect the surface structure of shale and coal,
resulting in a decrease in CO2 adsorption capacity and permeability. In the chemical con-
version process of CO2, due to the thermodynamic stability and kinetic inertia of CO2, the
conversion process is very difficult. Although many CO2 conversion routes have been
developed, most of them only consider the possibility of reaction and do not consider
economic factors. The main problem of CO2 catalytic hydrogenation is cheap and clean H2.
Photocatalysis and electrocatalysis are currently facing challenges such as low productivity,
difficult product separation and poor catalyst stability. In CO2 storage, the main problem is
CO2 leakage. Whether in the injection process or long-term storage process, CO2 leakage
is the first problem to be considered. The unpredictable leakage risk restricts the devel-
opment of CO2 storage technology. To sum up, we should strengthen the research and
development of CCUS technology, improve the feasibility of the technology, and realize
large-scale commercial promotion and application as soon as possible.
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(2) Economy
Economic problems are an important factor restricting the development of CCUS

technology. The capture, transportation, utilization and storage of CO2 are faced with high
costs. Except for large CO2–EOR projects, other CCUS projects have difficulty achieving
profitability. Long-term high-cost investment and low-profit returns make investors lack
investment motivation, which restricts the commercialization of CCUS. Countries should
establish special funds for CCUS, introduce economic incentives and preferential tax
policies, and help enterprises reduce CCUS operating costs. Without government support,
current CCUS projects find it difficult to achieve profitability, which seriously affects the
enthusiasm of enterprises to carry out CCUS demonstration projects.
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(3) Policy
At present, most countries in the world have not issued policies, laws, regulations,

technical specifications and standard systems on CCUS. They are important links in the
industrialization development of CCUS, which also restricts the development of CCUS
technology. At the same time, the policies that have been issued are not targeted, and
CCUS needs more specific support policies. Therefore, countries all over the world should
improve and optimize the CCUS legal and regulatory system as soon as possible, formulate
a scientific and reasonable standard system for the construction, operation, supervision
and termination of CCUS projects, and standardize CCUS activities. There should be a
multi-industry cooperation mechanism to promote the development of the whole industry
chain of CCUS. Establish a carbon emission trading market, incorporate CCUS into the
carbon emission trading system, accelerate the establishment of carbon emission reduction
methodology for CCUS projects, and provide a theoretical basis for calculating the CO2
emission reduction of CCUS projects. In addition, with the energy crisis caused by the
conflict between Russia and Ukraine, many countries have weakened the implementation
of the carbon neutral target, or even abandoned the carbon neutral target, which also
restricts the development of CCUS technology. Governments should deliver on their
commitment to CCUS and play a key role in facilitating its deployment. At the same time,
an international unified regulatory framework should be established to encourage the
private sector to actively participate in and invest in CCUS projects, which will accelerate
the commercialization of CCUS technology. In the future, CO2 may become a resource
needed by various economic sectors, which will help to achieve climate goals.

The development of CCUS technology will not only face the above challenges, but
it may also bring environmental problems. For example, leakage risks are prone to occur
during CO2 transportation and storage, which will pollute the soil and damage local water
quality, and even cause harm to local people. At the same time, this will affect the public
acceptance of CCUS technology and hinder its development.

7. Conclusions

In order to achieve the goal of CO2 emission reduction, CCUS technology has become
a research hotspot. This paper summarizes various technologies and problems related to
CCUS, and draws the following conclusions:

(1) With the emergence of new solvents such as solvent mixed absorption technology
and ionic liquid absorption technology, solvent absorption technology will still be the first
choice for large-scale CO2 capture in the future. Solid adsorption technology is currently a
research hotspot, especially metal–organic frameworks, whose functional characteristics
make them have great development potential for the future. The development of mixed-
matrix membranes, gas-absorbing membranes, and facilitative membranes has improved
the permeability and selectivity of membrane separation technologies. Low-temperature
separation technology, microalgae, electrochemical looping combustion technology and
electrochemical technology have made some important progress in recent years, but there
is still a long way to go before large-scale commercial use.

(2) Pipeline transportation is the most economical way to transport large amounts of
CO2. For long-distance pipeline transportation, dense phase transportation and supercriti-
cal transportation are more economical. In the pipeline design process, the temperature
and pressure changes along the line should be considered to prevent phase changes. At
the same time, it is also important to consider the impact of impurities in CO2 on pipeline
operation, which will not only affect the phase characteristics and physical parameters of
CO2 but also threaten the integrity of the pipeline. At present, the relevant knowledge
system of CO2 pipeline transportation is not perfect and needs further research.

(3) In enhanced energy production technologies, studying the adsorption behavior of
CO2 is the key to enhancing recovery and increasing storage capacity. At the same time,
attention should be paid to the influence of CO2 on the reservoir to prevent the reduction of
the permeability of the reservoir. In the chemical conversion of CO2, catalytic hydrogenation
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of CO2 is the most promising technology, but cheap and clean H2 is currently the main
problem. Coupling electrocatalytic technology with renewable energy is an important
development direction for the future. Catalysts are required for almost all CO2 chemical
conversions, and catalyst activity and selectivity can be enhanced by doping and alloying
with foreign atoms. CO2 mineralization requires a large amount of energy, and the energy
in the exothermic reaction should be recovered to make the mineralization economical.

(4) In CO2 storage, geological storage is currently the main method. The selection
of a storage site is the first step of geological storage, but there are few studies on this
aspect at present. The storage mechanism is the theoretical basis of geological storage
and determines the efficiency of geological storage. Preventing CO2 leakage is an issue
that must be considered in geological storage, and CO2 leakage may pollute groundwater.
At the same time, the impact of geochemical reactions on the caprock cannot be ignored.
At present, the monitoring technology of CO2 storage is relatively mature and has been
applied in different projects. In ocean storage, the CO2 injection depth is different, and the
storage effect is also different. Due to factors such as storage costs and the international
law of the sea, ocean storage has not yet entered the stage of practical application.

Finally, the research status, research hotspots and cooperation networks of CCUS
are summarized using CiteSpace software. To sum up, CCUS technology is developing
rapidly, which is a favorable choice to deal with climate change. Although CCUS tech-
nology currently faces some technical challenges, high cost is the key factor hindering
the development of CCUS technology, which limits the large-scale deployment of CCUS
technology. Government fiscal policy is a key means to promote the development of CCUS
technology. The government should promote the rapid development of related industries
through direct investment. At the same time, in order to improve public awareness of
the environmental impact, public education and publicity on CCUS technology should
be strengthened.
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