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Abstract: Wettability in CO2-brine-mineral/rock systems is an important parameter influencing CO2

storage capacities and leakage risks in saline reservoirs. However, CO2 tends to react with various
minerals and rocks at subsurface conditions, thus causing temporal and spatial wettability changes.
Although many relevant research works have been published during past years, a thorough overview
of this area is still lacking. Therefore herein, reaction-induced wettability changes are reviewed, and
the underlying mechanisms are discussed. Current research gaps are identified, future outlooks are
suggested, and some conclusions are drawn. The fundamental understanding of reaction-induced
mineral and rock wettability changes during CO2 storage in saline reservoirs is analyzed and the
guidance for long-term CO2 containment security evaluations is provided.
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1. Introduction

Carbon dioxide (CO2) storage in saline reservoirs is considered a promising tech-
nology to reduce carbon emissions and mitigate global warming [1–3]. In rock-aqueous
fluid-nonaqueous fluid systems, the terms hydrophilic and hydrophobic represent the
affinity of rocks to aqueous fluids [4]. Wettability affects many important parameters in
the systems, such as residual non-aqueous fluid saturation [5,6], fluid morphology and
interfacial region [6–9], relative permeability [6,10], and the relationship between capillary
force and water phase saturation [6,7,11]. During the process of CO2 storage in saline reser-
voirs, wettability directly affects structural and capillary trapping mechanisms [5–7,10–12],
and indirectly affects dissolution and mineral trapping mechanisms by influencing the
characteristics of the gas-liquid-rock interface [7,9,13].This parameter is usually charac-
terized by the brine contact angle (θ) in the CO2-brine-mineral/rock systems [4,14]. It
is a complex function of rock/mineral properties, brine properties and thermo-physical
conditions [4,11,15–21]. Throughout the entire lifetime of this storage, a series of reactions,
acid-base reactions and mineral dissolution reactions [22–27] take place, which causes tem-
poral/spatial changes in rock/mineral wettability and influences CO2 storage capacities
and containment securities [28–30]. Therefore, it is necessary to determine this parameter
accurately under the consideration of the in-situ reactions.

Although some research works have been reported on rock/mineral wettability
changes induced by reaction during the process of CO2 storage in saline reservoirs, a
review on this topic is still lacking. Some reviews have summarized the storage mech-
anism of CO2, changes in reservoir physical properties and physicochemical processes
during storage. But they do not cover the wettability changes during physicochemical pro-
cesses [31–33]. Therefore herein, this topic is systematically reviewed and current research
gaps are clearly indicated. Future research directions are explicitly identified and some
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conclusions are critically drawn. The fundamental understanding of reaction-induced min-
eral and rock wettability changes during CO2 storage in saline reservoirs is analyzed and
essential implications for long-term CO2 containment security evaluations are provided.

2. Contact Angle Measurements

Contact angle (θ) measurement is the most direct and common method used to charac-
terize the wettability of minerals/rocks [4,34]. θ are measured in two ways, the sessile drop
method and the bubble capture method, as shown in Figure 1a. There are many types of
contact angles [17], as shown in Figure 1b. The equilibrium contact angles include Young’s
contact angle (θY) and the static contact angle (θS). The dynamic contact angle includes the
advancing contact angle (θA) and the receding contact angle (θR). θY is only applicable to
ideal solids with uniform, isotropic, smooth, and rigid surfaces [35]. The contact angle data
summarized in this paper were measured using one of two methods, except for special
instructions, as shown in Table A1.
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Figure 1. (a) Schematic diagram of methods for sessile drop and bubble capture; (b) Schematic
diagram of dynamic contact angle measurement. (modified from [17]).

3. Reaction-Induced Wettability Changes in the CO2-Brine-Mineral Systems

Wettability changes are usually induced by reactions of CO2 with the following miner-
als.

3.1. Quartz

Quartz is one of the most common minerals in a saline reservoir [4]. After exposure
of quartz to water saturated CO2 at 1.4 MPa~20.7 MPa and 25 ◦C for four cycles, the
static water contact angle (θS) in the CO2-water-quartz system increased from 40◦~50◦ to
80◦~90◦, respectively [36], as shown in Figure 2. One cycle consists of a pressure increasing
stage from 1.4 MPa to 20.7 MPa and a decreasing stage from 20.7 MPa to 1.4 MPa. This
observation is qualitatively consistent with that in another report [37]. After supercritical
CO2 (scCO2) displaced NaCl brine with various salinities (0.01 M, 1 M, 3 M, 5 M) in a silica
micromodel for 20 min at 8.5 MPa and 45 ◦C, the brine droplets gradually formed and the
average θS increased from 0◦ to 54◦, 66◦, 65◦, 75◦ correspondingly [37], as shown in Figure 3.
In this process, brine was pumped out at a rate of 4 µL/min and scCO2 was injected in
at constant pressure. In contrast, after CO2, 0.171 M NaCl brine and quartz contacted
overnight at various temperatures (38 ◦C and 55 ◦C) and pressures (6 MPa~12.1 MPa), θS
varied within the range of 21◦~25◦. This phenomenon shows θS is irrelevant of temperature
and pressure at this condition [38]. It also indicates that quartz wettability still remains
strongly water-wet in this situation [39], as shown in Figure 2.
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Initially the pores are filled with brine, as shown in Figure 4a. After the injection
of scCO2, the residual brine covers the silica surface to form a water film due to the
hydrophilic nature of the silica, as shown in Figure 4b. However, CO2-brine-quartz reaction
can make the water film thinner and lead to the formation of isolated brine droplets and
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gas bubbles on the silica surface, as shown in Figure 4c. These results clearly indicate
that the contact angle of brine increases, and the hydrophilicity of the silica surface is
weakened. The underlying mechanism for this phenomenon can be attributed as follows:
(1) the dissolution of CO2 decreases the pH; (2) the dissociated H+ adsorbs the negative
silica surface; (3) The surface charge density decreasing causes the water film to become
thinner [42].
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(a) brine filled pore; (b) CO2 entry into pore; (c) reaction induced water film thinner. (Reprinted with
permission from [37]. Copyright 2012 American Chemical Society).

3.2. Calcite

Calcite is the dominant mineral in carbonate reservoirs and tends to react with CO2 and
brine at subsurface conditions. These reactions cause possible changes in wettability [43].

During the process of CO2-0.8 M NaCl brine-calcite reactions at 10.5 MPa and 36 ◦C, θS
increased from 10◦ to 13◦ in the first 4 days and then remained stable for a longer time [40],
as shown in Figure 5. In contrast, after calcite was exposed to water saturated CO2 at
1.4 MPa and 20.7 ◦C for two cycles, θS increased about 10◦~20◦ (from 40◦~50◦ to 50◦~60◦)
in the water saturated CO2-CO2 saturated water-calcite system [36], as shown in Figure 2.
In another work, θS was measured as a function of pressure, temperature, pH and reaction
time in the CO2-water-calcite system [44]. The results demonstrated that (1) θS slightly
increased from 21◦ to 24◦ with increasing pH from 3 to 5.9 at 30 ◦C and 7 Mpa due to the
surface charge reduction; (2) θS increased significantly from 25◦ to 47◦ due to stronger CO2
mass transfer and smaller pH = 3 at 50 ◦C and 20 Mpa. (The pH value of the same brine at
room temperature and pressure is 7.8.); and (3) after calcite reacted with CO2 for a long
time (3 weeks), θS did not change clearly, though calcite had a loss in mass.
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The underlying mechanism for the observed increase in θS is attributed as follows:
(1) CO2 induced chemical reactions promote a weak carbonic acid formation, as shown in
Equations (1)–(3) [45]; (2) Calcite dissolves and its surface heterogeneity increases [46]; and
(3) The hydrophilicity of calcite decreases [36,40]. The possible reason for the plateaued θS
at late stages is that the surface charges on calcite surfaces are invariable because reactions
at this moment are relatively weak [40].

CO2 + H2O↔ H2CO3 (1)

H2CO3 ↔ H+ + HCO−3 (2)

HCO−3 ↔ H+ + CO2−
3 (3)

3.3. Mica

Mica is one of the dominant minerals in caprocks and thus its wettability determines
the structural CO2 storage capacities and containment securities [21,42].

After muscovite reacted with CO2 and 0.8 M NaCl brine at 36 ◦C and 10.5 MPa
for 48 days, θS increased from 35◦ to 60◦ [40], as shown in Figure 5. This observation is
qualitatively consistent with another report [38]. After muscovite reacted with CO2-0.171 M
NaCl brine at various temperatures (38 ◦C and 55 ◦C) and pressures (5.4 MPa~14.3 MPa)
overnight, θS increased with temperature and pressure. For example, θS increased from
42◦ to 72◦ with the temperature increase from 38 ◦C to 55 ◦C at 5.5 MPa. Then θS increased
from 72◦ to 82◦ with the pressure increase from 5.5 MPa to 13.6 MPa at 55 ◦C, as shown
in Figure 2. In principle, CO2 induced chemical reactions promote a weak carbonic acid
formation, as shown in Equation (1). Then H+ from the solution is adsorbed onto the
negatively charged mica surface. The surface charge density on the mica surface are
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reduced. As a result, the electrostatic interaction (repulsive) forces, which used to stabilize
the water film, are decreased. θS increased with reaction time [40]. Another underlying
mechanism for the wettability alteration is possibly due to the swell and delamination off
of the muscovite [38].

There are some reports on the impact of reactions on biotite wettability at in-situ CO2
storage conditions. After biotite reacted with NaCl brine at various salinities (DI water,
0.1 M, 0.5 M, and 1 M NaCl) at constant thermo-physical conditions (95 ◦C and 10.2 MPa)
for 70 h, θS decreased from 41◦ to 21◦ which was measured at 10.2 MPa and 48 ◦C [41], as
shown in Figure 3. Fundamentally, salinity induced chemical reactions promoted biotite
dissolution and ion exchange. As a result, biotite surface structure, compositions and
potential were changed. For example, when NaCl salinity increased from 0 M to 1 M,
surface roughness increased from 1.5 nm to 16.6 nm and hydroxyl content increased from
82.9% to 92.9% while zeta potential decreased from −19 mV to −47.6 mV, as shown in
Table 1. However, the type of chemical reactions exactly occurred during this process were
not specified in this work.

Table 1. Surface properties of biotite after biotite reacted with CO2 for 70 h under different salinity
conditions (modified from [41]).

Salinity Static Contact Angle [◦] Surface Roughness
[Rq, nm] Zeta Potential [mV] Surface Hydroxyl

Content [%]

DI water 41± 3 1.5± 0.2 −19.1 82.9
0.1 M NaCl 33± 1 2.9± 0.7
0.5M NaCl 24± 2 5.6± 0.2
1.0M NaCl 21± 2 16.6± 1.3 −47.6 92.9

Phosphate, sulfate, phosphate (DTPMP), oxalate and acetate were dissolved in 1M
NaCl solution to individually form different aqueous solutions [47–50]. After biotite reacted
with CO2 and different solutions at 95 ◦C and 10.2 MPa for 96 h, θS changed by different
degrees. For example, θS decreased by 7◦~17◦ after the first four reactions. The reason for
the enhanced wettability was that the hydrophilic functional groups on the biotite surface
were exposed and more negative charges were generated at the fracture edges due to the
adsorption of the above water chemicals. θS for biotite increased by 17◦, increasing from
27◦ to 44◦, after the last reaction. Acetate adsorption made the surface hydroxyl group
of biotite inward, and the hydrophobic methyl group was exposed on the surface, thus
weakening the wettability.

3.4. Feldspar and Microcline

For the CO2-NaCl brine-feldspar system, θS was almost a constant in the range of
10◦~20◦ with no significant change at various pressures (0 MPa~40 MPa), temperatures
(36 ◦C and 66 ◦C) and NaCl salinities (0.2 M and 0.8 M), as shown in Figure 2. Fundamen-
tally, the feldspar surface charges are positive and the reactions with H+ are not significant
in the range of pH (3~5) [40]. In contrast, the contact angle decreased from 23◦ to 18◦ with
increasing pH from 3 to 5.9 at 30 ◦C and 7 MPa due to the increase of surface charge [44].
Furthermore, after microcline reacted with CO2-0.171 M NaCl brine at 38 ◦C overnight,
θS increased from 95◦ to 125◦ when the pressure increased from 5.5 MPa to 13.8 MPa [38],
as shown in Figure 2. θS was measured at reaction conditions. These results were not
consistent with the hydrophilicity of feldspar above and the underlying mechanism is
possibly due to the microcline heterogeneity caused by K (kalium) deficiency. However,
further experiments are required to verify this hypothesis.

3.5. Kaolinite and Illite

After kaolinite reacted with CO2-0.171 M NaCl brine at various temperatures (38 ◦C;
55 ◦C) and pressures (5.9 MPa~12.4 MPa) overnight, θS increased with temperature and was
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insensitive to pressure [38]. For example, θS increased from 34◦ to 50◦ with the temperature
increase from 38 ◦C to 55 ◦C at 6 MPa. θS increased from 50◦ to 55◦ with the pressure
increase from 6 MPa to 12.1 MPa at 55 ◦C, as shown in Figure 2. This is because CO2-brine
induced chemical reactions, Equations (1)–(4) [38], promoted kaolinite dissolution and
changed concentrations of kaolinite surface elements, such as Fe, Ca, K.

Fe2O3 + 6H+ ↔ 2Fe3+ + 3H2O (4)

On the other hand, one report [44] argued that the CO2 induced reaction involves
surface ion exchange between clays (e.g., kaolinite and illite) and brine [51]. In addition,
dissolution and precipitation also affect the electrical double layer and thus change the θS
of kaolinite and illite [52].

3.6. Chlorite

So far there is only one report on the influence of reactions on chlorite wettability at
in-situ CO2 storage conditions [38]. After chlorite reacted with CO2-0.171 M NaCl brine
at various temperatures (38 ◦C and 55 ◦C) and pressures (5.8 MPa~14 MPa) overnight, θS
increased with pressure but decreased with temperature. For example, θS increased from
30◦ to 58◦ with the pressure increase from 5.8 MPa to 14 MPa at 38 ◦C. Contrary to this, θS
decreased from 30◦ to 22◦ with the temperature increase from 38 ◦C to 55 ◦C at 6 MPa, as
shown in Figure 2. The underlying mechanisms for the weakened wettability are attributed
to chemical reactions between chlorite and CO2-brine, promoting chlorite dissolution. The
chlorite surface structure is changed and wettability of chlorite is decreased. However, no
quantitative information was provided on the chlorite surface roughness in this work. On
the other hand, θS decreased with the increase of reaction temperature. This phenomenon
is different from that of other minerals, such as quartz, mica and kaolinite. This might be
due to the inhibition of the above reactions or the occurrence of new reactions at higher
temperature (55 ◦C vs 38 ◦C). However„ these assumptions have not been verified.

4. Reaction-Induced Wettability Changes in the CO2-Brine-Rock Systems

Wettability changes are usually induced by reactions of CO2 with the following rocks.

4.1. Shale

Shale is the main caprock rock used for CO2 storage in saline reservoir and its features
are closely related to the storage capacities and leakage risks of CO2 [11,53].

Three shale samples, LM 1, LM 2 and YC, were collected from Longmaxi formation
and Yanchang formation. After shale samples reacted with CO2 for 12 days at 40 ◦C and
8 MPa, their θS increased from 57◦ to 70◦, from 57◦ to 70◦, and from 61◦ to 85◦, respectively,
which were measured at 0.1 MPa and 25 ◦C [13,54], as shown in Figure 6.

Three shale samples, WF, EF and MAN, were collected from Wolfcamp, Eagle Ford and
Mancos formations, respectively. After shale samples reacted with scCO2 at 70 ◦C, 18 MPa
for 30 days, it was found that θS of WF increased from 71◦ to 90◦ and θS of EF increased
from 65◦ to 100◦ while θS of MAN decreased from 36◦ to 25◦, measured at 0.1 MPa and
20 ◦C [29,55], as shown in Figure 6. Five shale samples were collected from an outcrop in
Labuan (L 1, L 2, L 3, L 4 and L 5). After shale samples reacted with scCO2 for 6 months at
17.9 MPa and 50 ◦C, the advancing contact angle (θA) increased from 39◦~46◦ to 43◦~57◦ in
the system of CO2-shale-deionized water which were measured at 15 MPa and 50 ◦C [28],
as shown in Figure 6. However, no brine participation occured in the reaction period. The
conclusion in this work that low salinity is beneficial to stabilize shale wettability needs to
be further verified.
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Figure 6. Water contact angle as a function of reaction duration in the H2O-rock systems after reaction
with CO2 [13,28,29,54,55]. The contact angle for conditions of 50 ◦C and 17.9 MPa are advancing; as
is the contact angle measured at 50 ◦C and 15 MPa [28]. To facilitate data analysis, the starting point
0 was approximated to 0.1.

Meanwhile, the wettability is also a function of the reaction pressure. After shale
samples reacted with CO2 at various pressures (6 MPa, 8 MPa, 10 MPa, 12 MPa, 14 MPa,
16 MPa and 18 MPa) at 40 ◦C for 12 days, θS for shales (LM 1, LM 2 and YC) increased
from 62◦ to 89◦ and from 64◦ to 90◦, respectively, which were measured at 0.1 MPa and
25 ◦C [13,54], as shown in Figure 7. Pressure changes with two days interval. Shale sample
(LM 3) was collected from Longmaxi formation. Similarly, after shale sample reacted with
CO2 at various pressures (4 Mpa, 6 Mpa, 8 Mpa, and 16 Mpa) at 40 ◦C for 4 days, θS for
shale (LM 3) increased from 62◦ to 86◦ which was measured at 0.1 Mpa and 25 ◦C [56]. In
contrast, after shale samples reacted with CO2 at various pressures (9 Mpa, 12 Mpa, 15 Mpa,
18 Mpa, 21 Mpa and 24 Mpa) at 70 ◦C for 48 h, θS for shales (WF, EF, MAN) increased
from 69◦ to 84◦, from 67◦ to 85◦ and decreased from 35◦ to 33◦, respectively, which were
measured at 0.1 MPa and 20 ◦C [29,55], as shown in Figure 7.
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Moreover, the effect of shale-CO2 interactions on wettability was studied at various
temperatures and pressures [57]. Shale samples were collected from the Qianjiang forma-
tion. After shale samples reacted with CO2 at various temperatures (40 ◦C, 50 ◦C, 60 ◦C,
70 ◦C, and 80 ◦C at 16 MPa) and various pressures (10 MPa, 12 MPa, 14 MPa, and 16 MPa
at 80 ◦C) for 10 days, θS for shale increased from 58◦ to the maximum of 79◦, which was
measured at 0.1 MPa and 25 ◦C, as shown in Table 2.

Table 2. Changes of shale under different temperatures/pressures after shale reacted with CO2 for
10 d [57].

Pressure
[MPa]

Temperature
[◦C]

Static Contact
Angle [◦]

Mineral Content [%] Chemical Groups Content

Quartz Carbonate (Calcite
and Dolomite) Clay Oxygen-Containing

Groups Hydroxyl Group

initial 58 8.5 48.0 12.1 131.9 21.4
16 40 58 9.3 47.0 11.4 76.5 21.9
16 50 68 102.3 19.5
16 60 69 113.2 18.0
16 70 75 192 13.0
16 80 73 9.5 48.9 11.8 132.7 15.8
14 80 75 167.9 14.4
12 80 79 9.7 46.7 11.2 190.3 10.4
10 80 69 100 17.4
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CO2 induced chemical reactions promoted mineral dissolution and generation and ion
reaction, as shown in Equations (1)–(3) and (5)–(12) [13,26,45,54–56,58–61]. Shale macro-
scale mineral content was varied. Carbonate [13,54,57] contents were changed and clay
minerals [13,28,29,54,55,57] contents were decreased while quartz content [28,29,55] was
increased. After scCO2 treatment, compositional variations of surface chemical groups,
hydroxyl groups [29,55] and oxygen-containing groups [57], are shown in Tables 2 and 3.

KAl2(OH)2AlSi3O10(Illite) + 10H+ ↔ K+ + 3Al3+ + 3SiO2(Quartz) + 6H2O (5)

Al2Si2O5(OH)4(Kaolinite) + 6H+ ↔ 2Al3+ + 2SiO2(Quartz) + 5H2O (6)

CaCO3(Calcite) + H+ ↔ Ca2+ + HCO−3 (7)

CaMg(CO3)2(Dolomite) + 2H+ ↔ Ca2+ + Mg2+ + 2HCO−3 (8)

2KAlSi3O8(K− feldSpar) + 2H+ + H2O↔ 2K+ + Al2Si2O5(OH)4(Kaolinite) + 4SiO2(Quartz) (9)

NaAlSi3O8(Albite) + CO2(aq) + H2O↔ NaAlCO3(OH)2(DawSonite) + 3SiO2 (10)

NaAlSi3O8(Albite) + 6CO2(aq) + 6H2O↔ 6HCO−3 + 6Na+ + Na−Montmorillonite + 10SiO2 (11)

(Fe5Al)(AlSi3)O10(OH)8(ChamoSite) + 10H+ → 5Fe2+ + 2Al(OH)3 + 3H4SiO4 (12)

Table 3. Changes of shale after shale reacted with CO2 at 70 ◦C and 18 MPa for 30 days [29,55].

Sample Clay Content [%] Quartz Content [%] Surface Hydroxyl Content

WF
Before 60.9 30.2
After 46.3 46.7

EF
Before 62.5 16.6 25.779
After 56.0 23.5 21.373

MAN
Before 37.7 49.6 27.757
After 34.3 56.5 29.814

Carbonate and clay minerals are strongly hydrophilic [4]. Hydroxyl groups can react
with water to form hydrogen bonds, making the surface hydrophilic [62,63]. A decrease of
carbonate, clay minerals and hydroxyl groups increase shale surface hydrophilicity. For
example, after shales reacted with CO2 at 70 ◦C and 18 MPa for 30 days, the clay content
of EF decreased from 62.5% to 56% and the surface hydroxyl content decreased from
25.8 to 21.4 while θS of EF increased from 65◦ to 100◦. In addition, the clay content of MAN
decreased from 37.7% to 34.3% and the surface hydroxyl content increased from 27.8 to 29.8,
while θS of MAN decreased from 36◦ to 25◦. θS was measured at 0.1 MPa and 20 ◦C, as
shown in Table 3 and Figure 6. The variation of YC contact angle was more obvious than
that of LM 1 and LM 2, probably due to the fact that YC contained more clay minerals [13].
The MAN’s wettability decreasing with time was also because of the lower clay minerals
in the MAN shale [29,55]. The clay mineral content of LM (12.9~15.3%) was lower than
MAN (37.7%), but only the contact angle for MAN decreased after shales reacted with CO2.
This is probably due to differences in experimental set-up and reaction conditions. For LM
reactions, heating of the water bath was outside the reaction vessel while for the MAN
reaction, the heating of the water vapour was inside the reaction vessel. LM reactions were
at 40 ◦C and 8 MPa while MAN reactions were at 70 ◦C and 18 MPa. Moreover, the contact
angles of LM and MAN had different trends after their reaction with CO2, due to different
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temperature, pressure and water quantity, as shown in Figure 8 and Table 3. It should
be noted that quartz is hydrophilic while shale wettability did not increase with quartz
content because condensation reactions (Equation (14) [56]) weakened the hydrophilicity of
quartz [57]. However, there was not a very clear relationship between oxygenated groups
and shale wettability, even though the authors concluded that oxygenated groups are
negatively correlated with shale wettability [57].
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High pressure increases the solubility of CO2. The formation of carbonic acid is
accelerated (Equation (13) [56]) and the above reactions are driven. For LM 3, when
pressure increased from 4 Mpa to 16Mpa, the content of hydrophilic minerals decreased
from 35.9 to 25.5 and ratio of the Si-OH (hydrophilic) to the Si-O-Si (hydrophobic) content
decreased from 11.24 to 6.39, while θS for LM 3 increased from 59◦ to 86◦, which was
measured at 0.1 MPa and 25 ◦C [56], as shown in Table 4. Noteworthy, the ratio of
Si-OH to Si-O-Si decreased because of the polymerization reaction (Equation (14)) [56].
However, the reactions regarding the involvement of water seemed to be unreasonably
interpreted because there was no water involved in the reaction except for the water inside
the shale [13,54].

Table 4. Changes of shale (LM 3) under different pressures after shale reacted with CO2 for 4 d at
40 ◦C [56].

Pressure [MPa] Initial 4 MPa 6 MPa 8 MPa 16 MPa

Hydrophilic minerals components (%) 37 35.9 29.3 25.7 25.5
Ratio of the Si-OH to the Si-O-Si components 11.24 7 6.57 6.39

Hydrophilic minerals contain calcite, dolomite and clay minerals.
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4.2. Sandstone

Due to high permeability and porosity, sandstone is the dominant rock for CO2 storage
at subsurface [43,64].

After sandstones reacted with CO2-0.171 M NaCl brine at various temperatures (38 ◦C,
55 ◦C) and pressures (5.8 MPa~12.9 MPa) overnight, it showed that θS for sandstones from
Obernkirchener (O) and Berea (B) formation did not change with pressure and temperature
in a certain pattern. Sandstones remained strongly wet [38]. For example, after sandstone
(B) reacted with CO2-0.171 M NaCl at 38 ◦C overnight, θS decreased from 21◦ to 11◦ when
the pressure increased from 6 MPa to 12 MPa. Additionally, after sandstone (O) reacted
with CO2-0.171 M NaCl at 13 MPa overnight, θS for sandstone (O) increased from 26◦ to
32◦ when the temperature increased from 38 ◦C to 55 ◦C. θS were measured at reaction
conditions, as shown in Figure 7. Although pure minerals that make up sandstones changed
to varying degrees, θS for sandstones did not differ significantly. Two brines were prepared.
Brine 1 was composed of 5 wt% NaCl, 1 wt% KCl and CO2. Brine 2 was composed of
5 wt% NaCl and 1 wt% KCl. In contrast, after the sandstone flooded by brine 1 at (10 MPa,
15 MPa) and 50 ◦C for 7 days, it was found that the advancing/receding angle (θA, θR) in
the system of CO2-brine 2-sandstone was greater and the sandstone even became CO2-wet
at a higher pressure (15 MPa) at 50 ◦C [65], as shown in Table 5.

In principle, chemical reactions promoted sandstone dissolution and precipitation.
Kaolinite precipitation was observed by SEM [65]. Sandstone wettability was altered.
However, the mineral content did not change much before and after the reaction. Other
mineral-related reactions were not verified in this report, as shown in Table 5 [65].

Table 5. Changes of sandstone under different pressures after sandstone reacted with CO2 at 50 ◦C
for 7 days [65].

Sandstone Pressure [MPa]
Contact Angle [◦] Mineral Content

[wt%]Advancing Receding

Berea

Before flooding

10 65 58 Quartz: 84.3
Kaolinite: 4.1

Illite: 1.9
Albite: 4.2

Microcline: 4.1
Chorite: 1.4

15 81 75

After flooding

10 74 67 Quartz: 58.2
Kaolinite: 3.2

Illite: 3.6
Albite: 12.4

Muscovite: 1.6
Chorite: 5.7

Ankerite: 15.3

15 89 83
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Table 5. Cont.

Sandstone Pressure [MPa]
Contact Angle [◦] Mineral Content

[wt%]Advancing Receding

Bandera Gray

Before flooding

10 86 79 Quartz: 84.9
Kaolinite: 3.9

Illite: 1.8
Albite: 4.2

Microcline: 4.1
Chorite: 1.1

15 105 97

After flooding

10 96 90 Quartz: 58.4
Kaolinite: 3.1

Illite: 3.2
Albite: 12.2

Muscovite: 3.1
Chorite: 5.2

Ankerite: 14.8

15 108 103

4.3. Limestone

To date, there is only one report on limestone wettability at reservoir conditions [66].
After limestone was exposed to the scCO2-1 M NaCl brine at (12 MPa, 45 ± 1 °C) for
6 months, θS increased from 0◦ to 75◦. However, an explanation for the phenomenon that
limestone tended to be CO2-wet after scCO2 treatment was not provided in this work.

5. Research Gaps and Future Outlook

Wettability is an important parameter influencing CO2 storage capacities and con-
tainment securities in saline reservoirs [4,67]. However, geo-chemical reactions occur
and complicate wettability throughout the entire saline reservoir lifetime [28,29]. Current
knowledge gaps are identified, and future outlook is suggested as the following:

(1) Geo-chemical reaction-induced wettability changes for quartz [36–38], calcite [36,40,44],
mica [38,40,41], feldspar [38,40,44], kaolinite [38], chlorite [38], shale [13,28,29,38,54–57], sand-
stone [38,65] and limestone [66] have been thoroughly investigated. However, how these
reactions affect the wettability of limestone, kaolinite, phlogopite, and illite need to be
clarified by further studies. Moreover, other ions or components in saline aquifers can also
be involved in the reactions [50], and further studies are needed to clarify the influence of
these related reactions on wettability changes.

(2) The chemical reactions that may occur during CO2 injections as well as sequestra-
tion have been clarified, but the specific effects of certain reactions on wettability still cannot
be determined. In order to establish baselines and databases for numerical simulations,
the thermodynamics and kinetics of each geo-chemical reaction should be examined rigor-
ously and systematically as a function of duration, pressure, temperature, brine properties,
rock/mineral properties, etc.

(3) The contact angle measurement process has a significant impact on the results,
e.g., surface roughness [68]; surface cleaning [34,69,70]; droplet size [71–73]; static contact
angle (θR) or advancing/receding contact angle (θA, θR) [34,74]. A standard contact angle
measurement protocol should be developed under the consideration of surface prepara-
tion procedures, droplet/bubble generation processes and contact angle quantification
aspects, etc. [17].

(4) Reaction-induced wettability changes can alter the percolation of CO2-brine, and
thus affect CO2 storage capacities and leakage [7], which will be an important research
topic in the future.

6. Conclusions

Wettability is an important parameter influencing gas storage capacities and contain-
ment securities in saline reservoirs [4–13,75–79]. Recently, many studies have been carried
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out on wettability changes in CO2-liquid-mineral/rock systems affected by geo-chemical
reactions, including influencing factors such as pressure, temperature, salinity and dura-
tion [13,28,29,36–38,40,41,44,54–57]. However, a critical review of the subject is still lacking.
Therefore, we reviewed all available data and concluded the following:

(1) After the geo-chemical reaction with CO2, quartz, mica, kaolinite and chlorite
become more CO2-wet with pressure increases but biotite becomes more water-wet with
salinity increase, while calcite and feldspar’s wettability do not change significantly.

(2) After rocks, including shale, sandstone, and limestone, react with CO2, their
wettability changes to different degrees, which is related to the variation of their mineral
content.

(3) Geo-chemical reactions change rock/mineral surface structures (e.g., surface rough-
ness and heterogeneity) and chemistry (e.g., functional group content). As a result, min-
eral/rock wettability is altered.

This review systematically summarizes the effects of geochemical reactions on the alter-
nation of wettability of the CO2-liquid-mineral/rock system and provides some guidance
for long-term CO2 storage in saline aquifers.
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Appendix A

Table A1. Contact angle measurement.

Reference Method

Chao Qin et al., 2022 [13] The sessile drop method
Raoof Gholami et al., 2021 [28] The sessile drop method
Ahmed Fatah et al., 2021 [29] The sessile drop method

Prem Kumar Bikkina 2011 [36] The sessile drop method
Yongman Kim 2012 [37] Image processing method

Xiaozhou Zhang et al., 2020 [38] The bubble capture method
Raheleh Farokhpoor et al., 2013 [40] The bubble capture method

Lijie Zhang et al., 2016 [41] The bubble capture method
Shibo Wang et al., 2013 [44] The bubble capture method

Chao Qin et al., 2016 [54] The sessile drop method
Ahmed Fatah et al., 2021 [55] The sessile drop method

Yiyu Lu et al., 2021a [56] The sessile drop method
Yiyu Lu et al., 2021b [57] The sessile drop method

Cut Aja Fauziah et al., 2021 [65] The sessile drop method
Shibo Wang et al., 2015 [66] The sessile drop method
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