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Abstract: Recently, the demand for small, low-cost electronics has increased the use of cost-effective
tiny inductors in power-management ICs (PMICs). However, the conduction loss caused by the
parasitic DC resistance (RDCR) of a small inductor leads to low efficiency, which reduces the battery
usage time and may also cause thermal problems in mobile devices. In particular, these issues become
critical when a conventional boost converter (CBC) is used to achieve high-output voltage due to
the large inductor current. In addition, as the output voltage increases, a number of issues become
more serious, such as large output voltage ripple, conversion-ratio limit, and overlap loss. To solve
these issues, this paper proposed a high-voltage boost converter with dual-current flows (HVDF).
The proposed HVDF can achieve a higher efficiency than a CBC by reducing the total conduction
loss in heavy load current conditions with a small inductor. Moreover, because in the HVDF, the
current delivered to the output becomes continuous, unlike in the CBC with its discontinuous output
delivery current, the output voltage ripple can be significantly reduced. Also, the conversion gain of
the HVDF is less sensitive to RDCR than that of the CBC. To further increase the conversion gain, a
time-interleaved charge pump can be connected in series with the HVDF (HVDFCP) to achieve higher
output voltage beyond the limit of the conversion gain in the HVDF while maintaining the advantages
of a low inductor current and small output voltage ripple. Simulations using PSIM were performed
along with a detailed numerical analysis of the conduction losses in the proposed structures. The
simulation results were discussed and compared with those of the conventional structures.

Keywords: high-voltage application; boost converter; voltage ripple; efficiency; conduction loss;
overlap loss; conversion gain; continuous output current

1. Introduction

Power-management integrated DC–DC converters for high-supply voltages are widely
used in industrial applications such as light-emitting diode (LED) drivers, liquid crystal
display (LCD) bias circuits, energy-harvesting, power-factor correction, etc. [1–5]. However,
some applications, such as SSDs and LED drivers, face certain limitations. These applica-
tions, which are resistive loads, are heavy loads requiring high conversion gains [6]. Among
various DC–DC converters, a charge pump (CP) is capable of generating high-voltage gains
using several capacitors. However, generating an output voltage that differs from a pre-
determined voltage gain can lead to rapid efficiency degradation [7–12]. Additionally,
the capacitances need to become very large to use CP in heavy load applications. This
means the capacitor should be an external component, which results in a bulky system
that has a low power density [13]. On the other hand, there are isolated converters with
coupled inductors or transformers for high-voltage gains [14–19], but they suffer from
circuit complexity, low efficiency, and high costs. In contrast, a conventional boost con-
verter (CBC) can achieve high-voltage gains using a single inductor and a simple circuit
structure [20–23]. Due to the miniaturization of electronic devices, an inductor with a
high-quality factor in a limited PCB area is not ideal because of its large volume. Thus,
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the use of a small inductor with a low-quality factor is necessary due to size constraints;
however, the parasitic DC resistance (RDCR) of the small inductor, increasing in proportion
to the temperature, causes large conduction losses, resulting in low efficiency and low
conversion gains [24]. Also, since this large RDCR limits the voltage-conversion gain (M),
it is difficult to generate a high-voltage output. To overcome these limitations, the hybrid
converter, which is a combination inductive converter and charge pump, was introduced.
Among the hybrid converters, the multilevel converter makes large conduction losses with
a large RDCR because it cannot adjust the DC level of the inductor current [25]. Therefore, a
dual-path hybrid converter is used to reduce the inductor current [26]. To apply the hybrid
dual-path converter for high-voltage-gain SSDs and LED drivers, this paper proposed a
dual-path hybrid converter with a charge pump.

To understand these limitations, the structure of the CBC is shown in Figure 1. The CBC
uses a single inductor (L), two switches (S1, S2) and one output capacitor (CO) to convert
the input voltage (VIN) to a high-voltage output (VO), adopting a very simple structure.
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Figure 2 shows the operating principle of the CBC and its voltage and current wave-
forms. In Φ1, S1 is turned on and S2 is turned off while the inductor current (iL) is built up 
with a slope of VIN/L. At this time, the current cannot be delivered to the output; in other 
words, the output delivery current (iD) is 0 while CO is discharged by the load current 
(ILOAD). In Φ2, S2 is turned on and S1 is turned off while iL is de-energized with a slope of 
−(VIN − VO)/L and delivered to the output. Then Φ1 and Φ2 are repeated, and the output 
voltage can be regulated to a higher voltage than the input voltage VIN. 

To obtain the conversion gain of the CBC (MCBC), applying the voltage sec balance to 
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From Equation (2), we see that MCBC is always larger than 1 as D varies from 0 to 1, 
thereby generating a high output voltage. However, when the CBC uses a small inductor 
with a large RDCR for high output voltage, there are many issues, as described below. 

Figure 1. Conventional boost DC–DC converter.

Figure 2 shows the operating principle of the CBC and its voltage and current wave-
forms. In Φ1, S1 is turned on and S2 is turned off while the inductor current (iL) is built
up with a slope of VIN/L. At this time, the current cannot be delivered to the output; in
other words, the output delivery current (iD) is 0 while CO is discharged by the load current
(ILOAD). In Φ2, S2 is turned on and S1 is turned off while iL is de-energized with a slope of
−(VIN − VO)/L and delivered to the output. Then Φ1 and Φ2 are repeated, and the output
voltage can be regulated to a higher voltage than the input voltage VIN.

To obtain the conversion gain of the CBC (MCBC), applying the voltage sec balance to
the inductor is expressed as below:

DVIN + (1 − D)(VIN − VO) = 0 (1)

where D is the duty cycle, which is the duration of Φ1 in a single switching period.
Simplifying (1), MCBC is given by

MCBC =
VO
VIN

=
1

1 − D
(2)

From Equation (2), we see that MCBC is always larger than 1 as D varies from 0 to 1,
thereby generating a high output voltage. However, when the CBC uses a small inductor
with a large RDCR for high output voltage, there are many issues, as described below.
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1.1. Large Inductor Current

The use of a small inductor can cause significant conduction loss (PDCR) in the RDCR
of the inductor, resulting in a drastic reduction in power efficiency. PDCR is expressed by

PDCR = iL,RMS
2RDCR = (IL

2 +
∆iL

2

12
)RDCR (3)

where iL,RMS, IL, and ∆iL are the root-mean-square value, the average value, and the ripple
of iL, respectively. Because the small inductor has a large RDCR, reducing iL,RMS is the only
solution, as shown in Equation (3). Particularly, under a heavy load where ILOAD is larger
than hundreds of mA, since IL is much larger than ∆iL, and reducing IL is the most effective
method to decrease PDCR.

To obtain IL of the CBC, the charge balance is applied to the output capacitor CO:

D(−ILOAD) + (1 − D)(IL − ILOAD) = 0 (4)

Simplifying (4), IL is given by

IL =
1

1 − D
ILOAD = MCBC ILOAD (5)

Equation (5) shows that IL is proportional to MCBC. Therefore, as the high voltage is
generated, PDCR increases because of the large IL. Unlike the case of a buck converter, where
IL is always the same as ILOAD, this problem is much more critical for a boost converter [27].

Regarding the RDCR, it cannot be adjusted by the designer, but it varies with tempera-
ture. The RDCR is expressed as below [24].

RDCR(T) = RL_25C × [1 + TCCopper × (T − 25)] (6)

T = temperature of the inductor
RL_25C = inductor series resistance at room temperature (25 ◦C)
TCCopper = temperature coefficient of copper that is equal to 0.00393
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As shown in the Equation (6), RDCR is proportional to the temperature. When the
RDCR in CBC increases at high temperatures, the loss increases rapidly by Equation (3)
because the inductor current is large.

1.2. Pulsating Output Delivery Current

As shown in Figure 2, a CBC has discontinuous output delivery current iD pulsating
from 0 to IL. From Equation (5), the larger the conversion gain, the larger the IL, causing
huge pulsating iD. This results in a large ripple of the output voltage (∆VO). To reduce
this large ∆VO, the output capacitor CO should be large, and the parasitic resistance of the
capacitor (RESR) should be small. Therefore, a CBC requires a larger and more expensive
output capacitor than a conventional buck converter, which has continuous iD.

1.3. Limitation of Conversion Gain

As shown in Equation (2), in ideal conditions, the conversion gain for a CBC has no
limit. However, since the small inductor has a large RDCR, it limits the conversion gain
in practical applications. Considering the RDCR, the practical conversion gain MCBC is
modified as follows [27]:

MCBC =
1

1 − D
1

(1 + RDCR
(1−D)2R

)
(7)

where R is the load resistance, VO/ILOAD. From Equation (7), the practical conversion gain
MCBC is limited by the ratio of RDCR to R. Figure 3 shows the graph of the conversion gain
for different values of RDCR/R. When R is small, which means ILOAD is large and RDCR is
large, the CBC cannot achieve a high conversion gain.
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1.4. Large Overlap Loss

As shown in Figure 2, when VO is very high, the switching node VX changes very
rapidly in every cycle from 0 V at Φ1 to VO at Φ2. Due to the hard switching of the switch,
the current flowing through the switch and the voltage across the switch are multiplied,
which creates an overlap loss (POV) as shown in Figure 4. POV is expressed as follows:

POV =
VO IL

2
(trise + t f all) fSW =

MCBC
2VIN ILOAD

2
(trise + t f all) fSW (8)

where trise, tfall, and fSW are the turn-on transition time of the switch, the turn-off transition
time of the switch, and the switching frequency, respectively. Equation (8) shows that as
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the conversion gain increases, POV can become a substantial loss in a CBC in addition to
the conduction loss.
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The HVDF has two operation modes (Φ1, Φ2) in a single switching cycle. Figure 6 
shows the operation principle of the HVDF. In Φ1, switches S1, S2, S4 and S5 are turned on, 
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Figure 4. Overlap loss of conventional boost converter.

To resolve the abovementioned issues associated with CBCs, this paper proposed a
new high-voltage boost converter with dual-current flows (HVDF). Section 2 describes
the operating principle and the advantages of the HVDF. Section 3 introduces a modi-
fied structure that can further improve the conversion gain by using the HVDF with the
time-interleaved charge pump. In Section 4, the proposed structures are simulated and
quantitatively compared to a CBC. Finally, Section 5 gives a brief conclusion about the
proposed structures.

2. High-Voltage Boost Converter with Dual-Current Flows

In order to solve the issues associated with a CBC with high-voltage gain and a small
inductor, this paper proposes a new topology referred to as a high-voltage boost con-
verter with dual-current flows (HVDF). A converter with dual-current flows was reported
previously [26]; however, it is not suitable for high-voltage applications due to its low
conversion ratio. The HVDF can be used in high-voltage applications while maintaining
the advantages associated with a converter with dual-current flows. The HVDF consists
of one inductor (L), six switches (S1–S6), two flying capacitors (CF1, CF2), and an output
capacitor (CO) as shown in Figure 5.
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The HVDF has two operation modes (Φ1, Φ2) in a single switching cycle. Figure 6
shows the operation principle of the HVDF. In Φ1, switches S1, S2, S4 and S5 are turned
on, and S3 and S6 are turned off. As iL is built up with a slope of VIN/L, CF2 is charged
to VIN. At the same time, CF1 delivers the capacitor current iC1 to the output while being
charged with VO − VIN. Unlike a CBC, which cannot transfer energy to the output during
the iL buildup time, the HVDF is capable of transferring energy to the output using the
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capacitor current at Φ1. In Φ2, S3 and S6 are turned on, S1, S2, S4 and S5 are turned off, and
iL decreases with a slope of −(2VO − 3VIN)/L. The dead time is required between Φ1 and
Φ2 to prevent a large short-circuit current, which causes large conduction losses.
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To obtain the conversion gain (MHVDF) of the HVDF, applying the voltage sec balance 
to its inductor, 
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From Equation (10), as D changes from 0 to 1, MHVDF is always larger than 1.5, which 
means that the system can operate as a boost converter for high-voltage outputs. Owing 
to the two flying capacitors CF1 and CF2, the HVDF avoids the problems associated with 
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dual-current flows.

To obtain the conversion gain (MHVDF) of the HVDF, applying the voltage sec balance
to its inductor,

DVIN + (1 − D)(3VIN − 2VO) = 0 (9)

Simplifying (8), MHVDF is given by

MHVDF =
VO
VIN

=
3 − 2D

2(1 − D)
(10)

From Equation (10), as D changes from 0 to 1, MHVDF is always larger than 1.5, which
means that the system can operate as a boost converter for high-voltage outputs. Owing
to the two flying capacitors CF1 and CF2, the HVDF avoids the problems associated with
the CBC.

2.1. Reduced Inductor Current

The HVDF has the advantage that the capacitor current iC1 of CF1 can be delivered
to the output even when iL is not delivered to the output in Φ1. Owing to this additional
current flow, the HVDF can reduce the IL. To determine the IL in the HVDF, the average
value of iC1 in Φ1 (IC1, Φ1) delivered to the output must first be obtained. IC1, Φ1 is given by
applying the charge balance to CF1 as shown below.

DIC1,Φ1 − (1 − D)IL = 0 (11)
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IC1,Φ1 =
1 − D

D
IL (12)

Similarly, applying the charge balance to CF2, the average value of iC2 in Φ1 (IC2, Φ1)
flowing through CF2 is obtained as below.

−DIC2,Φ1 + (1 − D)IL = 0 (13)

IC2,Φ1 =
1 − D

D
IL (14)

Finally, applying the charge balance to the output capacitor CO with Equations (12)
and (14) gives the IL of HVDF as below.

D(IC1,Φ1 − ILOAD) + (1 − D)(IL − ILOAD) = 0 (15)

IL =
1

2(1 − D)
ILOAD = (MHVDF − 1)ILOAD (16)

This shows that the IL of the HVDF is always lower than that of CBC, which is MILOAD
in the same M condition. Since this reduced IL causes low conduction loss, the HVDF
can achieve higher efficiency than a CBC. Equation (16) shows that this reduction will be
especially significant with high M and heavy loads.

To determine the total conduction loss of the CBC (PCon,CBC), the on-resistance of each
switch is assumed to be the same as RON, and PCon,CBC is obtained as follows:

PCon,CBC = DIL
2RON + (1 − D)IL

2RON + IL
2RDCR = M2 ILOAD

2(RON + RDCR) (17)

In contrast, the conduction loss of the proposed converter (PCon,HVDF) is obtained
as follows:

PCon,HVDF = DRON[(IL + IC1,F1)2 + (IL + IC2,F1)2 + IC1,F1
2 + IC2,F1

2] + 2(1 − D)RON IL
2 + RDCR IL

2 (18)

Substituting Equations (10), (12), (14), and (16) into Equation (18),

PCon,HVDF = IL
2[2RON

(2 − D)

D
+ RDCR]= (M − 1)2 ILOAD

2[2RON
2M − 1
2M − 3

+ RDCR] (19)

To compare PCon,HVDF and PCon,CBC, the ratio of PCon,CBC and PCon,HVDF is expressed as

PCon,HVSIC

PCon,CBC
=

(M − 1)2(2RON
2M−1
2M−3 + RDCR)

M2(RON + RDCR)
(20)

Figure 7 is a graph of Equation (20) according to the conversion gain for different
RDCR values. The graph shows that the relative to a CBC, the HVDF has low overall
conduction loss over a wide range of conversion gains. This is because IL is reduced
by dual-current flows due to the HVDF operating principle. It should be noted that the
decrease in conduction loss is greater when a large RDCR is used, which means a small
inductor. On the other hand, when the load current is small, switching loss is dominant.
This results in the proposed structure having lower efficiency than the CBC, as it requires
more switches. When M becomes extremely small, which means short D, since the capacitor
current IC1, Φ1 rapidly increases based on Equation (12), it leads to an increase in conduction
loss. Therefore, we can see that the HVDF can be an effective solution for high gain and
small inductor applications.
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2.2. Alleviated Conversion Gain Limit

Ideally, when RDCR is 0, it is possible to raise the voltage without limiting the conver-
sion gain as shown in Equation (10). However, in practice applications, the conversion gain
is limited due to RDCR. To obtain the conversion gain by considering RDCR, applying the
voltage sec balance to the inductor,

D(VIN − ILRDCR) + (1 − D)(3VIN − 2VO − ILRDCR) = 0 (21)

The conversion gain with considering RDCR can be obtained by substituting Equation (16)
into (21) as below:

MHVDF =
VO
VIN

=
3 − 2D

2(1 − D)

1

1 + RDCR
4(1−D)2R

(22)

Although RDCR limits the conversion gain in the HVDF, Equation (22) shows that the
ratio of RDCR/R is reduced to 1/4 compared to Equation (7) for the CBC. This means that
the conversion gain of the HVDF is less sensitive to RDCR. Figure 8 shows that the HVDF
has a much higher the conversion gain than the CBC under the same operating conditions.
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2.3. Reduced Overlap Loss

As shown in the switching node VX waveform in Figure 6, while the swing of VX in
the CBC is VO, the swing of VX in the HVDF is reduced to VO − VIN due to the flying
capacitor CF2. This reduced swing of VX and reduced IL can further decrease POV in the
HVDF. The POV in the HVDF is expressed as

POV =
(VO − VIN)IL

2
(trise + t f all) fSW =

(M − 1)2VIN ILOAD
2

(trise + t f all) fSW (23)

Equation (23) shows that POV in the HVDF is proportional to the square of (M − 1),
while POV of the CBC is proportional to the square of M, as shown in Equation (8). Therefore,
the HVDF can achieve a lower POV than the CBC.

2.4. Small Output Voltage Ripple

As shown in the iD and VO waveforms in Figure 6, since the HVDF always has a
continuous output delivery current regardless of its operation mode, the output voltage
ripple can be significantly reduced compared to that of the CBC, which has discontinuous
iD. Moreover, this continuous iD not only alleviates the supply noise of the loading block
but also can be an advantage for the output capacitor selection in terms of cost and size
because it can relax the output capacitor specification.

3. High-Voltage Boost Converter with Dual-Current Flows and Time-Interleaved
Charge Pump

As mentioned above, the voltage-conversion gain of the practical boost converter
is limited by the RDCR. Even though the HVDF can alleviate the conversion gain limit,
Figure 8 shows that the HVDF still has difficultly achieving M over three. Therefore, when
a high-voltage gain over three is required, a 1:2 charge pump with an additional flying
capacitor (CCP) can be cascaded with the boost-converter core topology [28,29].

When a buffering capacitor (CMID) is placed between the boost-converter core and the
charge pump, the boost-converter core only needs to generate 0.5 VO for the high output
voltage VO. In other words, the conversion gain becomes two times larger because of the
1:2 charge pump.

In the operation of the 1:2 charge pump, in ΦC1, switches SA1, SA2 are turned on, SB1,
SB2 are turned off, and 0.5 VO charged in CMID is stored in the flying capacitor CCP. In ΦC2,
SB1 and SB2 are turned on to transfer energy to the output.

Likewise, the HVDF can use a 1:2 charge pump to achieve a high output voltage above
the conversion gain limit as shown in Figure 9.
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Figure 9. High-voltage boost converter with dual-current flows and cascaded 1:2 charge pump. Figure 9. High-voltage boost converter with dual-current flows and cascaded 1:2 charge pump.
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However, when CCP is charged in ΦC1, it cannot transfer energy to the output. Accord-
ingly, the advantage of the small output voltage ripple in the HVDF disappears because of
discontinuous output delivery current iD. Therefore, if the charge pump operates in a time-
interleaved manner, the energy can always be delivered to the output, which can reduce
the output voltage ripple. Figure 10 shows a structure cascaded with a time-interleaved
charge pump using two flying capacitors CCP1 and CCP2. The charge-pump currents (iD1,
iD2) in ΦC1 and ΦC2 create continuous output delivery current iD.
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Figure 10. High-voltage boost converter with dual-current flows and time-interleaved 1:2
charge pump.

If the operation mode of the time-interleaved charge pump is synchronized with the
HVDF, the buffering capacitor CMID and two switches (S5, S6) can be eliminated. Figure 11
shows the final structure, which is referred to as the high-voltage boost converter with a
time-interleaved charge pump (HVDFCP).
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Figure 11. High-voltage boost converter with a time-interleaved charge pump.

The HVDFCP consists of the four flying capacitors (CF1, CF2 and CCP1, CCP2) and
four switches (S1–S4) of the HVDF structure and the charge pump switches (SA1–SA4, and
SB1–SB4). The operation mode of the HVDFCP is shown in Figure 12. The operations of the
charge pump and the HVDF are the same as described above, but they are synchronized
with each other. As with the HVDF operation, the dual-current flows are maintained with
high efficiency even though the conversion gain is very high due to the time-interleaved
charge pump.

The conversion gain of the HVDFCP (MHVDFCP) is obtained as follows:

MHVDFCP =
VO
VIN

=
3 − 2D
1 − D

(24)

From Equation (24), the HVDFCP can be used in very high-voltage applications where
the conversion gain is higher than three. Although the charge pump is cascaded with
the HVDF, it can maintain a small output voltage ripple owing to the continuous output
delivery current iD. In addition, since the boost converter core only generates an output of
0.5 VO, the overlap loss is further reduced.
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Figure 12. Operation principle of the high-voltage boost converter with dual-current flows and
charge pump.

4. Simulation Results and Discussion
4.1. High-Voltage Boost Converter with Dual-Current Flows

Table 1 shows the simulation conditions of the HVDF and CBC for performance
comparison. The BCDMOS 180 nm high-voltage process was adopted to prevent the
breakdown of the switches in our simulations. Figure 13a shows the simulated waveforms
to confirm the operation of the proposed converter. In our design, the dead time of 10 ns
was applied to both HVDF and CBC by a non-overlapping clock generator.

Table 1. Simulation conditions for HVDF converter.

VIN VOUT ILOAD fSW L RDCR CF1/CF2 CO

5 V 10 V 1 A 1 MHz 4.7 µH 0.2 Ω 4.7 µF/4.7 µF 4.7 µF
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The simulation results showed that the HVDF has a lower IL (1 A) than the CBC (2 A).
The two capacitor currents (iC1 and iC2) satisfy the charge balance, and the voltage VL
across the inductor satisfies the voltage sec balance. Additionally, the switching node VX
of the HVDF was VO − VIN = 5 V, which is lower than the VO = 10 V. VX of the CBC, thus
reducing overlap loss. Owing to the dual-current flows, the output current of the CBC is
discontinuous because it only flows during phase 2. This causes the current to fluctuate
between zero and the inductor current. On the other hand, the output current of HVDFCP
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flows during both phases 1 and 2, so it fluctuates between iC1 and iC2. Therefore, the ∆VO
of the HVDF is 25 mV, which is significantly lower than that of the CBC, 140 mV.

Figure 14a shows the efficiency plots for different ILOAD values for the HVDF and CBC
when M is 1.7 and 2.5. As ILOAD increases, the HVDF reduction of IL becomes larger than
that of the CBC, which means that the efficiency is improved much more for the HVDF than
for the CBC. However, since the switching loss is dominant under light loads where ILOAD
is small, the CBC shows better efficiency in light load conditions due to the larger number
of power switches in the HVDF compared to the CBC. Therefore, the HVDF is more suitable
for heavy load current conditions, where ILOAD is larger, than light load conditions.
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(b) conversion gain.

Figure 14b shows the efficiency of both the CBC and the HVDF versus the conversion
gain when ILOAD is 1 A. The HVDF has a higher efficiency compared to the CBC across a
wide range of M. As shown in Equation (20) and Figure 7, the peak efficiency of the HVDF
is achieved when M is around 2, which is the minimized conduction-loss region.

4.2. High-Voltage Boost Converter with Dual-Current Flows and Time-Interleaved Charge Pump

Table 2 shows the simulation conditions of the HVDFCP and conventional boost
converter with a charge pump (CBCCP) for performance comparison. Figure 13b shows
the simulated waveforms to confirm the operation of the proposed converter.

Table 2. Simulation conditions for HVDFCP.

VIN VOUT ILOAD fSW L RDCR CF1–CF4 CO

5 V 20 V 0.5 A 1 MHz 4.7 µH 0.2 Ω 4.7 µF 4.7 µF

The simulation results showed that IL of HVDFCP is 1 A, which is much smaller
than the 2 A of the CBCCP. As a result, the overall conduction loss can be reduced in the
HVDFCP. In addition, the switching node VX was reduced to 0.5(VO − VIN) = 7.5 V for
the HVDFCP compared to 0.5 VO = 10 V for the CBCCP, resulting in low overlap loss due
to low VX swing. Thus, higher efficiency can be achieved with the HVDFCP than with
the CBCCP. Moreover, due to the time-interleaved charge pump in the HVDFCP, iD1 and
iD2, which are the charge-pump currents in each operation mode, can be delivered to the
output. The iD, which is the sum of iD1 and iD2, allows the continuous current to flow to
the output. Therefore, even though VO is very high (20 V), the HVDFCP can achieve a
smaller ∆VO (10 mV) than the CBCCP (80 mV).

Figure 15a shows an efficiency plot versus ILOAD when M is 3.5 and 5. Although the
absolute efficiency of the HVDFCP is lower than that of the charge pump-free structure
due to the large number of switches, the HVDFCP has the advantage that the efficiency is
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further improved compared to that of the CBCCP because the reduction of IL becomes large
as ILOAD increases. However, since the switching loss is dominant in light load conditions,
where ILOAD is small, the CBCCP shows better efficiency in these conditions than the
HVDFCP with its numerous power switches. Therefore, the HVDFCP is a suitable structure
for high-voltage gain in heavy load current conditions where ILOAD is large.
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Figure 15. Simulated efficiency plot of HVDFCP and CBCCP at different (a) load currents and
(b) conversion gain.

Figure 15b shows the efficiency graph of the CBCCP and HVDFCP according to M
when ILOAD is 0.5 A. The HVDFCP has higher efficiency characteristics than the CBCCP
across a wide range of M.

Another advantage of the proposed converters for high VO is the small ∆VO. Figure 16
shows the ∆VO of the CBC, HVDF, CBCCP, and HVDFCP when ILOAD is 1 A. The proposed
structures have a much smaller ∆VO than the conventional structures because of the dual-
current flows. More specifically, the HVDF has better ∆VO characteristics in the region
where M is smaller than three, and the HVDFCP has better performance when M is larger
than three. Thus, despite the large load current of 1 A and the high-voltage gain, the
proposed structures have a small output voltage ripple (less than 100 mV) across a wide
range of M.
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This can also be confirmed through FFT analysis. Figure 17 is a waveform showing
the FFT analysis of the proposed structure and conventional boost converter. In this
analysis, the simulation condition was the same as in Table 2. The switching frequency
was set to 1 MHz, and the sampling frequency of the FFT was set to 200 MHz, which
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was sufficient to capture the frequency component accurately. Figure 17a represents the
harmonic components of the output voltage, while Figure 17b represents the harmonic
components of the output current. Both Figure 17a,b show that the fundamental frequency
component of the proposed structure is significantly lower, by 0.098 times, than that of
the conventional boost converter. A decrease in the fundamental frequency component
meant that the ripple was reduced. While the conventional boost converter has a large
output voltage ripple due to the discontinuous current flowing through the output, the
proposed structure has a smaller output ripple due to the continuous current flowing
through the output. Figure 17 shows the reduction of the fundamental frequency and
harmonic components in the proposed structure.
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5. Conclusions

For high conversion gain, a conventional boost converter (CBC) has many issues, such
as a large output voltage ripple, large inductor current, conversion ratio limit, and overlap
loss in heavy load current conditions with a small inductor. To solve these issues, in this
paper, we proposed a high-voltage boost converter with dual-current flows (HVDF). Owing
to the dual-current flows in the HVDF, the inductor current was significantly reduced
compared with that of the CBC, resulting in low overall conduction loss. Accordingly, the
HVDF can achieve high efficiency and solve the thermal problems associated with mobile
devices. Moreover, the continuous output delivery current offers the additional advantage
of a small output voltage ripple. Furthermore, the conversion gain of the HVDF is less
sensitive to RDCR than that of the CBC. To further increase the conversion gain of the HVDF,
a time-interleaved charge pump was cascaded with the HVDF (HVDFCP) using additional
flying capacitors to generate high-voltage output beyond the limit of the conversion gain in
the HVDF. The HVDFCP can generate two-times higher output voltage while maintaining
the advantages of the HVDF. In summary, even when the proposed high-voltage converters
operate in heavy load current conditions with small inductors, they can achieve a reduced
inductor current, small output voltage ripple, less-sensitive conversion gain, and reduced
overlap loss. Therefore, the proposed HVDF and HVDFCP are promising solutions for use
in heavy load current conditions with a small inductor.
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