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Abstract: Integrating renewable energy sources (RES), such as photovoltaic (PV) systems, into
power system networks increases uncertainty, leading to practical challenges. Therefore, an accurate
photovoltaic (PV) power prediction model is required to provide essential data that supports smooth
power system operation. Hence, the work presented in this paper compares and discusses the
results of different machine learning (ML) techniques in predicting the power produced by the
300 MW Sakaka PV Power Plant in the north of Saudi Arabia. The validation of the presented work
is performed using real-world operational data obtained from the specified solar farm. Several
performance measures, including accuracy, precision, recall, F1 Score, and mean square error (MSE),
are used in this work to evaluate the performance of the different ML approaches and determine
the most precise prediction model. The obtained results show that the Support Vector Machine
(SVM) with a Radial basis function (RBF) is the most effective approach for optimizing solar power
prediction in large-scale solar farms.

Keywords: machine learning; neural network; power prediction; photovoltaic; solar farm; Saudi Arabia

1. Introduction

Renewable energy sources (RESs) are crucial for solving several social, economic, and
environmental problems. The transition to RESs is largely driven by the need to combat
climate change and a sustainable means of generating power. PV solar, one of the most
used RESs, significantly reduces greenhouse gas emissions, reduces the carbon effect, and
mitigates global warming. PVSs presently provide 1.7% of the world’s energy, and by 2025,
their output power should be close to 1 TW [1]. PV systems can be classified into two main
categories, namely on-grid and off-grid, depending on their connection to the electrical
grid. On-grid systems are interconnected with the utility grid. The grid is utilized as a
storage mechanism, enabling surplus electricity produced by the solar panels to be injected
back into the grid. At the same time, Off-Grid Systems are characterized by their lack of
connection to the electrical grid. These systems function autonomously and are engineered
to fulfill the electrical requirements of a particular site, such as a distant cabin or a secluded
facility, without being dependent on external sources of power [2].

The growth and success of industries, along with the development of the services
sector, indicate that the need for electricity in these sectors will have a significant impact on
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the future energy landscape of the Kingdom of Saudi Arabia (KSA). The prioritization of
industrialization and the expansion of service-oriented enterprises are significant factors
that contribute to the increasing demand seen in this context, as depicted in Figure 1. As
can be seen, power consumption has exhibited a consistent linear rise over the past decade.
Nevertheless, the decline observed in 2019 and 2020 can be attributed to the impact of
the coronavirus pandemic. Figure 2 shows how much power in Giga Watt hour (GWh) is
consumed by different sectors, i.e., residential, industrial, government, commercial, and
other loads [3].

Figure 1. Total power consumption in Saudi Arabia.

Figure 2. The consumed power in giga watt hour (GWh).

Saudi Arabia’s 2030 Vision aims to diversify the economy, reduce dependency on oil,
and promote social and cultural development to transform the country into a more dynamic
and globally competitive nation. The incorporation of a national renewable energy program
is a crucial component of the strategic blueprint outlined in the kingdom’s 2030 vision [4].
The geographic positioning of Saudi Arabia and the dry weather makes investments
in renewable energy sources more attractive and reliable. The KSA has achieved very
competitive pricing on a worldwide scale for the generation of power via wind and solar
farms. As per the Saudi vision, it is projected that by the end of 2030, around 50% of the
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overall electricity generation will be attributed to clean energy sources, namely photovoltaic
solar and wind turbine systems. The government supports and encourages partnerships
between private companies and public organizations to invest in the renewable energy
sectors. Therefore, the government started 12 Mega-Watt projects all over the kingdom. PV
solar and wind turbine systems are both significant forms of renewable energy sources,
each with distinct benefits and concerns. The selection between PV solar and wind energy is
often influenced by variables such as the accessibility of resources, geographical attributes,
and the particular demands of a certain project. In the unique setting of the Kingdom of
Saudi Arabia (KSA), where there is a substantial amount of sun irradiation, it is relevant
to emphasize some advantages of the PV when compared to wind energy. This assertion
is supported by the installed PV and wind systems projects [5]. This obligation has been
translated to a reality when the government announced the 12 Mega-Watt projects all over
the kingdom and more similar projects are to be announced [4]. As a result of establishing
these projects, oil usage will be reduced by 18.533 million barrels/year, which will have a
substantial positive impact on air pollution.

Integrating the RESs with the power grid should comply with international codes
and standards. Unlike the small-scale photovoltaic plant, certain requirements and codes
should be applied when connecting a large-scale solar plant to the transmission network
i.e., solar energy grid connection code (SEGCC) and grid code (GC) [6]. In addition to
these codes and standards, it is particularly important to know in advance how much
power coming from RESs will be injected into the electricity grids. Therefore, predicting
the solar farm output’s power is an essential factor for the power utility to conduct their
plan correctly. However, the accuracy of predicting the output power is normally low due
to the uncertainty of predicting the environment’s conditions such as rain, temp, cloud,
etc. [7]. As a result, certain power forecasting techniques are normally used to precisely
predict the output power of these RES.

Accurate forecasting of PV-generated power is of paramount importance to optimize
energy management, facilitate grid integration, and ensure the overall dependability of
the system. This precise forecasting enables enhanced integration of solar energy into the
electrical grid. Utilities and grid operators can accommodate variations in power produc-
tion strategically, hence enhancing their capacity to efficiently manage the equilibrium
between supply and demand in order to maintain system stability [8]. The developed
power prediction model of this study can offer numerous benefits that enhance both the op-
erational efficiency and financial performance of the solar farm. To explain, the developed
prediction model can accurately estimate the amount of power the solar farm will generate,
allowing for better integration with the power grid. Also, once the solar company decides
to install an energy storage system, the predictive data can be used in managing energy
storage systems more efficiently. Moreover, accurate power predictions help in maintaining
grid stability by ensuring that the energy supply from the solar farm matches the grid’s
demand. In addition, predictive data can guide the scheduling of maintenance activities. By
anticipating periods of lower power production, maintenance can be planned during these
times to minimize the impact on overall energy output. Also, the predictive model provides
data essential for financial planning and risk management. By predicting the power output,
the farm can forecast revenue more accurately. Finally, accurate power prediction models
are crucial for integrating larger shares of renewable energy into the power grid. They help
in balancing and managing the variability and intermittency associated with solar power.

Typically solar power forecasting methods can be classified into two main approaches:
statistical [9] and artificial intelligence (AI) models [10,11]. Statistical approaches are
usually used when historical time-series data are available. However, AI techniques are
used for predicting the power of solar energy due to precise learning and regression
capabilities. A comprehensive study and comparison of these two approaches and their
different models are presented in [12,13]. The following paragraph will explain in more
detail the popular methods used for predicting the output power of a PV system.
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The multi-linear adaptive regression splines model is used when historical meteorolog-
ical data (temperature, irradiance, humidity, etc.) is available [14]. The machine learning
method is widely used for predicting the output power of the solar farm based on the input
data [15]. The historical data can be classified based on weather parameters’ intermittency
(sunny, cloudy, raining, etc.), and an ANN model is employed to predict a short-term PV
power as shown in [16]. The extreme learning machine ELM method is used for prediction
to forecast near future (short time, i.e., 15, 30 min) parameters. The ELM can be optimized
using the particle swarm optimization PSO model to obtain high accuracy. Optimized
ELM shows better results compared to the ANN model [17]. Data-driven models, i.e., the
support vector machine (SVM), boosted regression tree (BRT), least absolute shrinkage
and selection operator LASSO, and ANN, are usually used for multi-step forward predic-
tion [18]. Another method used for PV power prediction is the hybrid forecasting model,
which is a combination of PSO/SVM with wavelet transformation to predict the PV output
power in the short-term (day ahead) [19]. Nowadays, deep learning is a hot research area
of machine learning and AI. Deep learning depends on learning useful features from given
data automatically, unlike traditional feature selection methods. Deep learning shows
outstanding results in the field of PV power prediction [20,21].

More recent solar power prediction methods are proposed in many scientific stud-
ies, in particular, the selecting/clustering approach based on relevancy and redundancy
criteria and the hybrid classification-regression forecasting (HCRF) engine [22]. The select-
ing/clustering approach filters out unrelated features and divides relevant features into
two different subsets to minimize the presence of redundancy of features. Each subset is
connected to an HCRF engine which categorizes its training samples via a set of regression
models based on their training. This proposed technique showed better results when
compared to the well-known seven forecasters including multilayer perceptron (MLP),
RBF, SVR, convolutional neural network (CNN), long short-term memory (LSTM), deep
belief network (DBN), and gradient boosting machine (GBM). However, the error metrics,
i.e., MSE, MAE, and MAPE, have higher values during the winter months [22].

Several forecasting approaches have been proposed to estimate the output power of
a solar farm. A comprehensive review presented in [23] evaluates many research studies,
published between 2010 and 2020, focusing on PV systems, output power forecasting
using machine learning and deep learning methods, the approaches executed, the datasets
employed, and the methods’ evaluation performance. However, the power scale of PV
power solar farms is in the range of a few MW for short-term prediction [23]. A research
work introduced in [24] presents an effective algorithm technique, combining support
vector machines and weather classification, to predict the one-day-ahead power output
of PV systems. The work was evaluated using a 20 kW PV station in China, whereas the
model shows reliability in forecasting the power output for grid-connected PV systems
amidst varying weather conditions. The findings from [25] show that by implementing
predefined data preprocessing, the model’s regression coefficient (R2) can be enhanced.
However, for PV systems with large datasets, the smoothing technique is not an ideal
solution for the preprocessing method. Another study presented in [26] examines two
different methods to evaluate output power forecasting of 20 MW solar farm stations in
China. A statistical and artificial intelligence based on time-series analysis techniques
were used to predict output power hourly under different environmental conditions. For
one-day-ahead prediction, the combination of two forecasting techniques shows better
performance when compared to using only one forecasting method as proposed in [27].
Most of the previous work proposed in the literature focuses on short-time forecasting and
validates their proposed method using a small-scale solar farm system ranging from kW
to a few MW capacity. However, this paper classifies the output power data into three
categories (low, medium, and high) and assists the proposed idea by adapting the 300 MW
solar farm’s data.

It is substantially essential for electric power utilities to know in advance the amount
of power produced by the grid-connected RESs so that these companies can efficiently
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plan and dispatch energy from RESs and traditional sources. Additionally, the accurate
prediction of the injected RESs’ power helps maintain the balance between the supply and
consumed power so that power outages or surges are avoided. Usually, power utilities,
such as the Saudi Electricity Company (SEC), utilize megawatt (MW) power turbine
generators, making it difficult to efficiently manage and operate these large power units.
In the literature, many research articles focused on developing power prediction models
of solar PV systems that work on a scale of a few megawatts, which does not match with
real-life power generators’ ratings. Therefore, these models cannot provide the required
high power prediction accuracy so that electric utilities can operate safely and efficiently.
Hence, this work presents different ML models to accurately predict the generated power
of the investigated solar farm. These models are developed, taking into consideration
the classification of the produced 300 MW, presented in Table 1, since traditional power
turbines are normally rated in tens of megawatts.

Table 1. Output Power Characterization.

Category Value

low 0 to 120 MW

Medium 121 to 180 MW

High 181 to 300 MW

The developments of this research article are to utilize the obtained data of the 300 MW
solar farm located in the north of Saudi Arabia to test various machine learning (ML) models
on the output power prediction of the PV facility. The developed ML models are then
tested, considering these data as classified into three categories, namely low, medium, and
high, to achieve high accuracy prediction of the produced power.

The remainder of this paper is organized as follows. Section 2 describes the data
collection and preparation that was used in this study. Developed methods based on the
machine learning (ML) approach are developed in Section 3. The experimental results for
the developed ML approaches are given in Section 4, and the concluding remarks are given
in Section 5.

2. Data Collection and Preparation

The data were collected from a 300 MW solar farm located in the north of Saudi Arabia,
Sakaka city. The data were obtained using a meteorological recorder for one year (2020)
with a time-step of a half hour. In the following subsections, the 300 MW solar farm and
the data processing will be explained in more detail.

2.1. 300 MW Solar Farm

Figure 3 shows the 300 MW Sakaka solar farm which is the first project of the National
Renewable Energy Program (NREP) of Saudi Arabia. The aim of NREP is to generate 27 GW
from renewable energy resources and be completed by the end of 2023. This project was
constructed by SAKAKA SOLAR ENERGY COMPANY (SSEC) under a contract awarded by
the Renewable Energy Projects Development Office (REPDO). The power production cost
rate is a world-record breaking at (8.78 halalas)/kWh, which equals (2.34 US Cents)/kWh.
The capital cost of this plant is 302 million USD and occupies six km2 located in the north of
Saudi Arabia (Al Jouf Region) [28]. The average output power during the year is presented
in Figure 4. The solar farm generates its maximum power during the summer months
(June–August). However, during the winter, the farm produces the minimum output power
due to the daytime length and clouds. Moreover, the average output power of each month
is shown in Figure 5.
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Figure 3. The 300 MW Sakaka PV project.

Figure 4. The percentage of the average output power generated by the solar farm for each season.

Figure 5. The average output power for each month generated by the solar farm.

Figures 6 and 7 depict the irradiance and output power profiles for a single day during
each season (summer, winter, fall, and spring). These figures aim to illustrate variations
in irradiance and output power throughout a day under different seasonal conditions.
Specifically, we selected clear day data for representation, including summer on 30 June
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2020, fall on 16 September 2020, winter on 3 January 2020, and spring on 5 March 2020.
The plots showcase measurements of irradiance and corresponding output power over
24 h, with the meter recording data every 30 min. The farm produces the maximum output
power (300 MW) from 7 a.m. to 5 p.m. during the summer. Meanwhile, in spring, it reaches
its peak from 10 a.m. to 2 p.m., as demonstrated in Figure 6. As a result, the maximum
power is extracted during the summer for a long period of time compared to other seasons.
However, the irradiance fluctuates during a rainy and cloudy day, as presented in Figure 8,
which reflects the impact of power generated by the solar farm, as shown in Figure 9.

Figure 6. Solar farm output power vs time for one day in summer, fall, winter, and spring (clear day).

Figure 7. Irradiance vs time for one day in summer, fall, winter, and spring (clear day).

Figure 8. Irradiance vs time for one day in summer, fall, winter, and spring (rainy or cloudy day).
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Figure 9. Solar farm output power vs time for one day in summer, fall, winter, and spring (rainy or
cloudy day).

2.2. Data Processing

Historical data processing is extremely important for achieving high accuracy before
developing an ANN model.

At some hours during the day, the monitor does not record important data due to
inverter or irradiation sensor failure. This uncertainty can be handled by using different
imputation techniques, i.e., mean imputation, substitution, hot and cold deck imputation,
regression imputation, stochastic regression imputation, interpolation, and extrapolation.
For simplicity, the authors decided to select the mean imputation to compensate for missing
values.

During the early day and later in the day, incorrect readings were observed which
resulted in a mismatch between the irradiation values and their corresponding output
power. A practical solution for this situation is setting the value of the input (irradiance) and
the output (power) to zero [29]. In real-world scenarios, solar power data might be affected
by various sources of uncertainty and variability. To improve the data quality, minimize
uncertainties, and enhance the accuracy and reliability of our model, we addressed the
unreliable temperature measurements. This was achieved by assessing the quality of the
data using summary statistics and checking for duplicate temperature measurements,
which could lead to overrepresentation and bias in the data.

3. Utilized Different Machine Learning Techniques
3.1. Machine Learning Construction

A machine learning (ML) model was constructed to predict the output power gener-
ated from the 300 MW solar farm. The constructed ML model consists of four input layers,
three hidden layers, and a single output layer, as represented in Figure 10. The input layers
are made of the following variables:

• Total Solar Irradiance on Inclined Plane POA2 (W/m2);
• Total Solar Irradiance on Horizontal Plane GHI (W/m2);
• Ambient Temperature (degree centigrade).

The output layer produces the aforementioned three categories as mentioned in Table 1.
The experiment was conducted based on the five-fold cross-validation approach. In the
five-fold cross-validation approach, the entire data were divided into five equal sets. The
four sets were merged to represent the training set while removing the other remaining set
to represent the testing set. This process was repeated five times in order to have a different
set for each time test. The average of the results was taken from the seven testing sets to
represent the final prediction result.
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Figure 10. The structure of the proposed prediction model.

Solar radiation measures the power per a given unit area that is received from the sun
and is normally integrated over a time period to calculate the emitted radiant energy into
the surrounding environment. Solar radiation depends on the average brightness of the
sunlight available. The northern region of Saudi Arabia receives a higher solar radiation
intensity, ranging from 8.5 to 9.5 kWh/m²/day, compared to other regions. This makes it a
promising area for solar energy generation [30]. The air temperature of the environment
in which the solar cells are located is known as the ambient temperature and it is very
crucial to the ability of solar cells to accumulate power from the sun. In general, Saudi
Arabia is extremely hot and dry in summer with temperatures ranging from 27 ◦C to 43 ◦C
and from 27 ◦C to 38 ◦C in the inland and in coastal areas, respectively, while the winter
temperature ranges between 8 ◦C and 20 ◦C and between 19 ◦C and 29 ◦C in the interior
and in the coastal areas, respectively. To measure the module surface temperature, sensors
are attached to the back of the module and the average of all sensors is taken as a read for
the module surface temperature.

Figure 10 depicts the machine learning methodology that was used after annotating
the output power into the three aforementioned intervals. The output of the model is a
prediction of the three-class power output from the solar cells, based on the features that
are described above. This model is composed of a dense input layer, three dense hidden
layers, and a dense classification layer. The main parameters of the dense layer are the units
and the activation function. The unit is an integer greater than zero that represents the
dimensionality of the output space. To decide whether a given neuron should be activated
or not, an activation function was used. In other words, the activation function determines
the importance of the neurons in the process of prediction using mathematical operations.

In the input dense layer, all eight units and the ReLU activation function were utilized.
Likewise, the input dimension was determined to be four (reflecting the four input features).
The ReLU function refers to the rectified linear activation function, which is a linear function
that yields the input directly if it is positive; otherwise, it will yield zero. The models that
use the ReLU activation function normally achieve better performance with easier training;
therefore, it has become the main activation function for different types of neural networks.
In the three middle layers, 16, 16, and 8 units were used, respectively, and the ReLU
activation function was employed for all three hidden layers. Finally, for the output dense
layer, the three units were utilized to reflect the three classified (Low, Medium, and High)
output powers. The activation function that was used for the output dense layer is the
SoftMax activation function. SoftMax uses a mathematical process to convert the output
numbers into probabilities that can be used to yield the final prediction.

3.2. Machine Learning Models

A Support Vector Machine (SVM) is a supervised machine learning algorithm that can
be used for classification or regression tasks. The primary objective of an SVM is to find a
hyperplane in a high-dimensional space that separates data points into different classes
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while maximizing the margin between the classes. The hyperplane is the decision boundary
that distinguishes between the two classes. In simple terms, the SVM tries to find the best
possible decision boundary that maximizes the separation between different classes in the
feature space by maximizing the distance between the hyperplane and the nearest data
point from either class. The data points that are closest to the hyperplane are the support
vectors, which are crucial for defining the margin and ultimately determining the decision
boundary based on a training set xi, yi), xi represents the features, and yi represents the
classes. The primal problem which the support vector machine solves is as follows:

min
1
2
∥ ω ∥2 + C

n

∑
i=1

ξi (1)

subject to
yi(ω.xi + b)≥ 1 − ξi

ξi≥ 0

i= 1, 2, · · · l

where the error penalty parameter is C, the offset from the origin is denoted by b, and
the normal vector to the hyperplane is identified by w. To handle non-linear decision
boundaries, the SVM uses a technique known as the kernel trick, which allows the SVM to
implicitly map the input data into a higher-dimensional space without explicitly calculating
the new feature representations. Four common kernels can be used with the SVM: linear,
polynomial, RBF, and sigmoid kernels, which make the SVM powerful for both linear and
non-linear classification tasks. The equations for these kernels are given below:

• Linear:
K(x, y) = x.y (2)

• Radial basis function:

K(x, y) = e−
(

γ∥ x − y ∥2
)

(3)

• Sigmoid:

K(x, y) = tanh
(

γ.xTy + r
)

(4)

• Polynomial:

K(x, y) = tanh
(

γ.xTy + r
)d

, γ > 0 (5)

Commonly employed for both classification and regression applications, a decision
tree is a supervised machine-learning technique. Given the value of a given feature, every
node in this tree-like model reflects a decision. Once a stopping criterion is satisfied, the
data are divided into segments according to the values of various features, and the tree is
built recursively. A decision tree iteratively divides the feature space, given training vectors
and a label vector, so that samples with the same labels or comparable target values are
grouped. Based on the classification outcome 0, 1, 2, 3, . . . , k − 1, and if

pmk =
1

nm
∑

y∈Qm

I(y = k) (6)

Equation (??) represents the proportion of the class of the observation k in node m,
whereas m denotes the terminal node, and then the classification probability pmk, can be
used to calculate the common measures of impurity as follows:

H(Qm) = ∑
k

pmk(1 − pmk) (7)
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The log loss can be calculated as follows:

H(Qm) = −∑
k

pmk log pmk (8)

The methodologies proposed in this study, such as the support vector machine (SVM)
with RBF approaches, have been widely used and demonstrated successful results in
various PV systems across different regions and climates. Therefore, the proposed method
can be applied in other locations with comparable environmental conditions, provided that
the necessary data and model training are performed specifically to the target region.

To implement the RBF kernel with support vector machines, several considerations
are taken, which include (1) data preprocessing and outlier handling via outlier removal or
transformation, because the kernel is very sensitive to outliers. In our data, we scanned
it properly to ensure that there were no outliers; (2) hyperparameter tuning, of which
two important hyperparameters should be tuned to obtain optimal results when using
the RBF kernel with the SVM, of which these hyperparameters are the cots parameter (C),
which controls the tradeoff between achieving a smooth decision boundary and classifying
training points correctly, and the RBF Kernel Parameter, which influences the shape of
the decision boundary. In our approach, we used the randomized search for tuning these
two parameters; (3) K-fold cross-validation, which is very important to robustly estimate
model performance and ensure that hyperparameter tuning is not biased to a specific
data split. In our approach, we used a five-fold cross-validation approach; and (4) kernel
selection, where, while RBF is a powerful kernel, it might not always be the best choice.
Depending on the nature of the data, consider experimenting with other kernels, like linear
or polynomial, to find the most suitable one. In our paper, we experimented with all the
kernel types.

3.3. Evaluation Indices

The performance measures that were used to evaluate the developed ML methods
are accuracy, precision, recall, and F1 score. These performance measures are calculated
based on the values of True Positive (TP), which refers to the number of the records that
are correctly classified as positive; True Negative (TN), which refers to the number of
the records that are correctly predicted as negative; False Positive (FP), which refers to
the negative records that are incorrectly predicted as positive; and False Negative (FN),
which refers to the positive records that are incorrectly predicted as negative. The accuracy
refers to the corrected classified output power class (high, medium, and low) and it can be
calculated using the following equation.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (9)

The ratio of true positives and total correct prediction is known as precision, where
high precision means that the model is good at predicting true positives. On the other
hand, recall represents the ratio of (TP) to all the positives, whereas high recall means that
the model is able to distinguish well between correctly and incorrectly classified power
output classes. Improving either precision or recall can improve the model’s performance.
There are tradeoffs between recall and precision, which means it is impossible to improve
both at the same time. Therefore, the harmonic mean is needed. This harmonic mean
can be measured using the F1 score, which can balance precision and recall. However,
Precision, Recall, and F1 score are commonly used in binary classification scenarios where
there are only two classes. Although, it is possible to apply Precision, Recall, and F1 score
metrics when you have more than two classes. In multi-class classification scenarios, these
metrics are often extended to handle multiple classes using macro-averaging (MA) or
micro-averaging strategies, which provide a way to summarize the performance across
multiple classes. MA treats all classes equally, while micro-averaging considers the total
counts of true positives, false positives, and false negatives across all classes. Since we want
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to give equal importance to the performance of each class, we used MA, which computes
metrics independently for each class and then averages them. The MA provides a fair
representation of overall model performance and is not sensitive to class imbalance; thus,
each class contributes equally to the final average. The MA for precision, recall, and F1
score are given as follows:

Precision(MA)=
1
K

K

∑
i=1

TPi
TPi + FPi

× 100% (10)

Recall(MA)=
1
K

K

∑
i=1

TPi
TPi + FNi

× 100% (11)

F1score(MA)=
1
K

K

∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

× 100% (12)

where K is the number of classes.

4. Experimental Results of Real Pv Solar Farm Data

The different machine learning techniques were implemented using the Keras library
based on TensorFlow as a backend. The implementation was performed using Python
program language. The data that have been used is for May, June, July, and August. There
are 1476 reads on average for each month. The measures for the total solar irradiance
on an inclined, total solar irradiance on a horizontal plane, ambient temperature (degree
centigrade), and module surface temperature (degree centigrade) are taken each half hour.

To evaluate the classification approaches, the leave-one-out cross-validation test was
used by dividing the whole dataset into five folds. This methodology is a rigorous and
accurate evaluation method compared to the division of the data into training and testing
sets. One-fold out of the five folds is removed to represent the testing set and the remaining
four folds are combined to represent the training set that will be used for training the
machine learning method. This process is then repeated five times by removing one-fold
each time in order to have a different fold for testing each time. The average of the results
from the five folds was taken to represent the final prediction result.

Table 2 provides a comprehensive evaluation of six machine learning models, namely
the SVM with RBF, the SVM with the polynomial kernel, the SVM with the sigmoid kernel,
the SVM with the linear kernel, deep Neural Network, and Decision Tree. It utilizes the
metrics accuracy, precision, recall, F1 Measure, Mean Squared Error (MSE), and R-squared
for comparison. The SVM with the RBF kernel model shows exceptional performance,
leading in almost all metrics, notably in accuracy, precision, recall, and F1 Measure. This
indicates its effectiveness in making correct predictions as well as its balanced approach
between precision and recall. The SVM with the linear kernel model also shows similarly
high performance, particularly in accuracy and precision, suggesting its suitability for
applications in electricity classification. In contrast, the SVM with the sigmoid kernel model
under performs across all metrics. Its lower scores in precision, recall, and F1 Measure
indicate a tendency to make incorrect predictions and a poor balance between identifying
true positives and negatives.

This makes it less suitable for output power classification. The Deep Neural Network
and Decision Tree models display robust performances, with high accuracy and R-Square
scores. The Deep Neural Network’s high accuracy suggests its effectiveness in learning
from the training data, while the decision tree’s competitive R-Square indicates its capability
to explain variance in data. The SVM with a polynomial kernel model, while not leading in
any metric, shows strong results, especially in precision and R-Square, making it a reliable
choice for output power classification. Overall, Table 2 highlights the varied strengths and
weaknesses of these models, providing valuable insights for selecting the most appropriate
model for different machine learning tasks.
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Table 2. Evaluation of six machine learning models on output power prediction.

Accuracy Precision Recall F1 Measure MSE R-Square

SVM–rbf 0.98 0.97 0.96 0.96 0.015 0.97

SVM–poly 0.96 0.96 0.89 0.92 0.012 0.94

SVM–sigmoid 0.81 0.59 0.60 0.59 0.046 0.77

SVM–linear 0.98 0.97 0.95 0.95 0.017 0.96

DeepNN 0.97 0.95 0.93 0.94 0.016 0.95

Decision Tree 0.97 0.96 0.94 0.95 0.015 0.96

Figures 11–16 show the Receiver Operating Characteristic (ROC) curves, which are
used to evaluate the performance of the six classification models as threshold-independent
measures. The ROC Curve is a plot with the True Positive Rate (TPR) on the y-axis and
the False Positive Rate (FPR) on the x-axis. Each point on the ROC curve represents a
sensitivity/specificity pair corresponding to a particular decision threshold. The True
Positive Rate (TPR), also known as sensitivity, is the ratio of correctly predicted positive
observations to all actual positives. It is calculated as TPR = TP/(TP + FN), where TP is the
number of true positives and FN is the number of false negatives. The False Positive Rate
(FPR) is the ratio of incorrectly predicted positive observations to all actual negatives. It is
calculated as FPR = FP/(FP + TN), where FP is the number of false positives and TN is the
number of true negatives.

Figure 11. ROC curve for multi-class classification using the SVM with the RBF kernel.

The classification models evaluate more than two classes. In this case, three classes
(0, 1, and 2), represent Low, Medium, and High power outputs, respectively. As presented
in Figure 11, the SVM with the RBF kernel curve shows the area under the curve (AUC)
for each class, indicating how well the model is at distinguishing between classes. Class
0, Class 1, and Class 2 have an AUC of 0.99, which indicates that all three classes are
distinguished by the model. The micro-average or the average ROC curve that considers
the performance across all classes shows an AUC of 1.00. The micro-average AUC being
1.00 suggests that the SVM with the RBF kernel performs exceptionally well across all
classes. It is important to note that the specifics of the data and the task at hand determine
the type of kernel that should be used with the SVM.
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Figure 12. ROC curve for multi-class classification using the SVM with the polynomial kernel.

Figure 13. ROC curve for multi-class classification using the SVM with the linear kernel.

Figure 14. ROC curve for multi-class classification using the SVM with the sigmoid kernel.



Energies 2024, 17, 525 15 of 17

Figure 15. ROC curve for multi-class classification using the Decision Tree model.

Figure 16. ROC curve for multi-class classification using the Deep Learning model.

Since solar power generation often exhibits complex, non-linear patterns due to various
factors, like weather conditions, time of day, and seasonal changes, then the SVM used
with the RBF kernel, which is particularly effective at capturing non-linear relationships in
the data, is a potentially effective approach for optimizing solar power prediction.

Figure 12 shows the SVM with the polynomial kernel curve shows AUCs of 1.00, 0.92,
and 0.99 for Class 0, Class 1, and Class 2, respectively. The AUC of Class 1 shows that
the SVM with the polynomial kernel is not as good as the SVM with the RBF kernel in
distinguishing Class 1. The micro-average AUC of the SVM with the linear kernel is 0.99,
which indicates that the model performs exceptionally well across all classes, as presented
in Figure 13. The SVM with the linear kernel curve shows AUCs of 1.00, 0.83, and 1.00 for
Class 0, Class 1, and Class 2, respectively. The AUC of Class 1 shows that the SVM with
the linear kernel has a problem in distinguishing Class 1. The micro-average AUC of the
SVM with the linear kernel is 0.99, which indicates that the model performs exceptionally
well across all classes. The SVM with the sigmoid kernel curve, as depicted in Figure 14,
shows AUCs of 0.98, 0.03, and 0.84 for Class 0, Class 1, and Class 2, respectively. The
micro-average AUC of the SVM with the linear kernel is 0.84. These results show that
the SVM with the sigmoid kernel has the poorest performance among the SVM models.
Figure 15 illustrates the Decision Tree model which has a performance almost similar to
that of the SVM with a polynomial kernel. The Deep Learning model shows AUCs of 0.99,
0.97, and 0.99 for Class 0, Class 1, and Class 2, respectively, as shown in Figure 16. The
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micro-average AUC of the Deep Learning model is 0.99. These results show that the Deep
Learning model has a good performance in distinguishing between the classes.

5. Conclusions

The geographical location of Saudi Arabia and its dry weather made the kingdom
a suitable place for constructing large-scale solar farm projects. The Sakaka PV power
plant, the first of its kind in Saudi Arabia, has been operating and supplying 300 MW to
the Saudi power grid since 2019. This paper compared six machine learning models to
predict the output power of a solar PV farm. The support vector machine (SVM) with the
RBF model shows the best performance among the other techniques. This method achieves
accuracy = 98%, precision = 97%, recall = 96%, and F1 measure = 96%. The ROC curves
show that the SVM with the RBF kernel is the best model with exceptional performance
in distinguishing between the three classes, with a near-perfect classification ability as
indicated by the high AUC values. On the other hand, the SVM with the sigmoid kernel
has the poorest performance within the SVM models.
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