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Abstract: Due to their nonlinear behavior and the harsh environments to which batteries are subjected,
they require a robust battery monitoring system (BMS) that accurately estimates their state of charge
(SOC) and state of health (SOH) to ensure each battery’s safe operation. In this study, the interacting
multiple model (IMM) algorithm is implemented in conjunction with an estimation strategy to
accurately estimate the SOH and SOC of batteries under cycling conditions. The IMM allows for an
adaptive mechanism to account for the decaying battery capacity while the battery is in use. The
proposed strategy utilizes the sliding innovation filter (SIF) to estimate the SOC while the IMM serves
as a process to update the parameter values of the battery model as the battery ages. The performance
of the proposed strategy was tested using the well-known B005 battery dataset available at NASA’s
Prognostic Data Repository. This strategy partitions the experimental dataset to build a database of
different SOH models of the battery, allowing the IMM to select the most accurate representation of
the battery’s current conditions while in operation, thus determining the current SOH of the battery.
Future work in the area of battery retirement is also considered.

Keywords: lithium batteries; Kalman filters; sliding innovation filter; interacting multiple model;
state of health; state of charge; battery monitoring system; B005 battery dataset

1. Introduction

Owing to their high specific energy and high operational voltage, lithium-ion batteries
(LiB) have received great attention and are used in many applications [1]. Unfortunately,
LiB have a limited operational area mainly bound by two important parameters: voltage
and temperature. As such, careful monitoring of a battery’s working temperature and
voltage is necessary for its optimal and safe operation [2]. If the battery’s voltage exceeds
its limit, the battery may develop dendrites over time, which increases the battery’s internal
resistance, resulting in a lower output voltage. Moreover, if the working temperature is
substantially increased, the battery may release toxic gases or burst into flames [3].

Another challenge presented by LiB technology is the accurate estimation of its avail-
able power or state of charge (SOC). SOC describes the amount of charge available in the
battery at any given time during usage. SOC is often represented as a percentage value
of available power vs. maximum power, or the available capacity vs. maximum capacity
of the battery [3]. The main problem in determining the SOC is the absence of instrumen-
tation that can accurately measure SOC during the battery’s operation. This results in an
estimation problem where the SOC must be estimated using indirect measurements such
as the battery’s terminal voltage and current [4].

Different techniques to estimate the LiB’s SOC have been proposed in the literature.
Some techniques such as neural networks (NN) have been used with great success [5];
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however, NN make use of extensive data that must be collected beforehand and are
computationally expensive compared to other solutions [5]. Other techniques make use of
electrochemical impedance spectroscopy (EIS) data, which requires special instrumentation
to be installed in the system [6].

One popular SOC estimation solution is the ampere-hour counting method. The
ampere-hour counting method determines SOC based on current measurements and the
remaining capacity of the battery [3]. This method’s popularity relies on its simplistic
approach. If the initial SOC is known, the previous SOC value can be subtracted or added
based on the current profile. However, this method comes with many drawbacks. Its
accuracy is highly dependent on the initial SOC value, correct current measurements,
and accurate battery capacity readings [3]. To ensure proper estimates of the SOC, this
method must be frequently calibrated; some calibration techniques include voltage-based
corrections using lookup tables [3]. Another method was presented in [7], where the
authors were able to jointly estimate the SOC and temperature at the same time. The ability
to track the temperature in conjunction with the SOC provides useful insights in terms of
battery life management and operational safety.

Furthermore, Kalman filters (KFs) present other estimation techniques that, when
combined with the ampere-hour counting method, have proven to be accurate at estimat-
ing SOC. KFs provide an accurate and computationally inexpensive solution, but require
an accurate battery model for their successful implementation [3]. A linear KF provides
an optimal solution to the linear discrete estimation problem. However, due to the battery’s
nonlinear nature, only modified versions of the KF have been used for SOC estimation.
Some KF variations include the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF), among others [8,9]. Between these two strategies, the EKF is known to intro-
duce instability in the estimation process due to the linearization process embedded in the
algorithm [10]. On the other hand, the UKF has proven to be a more robust strategy [11,12].
Another robust strategy, known as robust fixed-lag smoothing, attempts to overcome
model uncertainties or mismatch by utilizing the least favorable model over a finite time
horizon [13]. This method is characterized by a dynamic game between two players: one
player selects the least favorable model in a prescribed ambiguity set, while the other
player selects the fixed-lag smoother, minimizing the smoothing error with respect to the
least favorable model. Efficient implementation of the robust fixed-lag smoother may
reduce computational burdens and avoid numerical instabilities, which may be helpful for
battery applications.

Electrochemical and equivalent circuit models (ECMs) are among the most popu-
lar models for batteries. Electrochemical models are based on the underlying physics of
the battery using 10–14 partial differential equations, resulting in highly complex and
computationally demanding models, but providing high-accuracy information about
the battery’s state. These types of models are often used for laboratory and battery
development research [14–17].

On the other hand, ECMs represent the battery as an electric circuit using voltage
sources, resistors, and capacitors. These types of models require low computational power
and have low complexity, but are less accurate and yield little information about the
battery [18]. Nevertheless, these traits allow for their implementation online.

Some ECMs studied include Rint model, Thevenin model, PNGV model, and Dual
Polarity (DP) model [19]. These models can be differentiated by the number of Resistor–
Capacitor (RC) branches in the circuit. Adding more RC branches allows the capture of
higher-order nonlinearities, resulting in a more accurate model [19]. However, adding
more RC branches increases the complexity and computational time of the algorithms.

In summary, a battery monitoring system (BMS) should be implemented to ensure safe
operation of LiB. The BMS’s main function is the accurate estimation of the battery’s current
SOC and operating temperature. In addition, the BMS can also track other parameters
such as the battery’s state of health (SOH); SOH is a measurement of the current health
of the battery and is sometimes calculated based on its available maximum capacity [20].
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As the battery is subject to aggressive current profiles, excessive cycling, or regular use,
its maximum battery capacity degrades over time [20]. Moreover, accurate estimation of
the battery’s SOH can significantly increase the accuracy of the ampere-hour counting
method, since it is dependent on the battery’s capacity [20]. Lastly, accurate tracking of the
battery’s SOH allows for an effective planned retirement of the battery, which ensures that
the system continues to operate optimally.

A battery is referred to as due for retirement once its SOH is at 80%, or in other
words, when the battery’s maximum available capacity is at 80% or less of its designed
capacity [20]. Battery retirement can be presented as a fault diagnosis problem, where
a SOH value of 80% or lower signals a fault in the battery [21]. A recent paper presented
a degradation empirical model-free battery end-of-life prediction framework [22]. This
method utilized the KF and Gaussian process regression. It is important to note that the
SOH should be rapidly tracked and updated for improved performance and reliability. The
authors in [23] introduced a fast capacity estimation method as well as a fast accelerated
degradation fault diagnosis strategy for SOH estimation. This article offers insights into
the importance of tracking micro-health parameters in batteries, which directly correspond
to the overall SOH of the battery or set of batteries.

The multiple model (MM) strategy has been used to detect faults in batteries [24]. In the
MM strategy, several models representing different behaviors of the system are generated
to make the algorithm resilient against uncertainty [25]. Moreover, [25] presented an
interacting multiple model (IMM) strategy where the IMM was combined with the EKF to
accurately estimate the SOC of a LiB. The IMM was given allowed two different variations
of noise in the battery model to account for the different degrees of parameter shift during
the estimation process. Lastly, in [26], a multiple model adaptive estimation (MMAE)
technique was used for fault diagnosis. The proposed strategy made use of EIS data and
EKFs to generate residual signals that were fed into an MMAE block to detect a fault in
the battery.

This paper focuses on the implementation of a MM strategy, i.e., the IMM strategy,
to estimate the battery’s capacity degradation while accurately estimating the SOC of
a battery under cycling conditions [27]. This is a unique contribution to the field of battery
monitoring, particularly when utilizing the relatively new sliding innovation filter (SIF).
The experimental dataset was partitioned into sections representing a 100% SOH, 75%
SOH, 50% SOH, 25% SOH, and 0% SOH, where each section can be identified as a mode to
be used within the IMM algorithm. The motivation behind this partition is that the IMM
would yield the best matching mode, thus identifying the current SOH of the battery.

The main contribution of this paper is the development of the SIF in conjunction with
the IMM (the so-called SIF-IMM) for determining the SOC and SOH of a battery. The
IMM algorithm is used for SOH estimation by partitioning the experimental dataset into
several SOH modes. This strategy has not been presented in the literature. In addition to
introducing this method, the paper compares the performances of SIF-IMM and KF-IMM
in estimating SOH.

The remainder of the paper is structured as follows: Section 2 presents the battery
and parameter models. Section 3 details the experimental data and estimation algorithms.
Section 4 covers the artificial measurements. Section 5 describes the model parameter
identification results. Section 6 presents the experimental setup and details the results of
the proposed strategy. Section 7 presents the concluding arguments of the work.

2. Battery Models

This section presents the battery model used for the experiment.

Dual Polarity Model

The DP model is an ECM composed of a voltage source, a resistor, and two RC-
branches. These elements represent the battery’s output voltage, internal resistance, and
short-term and long-term transient behaviors, respectively [16]. The battery’s transient
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behaviors are most noticeable at the end of a discharge charge, once the current is cut
off. It is evident that there is a quick rise in voltage followed by a slower rise in voltage.
These two phenomena have been attributed to the battery’s concentration polarization
and electrochemical polarization, respectively. In the literature, the DP model has been
shown to capture these behaviors by implementing a two RC-branch model [16]. The DP
model was selected due to its high accuracy and ability to capture more nonlinearities while
remaining computationally efficient. Figure 1 depicts the circuit diagram of the DP model.
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Figure 1. DP model circuit architecture [16].

The circuit can be analyzed by breaking it down into three parts: OCV, resistance,
and capacitance. OCV represents the open circuit voltage of the battery, Ro represents the
internal resistance of the battery, and Rpa and Rpc represent the electrochemical polarization
resistance and concentration polarization resistance, respectively. Lastly, Cpa and Cpc
characterize the transient response during the transfer of power to/from the battery during
the electrochemical and concentration polarization [16].

Lastly, the system’s state space representation is described by the following equations:

[
Upa, k+1
Upc, k+1

]
=

e
− ∆t

RpaCpa 0

0 e
− ∆t

RpcCpc

[Upa, k
Upc, k

]
+

Rpa

(
1 − e

− ∆t
RpaCpa

)
Rpc

(
1 − e

− ∆t
RpcCpc

)
IL, (1)

UL, k+1 = Uocv(SOCk+1)− Upa,k+1 − Upc,k+1 − IL,kR0. (2)

3. Experimental Data and Estimation Algorithms

This section presents the selected experimental data and the estimation algorithms
used for the experiments.

3.1. B005 DATASET

The B005 dataset is part of several datasets released by the Prognostic Center of
Excellence (PCoE) and published by the Prognostic Data Repository for the advancement
of prognostic algorithms [28]. This dataset provides cycling data of a 2 Ah battery up to
a capacity of ~70%. The cycling data includes time, current, voltage, and temperature
measurements for each cycle [28]. The B005 dataset was selected to test the proposed
strategy as it provides data for each cycle. If the impedance data is counted, there are
615 cycles in total in this dataset. In this study, this dataset provides 340 discharge and
charge cycles. The battery has an initial capacity of 1.856 Ah and is cycled to 1.303 Ah.
Finally, the data was resampled from 3 s to 0.6 s to allow for improved algorithm adherence.

Figure 2 illustrates the battery capacity degradation over the 615 cycles.
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3.2. Ampere-Hour Counting

This method is the most popular for estimating SOC, where the SOC is estimated
based on an initial value, i.e., SOC0, and this value is decreased/increased depending on
the demanded/supplied current. SOC estimated using this method is given by [3]:

SOC = SOC0 −
1

Cn

∫ t

t0

I dτ, (3)

where SOCo is the initial SOC, Cn is the nominal capacity of the battery, and I is the
discharge current.

3.3. Kalman Filter

The Kalman filter (KF) yields the optimal solution by minimizing the state estima-
tion error for a known linear system that is subject to white Gaussian noise [30]. The
linear system dynamics and the measurement model are described by the following
two equations [31]:

xk+1 = Axk + Buk + wk, (4)

zk+1 = Cxk+1 + vk+1, (5)

where A is the dynamics matrix, B is the input matrix, C is the output matrix, x is the
system states, z is the measurement output, u is the input, w is the system noise, and v is
the measurement noise.

The KF algorithm is summarized in two stages: prediction and update [30].

(i) Prediction Stage:
x̂k+1|k = Ax̂k|k + Buk (6)

Pk+1|k = APk|k AT + Q (7)

w ∼ N(0, Q) (8)

v ∼ N(0, R) (9)

(ii) Update Stage:
Kk+1 = Pk+1|kCT

[
CPk+1|kCT + R

]−1
(10)

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk+1 − Cx̂k+1|k

)
(11)

Pk+1|k+1 = [I − Kk+1C]Pk+1|k(I − Kk+1C)T + Kk+1RKT
k+1 (12)

where Q and R are the system and measurement noise covariance matrices, respectively.



Energies 2024, 17, 536 6 of 22

3.4. Sliding Innovation Filter

A recently proposed estimation strategy is the novel sliding innovation filter (SIF). The
SIF was formulated based on a predictor–corrector estimation method [32]. Like the KF, the
SIF first makes predictions of the state estimates and state error covariances using values
from previous time steps, and then updates the predictions based on the measurements
and a correction term referred to as the SIF gain [32].

The main difference between the SIF and KF algorithms is how the gain was con-
structed. The SIF gain was built using the measurement matrix, the innovation, and
a sliding boundary layer term [32]. On the other hand, the KF makes use of the state error
covariance. In other words, the SIF makes use of the gain to drive the state estimates
within the defined boundary layer and forces the state estimates to switch about the true
trajectory [32]. The following equations describe the SIF algorithm [32].

(i) Update Stage:
Kk+1 = C+sat

(∣∣∣∼z k+1|k

∣∣∣/δ
)

x̂k+1|k+1 (13)

x̂k+1|k+1 = x̂k+1|k + Kk+1
∼
z k+1|kPk+1|k+1 (14)

Pk+1|k+1 = (I − Kk+1Ck+1)Pk+1|k(I − Kk+1Ck+1)
T + Kk+1 R KT

k+1 (15)

Note that C+ refers to the pseudoinverse of C, sat refers to the diagonal of the satura-
tion term (value between −1 and +1), and δ is the sliding boundary layer width.

3.5. Interacting Multiple Model (IMM)

The IMM method is most useful for systems with more than one operating mode.
The IMM algorithm utilizes a number of models and computes the likelihood values for
each model based on the state estimates and the corresponding state error covariance. The
likelihood value is also based on the innovation (or measurement error) and provides an
indication of how similar the actual system’s behavior is compared to the filter model.
These likelihood values are then used to determine the operating mode [33]. Note that the
IMM is essentially a set of filters that run in parallel, with each filter utilizing a different
dynamic system and/or measurement model. The IMM algorithm can be described in
a set of five stages. These five stages are presented below [33].

(i) Calculation of the mixing probabilities µi|j,k|k:

µi|j,k|k =
1
cj

pijµi,k (16)

cj =
r

∑
i=1

pijµi,k (17)

where µi|j,k|k refers to the mixing probabilities between modes i and j at time k, pij refers
to the mixing parameter (predefined value), and µi,k refers to the mode probability.

(ii) Mixing Stage:
x̂0j,k|k =

r

∑
i=1

x̂i,k|kµi|j,k|k (18)

P0j,k|k =
r

∑
i=1

µi|j,k|k

{
Pi,k|k +

(
x̂i,k|k − x̂0j, k|k

)(
x̂i,k|k − x̂0j, k|k

)T
}

(19)

where x̂0j,k|k and P0j,k|k are the state estimates and state error covariances used as
initial conditions for the filters (KF or SIF).

(iii) Mode-Matched Fitlering:

Λj,k+1 = N
(

zk+1; ẑj,k+1|k, Sj,k+1

)
(20)
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Λj,k+1 =
1√∣∣∣2πSj,k+1

∣∣∣
Abs

exp

(
− 1

2 eT
j,z,k+1ej,z,k+1|k

Sj,k+1

)
(21)

where Λj,k+1 refers to the likelihood value generated based on the measurement,
estimate measurement (from the corresponding filter), and the innovation covariance
matrix (from the corresponding filter). The likelihood value is then used to update
the mode probability (described in the next stage).

(iv) Mode Probability Update:

µj,k =
1
c

Λj,k+1

r

∑
i=1

pijµi,k (22)

c =
r

∑
j=1

Λj,k+1

r

∑
i=1

pijµi,k (23)

(v) State Estimate and Covariance Combination

x̂k+1|k+1 =
r

∑
j=1

µj,k+1 x̂j,k+1|k+1 (24)

Pk+1|k+1 =
r

∑
j=1

µj,k+1

{
Pj,k+1|k+1 +

(
x̂j,k+1|k+1 − x̂ k+1|k+1

)(
x̂j,k+1|k+1 − x̂ k+1|k+1

)T
}

(25)

Note that for this final stage (v), the overall state estimates and state error covariance
are used outside of the IMM process, and are used for output purposes only.

In the proposed strategy, the IMM is used to track the correct battery capacity, thus
estimating the SOH of the battery. Meanwhile, the KF and SIF are used to estimate the SOC
of the battery during cycling. The integration of these algorithms with the IMM resulted in
strategies referred to as KF-IMM and SIF-IMM. The figure shown in Appendix A helps to
further illustrate the overall architecture of the proposed strategies.

4. Artificial Measurements

As mentioned in Section 3.4, the SIF gain was derived based on the measurement ma-
trix, meaning that it is dependent on the availability of individual measurements for each
state estimate [32]. When individual measurements for each state are not available, which
is often the case for LiBs and most types of batteries, generating artificial measurements
is necessary to ensure that the SIF is effective [32]. The SIF strategy relies on the measure-
ments in order to formulate good estimates of the states through the use of a full identity
measurement matrix. This is one of the main disadvantages of this method. This section
presents how artificial measurements were generated for the battery and parameter model.

4.1. State Measurement Equations

LiBs only offer measurements of current, voltage, and temperature. To generate
artificial measurements for each state of the battery model, the model equations were
rearranged as followed:

Ûpa,k+1 = OCV(SOCk)− UL,k+1 − R0,k Is,k − Upc,k (26)

Ûpc,k+1 = OCV(SOC)− UL,k+1 − Ro,k Is,k − Upa,k (27)

ŜOCk+1 = OCV−1
(

UL,k+1 + Upa,k + Upc,k + Ro,k Is,k

)
(28)

where Ûpa, Ûpc, and ŜOC are the measurements for each state of the battery model, and
OCV−1(.) is the inverse function of OCV(SOC) found in (27).
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4.2. Parameter Measurement Equations

To generate artificial measurements for the parameters of interest, Battcap and R0,
Equations (2) and (3) were rearranged as follows:

R̂o =
1

Is,k

[
OCV(SOC)− UL − Upa − Upc

]
(29)

B̂attCap =
∆t × Is,k

abs(3.6 × ∆SOCk)
(30)

where R̂0 and B̂attcap represent the artificial measurements for R0 and Battcap.

5. Model Parameter Identification

As mentioned before, the IMM makes use of several models. These models were
identified by breaking the B005 dataset into four regions, resulting in five different modes
to be identified corresponding to 100%, 75%, 50%, 25%, and 0% SOH. Furthermore, the
B005 dataset contains 340 discharge and charge cycles; however, only the discharge cy-
cles provide battery capacity measurements. Since this paper focuses on battery capac-
ity estimation, the models were derived using discharge cycles. To derive each battery
model, the following parameters needed to be identified (for each of the selected cycles):
OCV(SOC), R0, Rpa, Cpa, Rpc, Cpc. This section presents the model’s parameter identifi-
cation results using the nonlinear least squares (NLLS) algorithm for each of the modes
selected: 100%, 75%, 50%, 25%, and 0% SOH.

5.1. Least Squares Setup

To use the NNLS algorithm, a relationship between the measurable data and the
parameters must be established. Making use of the battery model, the following relationship
can be derived [29]:

OCV(SOC) = α0 + α1SOC + α2SOC2 + α3SOC3 + α4SOC4 + α5SOC5 (31)

Upa = ILRpa

(
1 − e

− t
RpaCpa

)
(32)

Upc = ILRpc

(
1 − e

− t
RpcCpc

)
(33)

UL = OCV(SOC)− ILR0 − ILRpa

(
1 − e

− t
RpaCpa

)
− ILRpc

(
1 − e

− t
RpcCpc

)
(34)

θ =

[
α0, α1, α2, α3, α4, α5, R0, Rpa,

1
RpaCpa

, Rpc,
1

RpcCpc

]
(35)

where t represents the time vector, OCV(SOC) is the OCV curve approximated to a 5th
order polynomial, and θ represents the parameter vector, i.e., a vector consisting of all the
parameters. Here, the capacitance values are estimated using a fraction to account for their
higher magnitude [29,34].

Lastly, MATLAB®’s R2023a ‘lsqcurvefit’ function was used to perform the parameter
estimation process. This function makes use of boundaries and initial conditions which are
detailed in Table 1.

Table 1. NLLS boundaries and initial guess.

Parameters R0 Rpa Cpa Rpc Cpc

Unit Ω Ω 1/(ΩF) Ω 1/(ΩF)
LB 0.001 0.01 0.0001 0.01 0.01
UB 0.500 0.500 0.002 0.500 0.100

Guess 0.020 0.100 0.001 0.100 0.010
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5.2. Least Squares Results
5.2.1. The 100% SOH Model

As indicated before, 100% SOH represents a battery with an available capacity equal
to its designed capacity. Table 2 shows the results of the parameter identification process
for the 100% SOH mode. The terminal voltage’s RMSE was 0.063 V. Figure 3 depicts
the terminal voltage’s error plot between the model and the measured terminal voltage.
Finally, Figure 4 illustrates the generated model’s terminal voltage plot vs. the measured
terminal voltage.

Table 2. NLLS parameter estimation results for 100% SOH model.

RC Parameters Value OCV (SOC) Value

R0 0.0700 α1 0.6996
Rpa 0.1070 α2 17.4679
Cpa 1329.29 α3 −62.4061
Rpc 0.0401 α4 76.7998
Cpc 19325 α5 −31.7285
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5.2.2. The 75% SOH Model

The 75% SOH of the battery was determined to occur when the battery reaches
a capacity of 1.83 Ah which, based on the data, happens at the ~98th cycle. Table 3
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illustrates the results of the parameter identification process for the 75% SOH mode. The
terminal voltage’s RMSE was 0.032 V. Figure 5 depicts the terminal voltage’s error plot
between the model and the measured terminal voltage. Figure 6 shows the generated
model’s terminal voltage plot vs. the measured terminal voltage.

Table 3. NLLS parameter estimation results for 75% SOH model.

RC Parameters Value OCV (SOC) Value

R0 0.07 α1 5.8933
Rpa 0.10 α2 −23.1629
Cpa 1428.60 α3 42.4898
Rpc 0.04 α4 −35.0472
Cpc 53333 α5 10.7280
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5.2.3. The 50% SOH Model

The 50% SOH of the battery was determined to occur when the battery reaches
a capacity of 1.65 Ah which, based on the data, happens at the ~225th cycle. Table 4 il-
lustrates the results of the parameter identification process for the 50% SOH mode. The
terminal voltage’s RMSE was 0.032 V. Figure 7 shows the terminal voltage’s error plot be-
tween the model and the measured terminal voltage, and Figure 8 illustrates the generated
model’s terminal voltage plot vs. the measured terminal voltage.
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Table 4. NLLS parameter estimation results for 50% SOH model.

RC Parameters Value OCV (SOC) Value

R0 0.08 α1 5.0727
Rpa 0.137 α2 −17.8196
Cpa 428.730 α3 29.3507
Rpc 0.078 α4 −21.1457
Cpc 9500.530 α5 5.3372
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5.2.4. The 25% SOH Model

The 25% SOH of the battery was determined to occur when the battery reaches
a capacity of 1.48 Ah which, based on the data, happens at the ~375th cycle. Table 5
illustrates the results of the parameter identification process for the 25% SOH mode. The
terminal voltage’s RMSE was 0.034 V. The terminal voltage’s error plot between the model
and the measured terminal voltage is depicted in Figure 9. The generated model’s terminal
voltage plot vs. the measured terminal voltage in shown in Figure 10.
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Table 5. NLLS parameter estimation results for 25% SOH model.

RC Parameters Value OCV (SOC) Value

R0 0.08 α1 3.1583
Rpa 0.19 α2 −5.2627
Cpa 401.82 α3 −2.0509
Rpc 0.0277 α4 12.8807
Cpc 86,473.20 α5 −7.9551
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5.2.5. The 0% SOH Model

The 0% SOH of the battery occurs when the battery reaches a capacity of 1.30 Ah
which, based on the data, happens at the ~588th cycle. Table 6 illustrates the results of
the parameter identification process for the 0% SOH mode. The terminal voltage’s RMSE
was 0.042 V. Figure 11 shows the terminal voltage’s error plot between the model and the
measured terminal voltage. The generated model’s terminal voltage plot vs. the measured
terminal voltage is illustrated in Figure 12.
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Table 6. NLLS parameter estimation results for 0% SOH model.

RC Parameters Value OCV (SOC) Value

R0 0.080 α1 2.4549
Rpa 0.202 α2 −2.8347
Cpa 401.510 α3 −5.1815
Rpc 0.001 α4 14.5322
Cpc 86,963.20 α5 −8.2310
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6. Simulation Setup and Results
6.1. Simulation Setup
Mode Matching

In this experiment, the IMM was used for tracking the battery capacity of the LiB. The
IMM was combined with the KF and SIF, resulting in the KF-IMM and SIF-IMM algorithms.
The initial mode probabilities were set to 95% normal and 5% faulty. The IMM mixing

parameter was defined as pij =

[
0.95 0.05
0.05 0.95

]
. Initial estimates were set to zero.

The IMM has access to five different battery models representing different stages of
the SOH of the battery. As the battery ages, the IMM selects the mode that best matches
the battery’s current state and by doing so, the battery’s current SOH can be determined.
Table 7 summarizes the initial conditions used for this experiment.



Energies 2024, 17, 536 14 of 22

Table 7. Mode matching experiment: initial conditions.

Variables Values

Vpa 0
Vpc 0

SOC 100%
R0 0.07

BattCap 2
Q100,75,25%SOH diag(5 × 10−9, 5 × 10−9, 1 × 10−8)

Q50% SOH diag(5 × 10−9, 5 × 10−9, 1 × 10−7)
Q0% SOH diag(5 × 10−8, 5 × 10−8, 1 × 10−6)

R100−0% SOH diag(5 × 10−2, 5 × 10−2, 5 × 10−2)
Delta100% SOH diag(5 × 101, 5 × 101, 1 × 102)

Delta75,25,0% SOH diag(1 × 101, 1 × 101, 1 × 102)
Delta50% SOH diag(9, 9, 1 × 102)

p 0.9999
µ 0.2

6.2. Simulation Results

This section presents the results obtained from the proposed strategy.

Mode Matching

Five different modes were identified in the B005 dataset and served as the database for
the IMM algorithm. At the end of each time step of each cycle, the parameter values of each
mode were multiplied by the probability of each mode and combined to determine the esti-
mated parameter values of the proposed IMM strategy. The following cycles were chosen
to demonstrate the results of the proposed strategy at each stage of SOH: 106, 278, 441, 596.
These cycles correspond to 75% SOH, 50% SOH, 25% SOH, and 0% SOH, respectively.

At cycle 106, the battery’s measured capacity is ~1.81 Ah. Therefore, the KF-IMM and
SIF-IMM should select, for the most part, the 75% SOH mode to better match the current
state of the battery. Figure 13 illustrates the estimation results of the KF-IMM and SIF-IMM.
Part (a) shows the terminal voltage estimation. Part (b) depicts the SOC estimation and
part (c) illustrates the battery capacity estimation at the 106th cycle.

The terminal voltage’s RMSE values for the KF-IMM and SIF-IMM were 0.0249 and 0.0255,
respectively; both of these values show strong accuracy. Furthermore, both SOC estimation
results showed a good profile. Moreover, the estimated battery capacity for both algorithms
remained, for the most part, at ~1.83 Ah.

Lastly, Figure 14 illustrates the mode probability of each algorithm at cycle 106.
Both algorithms switch between various modes to account for the sudden drop in voltage
at the beginning of the discharge process. This switching can also be observed when
the current is cut off, and the battery starts to recover after a period of ~53 min. Most
importantly, it is evident that both filters select the 75% SOH mode as the better match,
which reflects the measured battery capacity in the B005 dataset.

At cycle 278, the battery’s measured capacity is ~1.56 Ah. Therefore, the KF-IMM and
SIF-IMM should select, for the most part, the 50% SOH mode. Figure 15 illustrates the
terminal voltage, SOC, and battery capacity estimation results of the KF-IMM and SIF-IMM
at the 278th cycle.

The terminal voltage’s RMSE values for the KF-IMM and SIF-IMM were 0.0377 and
0.0257, respectively; both values suggest high accuracy. Furthermore, both SOC estimation
results showed a good constant discharge profile, with the KF-IMM fully discharging the
battery. In terms of battery capacity estimates, the KF-IMM had a mean value of 1.56 Ah,
which matches the measured value from the dataset. The SIF-IMM has a higher mean
value at 1.65 Ah. This higher value in battery capacity enforces the discrepancy in the SOC
discharge profiles between both algorithms.



Energies 2024, 17, 536 15 of 22
Energies 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

 
(a) 

  
(b) (c) 

Figure 13. (a) Measured terminal voltage vs. KF-IMM and SIF-IMM estimation at cycle 106. (b) KF-
IMM and SIF-IMM SOC estimation at cycle 106. (c) KF-IMM and SIF-IMM battery capacity estima-
tion at cycle 106. 

(a) (b) 

Figure 14. (a) KF-IMM mode probability at cycle 106. (b) SIF-IMM mode probability at cycle 106. 

At cycle 278, the battery’s measured capacity is ~1.56 Ah. Therefore, the KF-IMM and 
SIF-IMM should select, for the most part, the 50% SOH mode. Figure 15 illustrates the 

Figure 13. (a) Measured terminal voltage vs. KF-IMM and SIF-IMM estimation at cycle 106.
(b) KF-IMM and SIF-IMM SOC estimation at cycle 106. (c) KF-IMM and SIF-IMM battery capacity
estimation at cycle 106.

Energies 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

 
(a) 

  
(b) (c) 

Figure 13. (a) Measured terminal voltage vs. KF-IMM and SIF-IMM estimation at cycle 106. (b) KF-
IMM and SIF-IMM SOC estimation at cycle 106. (c) KF-IMM and SIF-IMM battery capacity estima-
tion at cycle 106. 

(a) (b) 

Figure 14. (a) KF-IMM mode probability at cycle 106. (b) SIF-IMM mode probability at cycle 106. 

At cycle 278, the battery’s measured capacity is ~1.56 Ah. Therefore, the KF-IMM and 
SIF-IMM should select, for the most part, the 50% SOH mode. Figure 15 illustrates the 

Figure 14. (a) KF-IMM mode probability at cycle 106. (b) SIF-IMM mode probability at cycle 106.



Energies 2024, 17, 536 16 of 22

Energies 2024, 16, x FOR PEER REVIEW 17 of 25 
 

 

terminal voltage, SOC, and battery capacity estimation results of the KF-IMM and SIF-
IMM at the 278th cycle. 

The terminal voltage’s RMSE values for the KF-IMM and SIF-IMM were 0.0377 and 
0.0257, respectively; both values suggest high accuracy. Furthermore, both SOC estima-
tion results showed a good constant discharge profile, with the KF-IMM fully discharging 
the battery. In terms of battery capacity estimates, the KF-IMM had a mean value of 1.56 
Ah, which matches the measured value from the dataset. The SIF-IMM has a higher mean 
value at 1.65 Ah. This higher value in battery capacity enforces the discrepancy in the SOC 
discharge profiles between both algorithms. 

Figure 16 demonstrates the mode probability of each algorithm at cycle 278. In part 
(a), the KF-IMM selects the 25% SOH model as the predominant mode for most of the 
cycle. Looking at the same window of time in part (b) of Figure 15, the lower battery ca-
pacity allows for a faster discharge rate, which is more advantageous towards the end of 
the cycle when compared to the SIF-IMM results. However, the sudden jump in voltage 
near the 40 min mark, and the selection of the 75% SOH mode afterwards, can be a conse-
quence of the selection of the 25% SOH mode. 

On the other hand, the SIF-IMM method chooses the 50% SOH mode for most of the 
cycle. This mode selection reflects a better estimate of the current SOH of the battery based 
on the measured battery capacity. 

 
(a) 

  
(b) (c) 

Figure 15. (a) Measured terminal voltage vs. KF-IMM and SIF-IMM estimation at cycle 278.
(b) KF-IMM and SIF-IMM SOC estimation at cycle 278. (c) KF-IMM and SIF-IMM battery capacity
estimation at cycle 278.

Figure 16 demonstrates the mode probability of each algorithm at cycle 278. In part
(a), the KF-IMM selects the 25% SOH model as the predominant mode for most of the cycle.
Looking at the same window of time in part (b) of Figure 15, the lower battery capacity
allows for a faster discharge rate, which is more advantageous towards the end of the cycle
when compared to the SIF-IMM results. However, the sudden jump in voltage near the
40 min mark, and the selection of the 75% SOH mode afterwards, can be a consequence of
the selection of the 25% SOH mode.

On the other hand, the SIF-IMM method chooses the 50% SOH mode for most of the
cycle. This mode selection reflects a better estimate of the current SOH of the battery based
on the measured battery capacity.

At cycle 411, the battery’s measured capacity is ~1.42 Ah. Therefore, the KF-IMM and
SIF-IMM should select, for the most part, the 25% SOH mode to match the current state of
the battery. The estimation results of the KF-IMM and SIF-IMM are shown in Figure 17.
Part (a) shows the terminal voltage results. Part (b) depicts the SOC estimation and part (c)
illustrates the battery capacity estimation at the 411th cycle.
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estimation at cycle 411.

The terminal voltage’s RMSE values for the KF-IMM and SIF-IMM were 0.0373 and 0.0239,
respectively, confirming their accuracy. In part (b), both SOC estimation curves have a good
overall profile that reflects a full discharge of the battery. Moreover, in terms of battery
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capacity, the mean value for both algorithms was ~1.51 Ah. These values are close to the
measured value of 1.42 Ah in the dataset. The corresponding mode probabilities for this
case are shown in Figure 18.
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Figure 18. (a) KF-IMM mode probability at cycle 411. (b) SIF-IMM mode probability at cycle 411.

At cycle 596, the battery’s measured capacity is ~1.3 Ah. Therefore, the KF-IMM
and SIF-IMM should select, for the most part, the 0% SOH mode. Figure 19 illustrates
the estimation results of the KF-IMM and SIF-IMM. Part (a) shows the terminal voltage
estimation. Part (b) depicts the SOC estimation and part (c) illustrates the battery capacity
estimation at the 596th cycle.
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The terminal voltage’s RMSE values for the KF-IMM and SIF-IMM were 0.0311 and 0.0251,
respectively; both values show strong accuracy. Both algorithms’ SOC curves show
a good full discharge profile. Moreover, the estimated battery capacity for both algorithms
remained, for the most part, at ~1.33 Ah.

The mode probability of each algorithm at cycle 596 is shown in Figure 20. Both
algorithms select the correct mode, which reflects the current SOH of the battery in the
B005 dataset.
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Figure 20. (a) KF-IMM mode probability at cycle 596. (b) SIF-IMM mode probability at cycle 596.

To analyze the overall estimation results of the KF-IMM and SIF-IMM, the mean
battery capacity for each cycle was generated, and the mode chosen by the IMM-selected
models was taken at the end of each cycle. Figure 21 shows the most frequently selected
mode for each cycle. Part (a) depicts the most-selected mode of the KF-IMM and part
(b) illustrates the most-selected mode of the SIF-IMM. Figure 22 depicts the mean battery
capacity of both algorithms for each cycle compared to the measured battery capacity.
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Figure 21. (a) KF-IMM’s most selected model for each cycle. (b) SIF-IMM’s most selected model for
each cycle.

From Figure 21 it is evident that neither algorithm made use of the 100% SOH model
at the beginning of the experiment. The reason is evident if one were to look at the starting
capacity of the battery, which is closer to the 75% SOH model. Based on the break points
for each identified SOH region, the algorithms should ideally switch between modes after
cycles 98, 225, 375, and 588. Since the battery’s capacity starts at 75% SOH, the first switch
should occur after the 225th cycle. However, the KF-IMM switches to the 50% SOH model
earlier than the SIF-IMM. This early jump reinforces the results from Figures 15 and 16.
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Furthermore, neither algorithm makes consistent use of the 50% SOH model and both
algorithms make an early jump to the 25% SOH model. Finally, both algorithms switch to
the 0% SOH model before the expected 588th cycle. Taking a holistic view on Figure 21,
both algorithms show the desired downward step trend.
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It can be seen from Figure 22 that both algorithms show a good battery capacity trend.
The battery capacity RMSE values for the KF-IMM and SIF-IMM were 0.060 and 0.065,
respectively. When compared to the difference between the healthy and retired battery
capacity values, the RMSE values correspond to an error of ~9% in determining the current
SOH of the battery. After further inspection of Figure 22, the early switches between modes
at cycles ~190 and ~440 can be justified.

7. Conclusions

This paper presented a strategy that utilizes the interacting multiple model (IMM)
algorithm integrated with the Kalman filter (KF) and sliding innovation filter (SIF) methods
for mode-matched filtering. As demonstrated by the results, the proposed strategy accu-
rately estimates the state of charge (SOC) and state of health (SOH) of a lithium-ion battery
(LiB) under cycling conditions. More specifically, the KF-based methods worked more
accurately under ‘normal’ operating conditions (e.g., when the dynamic models closely
resembled the actual operating models). However, when the SOH started to reduce or
the battery began to degrade (essentially when there was model mismatch), the SIF-based
methods yielded better estimates.

In the proposed strategy, the IMM is used to track the correct battery capacity, thus
estimating the SOH of the battery. Meanwhile, the KF and SIF are used to estimate the SOC
of the battery during cycling. The integration of these algorithms with the IMM resulted in
strategies called KF-IMM and SIF-IMM. Moreover, the proposed strategy was evaluated
using experimental data and was found to be successful in tracking the SOH of the battery.
In the future, the proposed strategy will be implemented on a real-world BMS for further
testing and verification. Lastly, this strategy has the potential to be used for predicting
battery retirement, the results of which will be explored further in future studies.
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Appendix A

In the proposed strategy, the IMM is used to track the correct battery capacity, thus
estimating the SOH of the battery. Meanwhile, the KF and SIF are used to estimate the SOC
of the battery during cycling. The integration of these algorithms with the IMM resulted in
strategies referred to as KF-IMM and SIF-IMM. The following figure helps further illustrate
the overall architecture of the proposed strategies.
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