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Abstract: Environmental pollution is becoming ubiquitous; it has a negative impact on ecosystem
diversity and worsens the quality of human life. This review discusses the possibility of applying the
plant microbial fuel cells (PMFCs) technology for concurrent processes of electricity generation and
the purification of water and soil ecosystems from organic pollutants, particularly from synthetic sur-
factants and heavy metals. The review describes PMFCs’ functioning mechanisms and highlights the
issues of PMFCs’ environmental application. Generally, this work summarizes different approaches
to PMFC development and to the potential usage of such hybrid bioelectrochemical systems for
environmental protection.
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1. Introduction

The ubiquitous environmental pollution due to various anthropogenic substances,
such as heavy metals [1], petroleum products [2], medicinal preparations [3], and pesti-
cides [4], is one of the main problems of mankind nowadays. Pollutants have a negative
impact not only on the environment but also on human life, accumulating in heterotrophic
food chains and entering the human body, which leads to various diseases of the ner-
vous system and respiratory organs, as well as genetic abnormalities while reducing life
expectancy [1]. The above-described problems are reflected in the UN Sustainable Devel-
opment Goals; according to the developed programs of the United Nations Environment
Programme (UNEP) and UN-Water, the control over the global pollution of ecosystems
and their restoration are of high priority [5].

Bioremediation, a complex of purification methods using the metabolic potential of
biological objects, is applied to purify soil and water ecosystems from pollutants. Thus, the
introduction of microorganisms into ecosystems makes it possible to dispose of various pol-
lutants by converting them to simpler safe substances. The principle of phytoremediation
is based on the binding and accumulation of pollutants in plant vacuoles [6]; it activates
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a complex metabolic pathway involving the antioxidant plant protection system [7]. Ad-
ditionally, plants and microorganisms (fungi and bacteria) interact with each other at the
root level (in the rhizosphere), showing a positive synergistic effect in the elimination of
pollutants such as heavy metals and organic compounds [8,9]. The disadvantages of the
bioremediation of soils include the low rate of toxicant biodegradation, as well as the need
for a thorough preliminary examination of the contaminated site to clarify the modes of
biotechnological work. This requires high labor and energy costs, such as the plowing and
irrigation of fields and the disposal of waste plants. Therefore, this technology is not widely
used in developing countries and is unattractive in poor countries [10].

A significant contribution to atmospheric pollution is made by heat and power stations
(hereinafter referred to as CHP) operating on traditional fuel sources (coal, oil, and gas);
their share (Figure 1) is about 60% of the global electricity generation [11]. The issue of
using renewable energy sources (RES) for electricity generation is relevant, considering
the trend programs of many developed countries towards the reduction of carbon dioxide
emissions into the atmosphere and providing access to inexpensive, reliable, sustainable,
and modern energy for all segments of the population [12]. These include solar panels,
wind generators, and biofuels [13].
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However, renewable energy sources have a number of disadvantages. Thus, the
process of their disposal is an extremely difficult task [15] since, for example, solar panels
contain elements such as As, Cd, Hg, and Pb [16], which can have a negative impact on
the ecosystem, and their burial is an extremely undesirable method of their disposal [17];
thermal and chemical methods of solar panel recycling have not been sufficiently mastered
and are not characterized by a high degree of efficiency [18,19]. Dust is released during
the mechanical processing of solar panels. It contains glass fiber, noise pollution is created,
and rare earth elements are lost. However, 80 million tons of waste from used solar panels
are expected worldwide by 2050, which will inevitably have a negative impact on the
surrounding ecosystem.

The use of biofuel cells (BFCs) is an effective alternative in this context, as electricity
generation is carried out in the process of the biocatalytic oxidation of various substrates.
Despite the low power generated in the BFC system and, as a result, a long payback period,
the research in the field of biofuel elements is relevant due to humanity’s awareness of
global environmental problems, the need to solve which reduces the role of economic
levers in the development of the world community. PubMed (NCBI) has pointed to an
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exponential growth of publications on the subject of a “biofuel cell” in the first decade
of our century, and this interest persisted throughout the following years. It should be
noted that biofuel elements based on microorganisms (microbial fuel cells, MFCs) are
a promising technology to produce bioelectricity since they simultaneously solve the
problems of contamination with anthropogenic organic waste, which can be used by
microorganisms as a source of carbon and energy. A continuous and steady supply of
organic substrates is required to ensure the uninterrupted generation of electricity in an
MFC, which cannot always be implemented in practice. A fairly new technology of plant
microbial fuel cells (hereinafter referred to as PMFCs) eliminates this disadvantage of MFCs
largely. The electricity generation is carried out via the oxidation of organic substances
using microorganisms that are both synthesized in plants during photosynthesis under the
action of sunlight energy and produced into the environment (root exudates, root deposits,
and rhizo-deposition) and come from outside, for example, from wastewater or industrial
waste. Such hybrid energy technology can be used in phytomonitoring the state of plant
crops, a local power supply, charging portable devices [20], powering various low-power
sensors to monitor ambient temperatures and humidity, power camera traps in remote
areas [21], and serve as a biosensor for monitoring plant health in smart greenhouses [22]
(Figure 2). It should be noted that the PMFC technology, using macrophytes, reduces the
level of greenhouse gases (N2O and CH4) by 5.9–32.4% in terms of CO2 [23].
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The review [24] summarizes the evolution of PMFC technology and discusses the
basic principles associated with it, factors affecting its effectiveness, application areas,
prospects, and disadvantages. The review [25] describes in detail such features of a PMFC
as its basis, the function of plants and their rhyzo-deposition, electrical characteristics,
internal resistance, substrate kinetics, redox reactions of the root medium, and electron
transport mechanisms. This work [25] also depicts the used microbial communities capable
of electrogenesis, and it presents the most common PMFC structures and a comparative
analysis of their characteristics. The issues of PMFC technology usage for wireless energy
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sensing, farming, and agricultural applications of the next generation are highlighted at the
end of the review. However, the existing reviews pay little attention to PMFC technology
usage to solve the environmental problem of anthropogenic pollutant utilization from
water and soil ecosystems along with electricity generation.

This review briefly describes the principle of the PMFC technology’s functioning and
the influence of environmental factors on the PMFC characteristics; our emphasis is on the
environmental aspect of the PMFC technology’s application.

2. Plant Microbial Fuel Cells: Functioning and Factors Affecting the Electrochemical
Characteristics of the SYSTEM

The generation of electricity depends on many factors, such as the types of exo-
electrogenic microorganisms used, the material of the electrodes and their modification,
environmental factors, and the plants used. Understanding the functioning principles and
the optimal choice of microorganisms and plants makes it possible to increase the efficiency
of electricity generation in a PMFC.

2.1. The Principle of PMFC Operation

The principle of PMFC operation is based on two interrelated processes: the synthesis
of rhizo-deposits in plants and their use as a substrate by microorganisms to generate
electricity (Figure 3). Complex interactions in heterogeneous, polydisperse, multifactorial
natural systems were previously described as a computer model of the chemical and
microbiological production processes of plant biomass, soil microorganisms, and nutrients
in the rhizosphere [26].
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Photosynthesis regulates the vital activity of plants, during which plants fix carbon
dioxide from the atmosphere and form carbohydrates, organic acids and amino acids,
secrets—polysaccharide mucus (mucigel), lysates—materials of dead cells, gases—ethylene
ethylene and carbon dioxide under the influence of sunlight energy [27]. Electrogenic mi-
croorganisms use deposits as substrates for growth and development, as well as electricity
generation as a result of ongoing oxidative processes involving the enzymatic systems
of microorganisms. As a result, carbon dioxide is synthesized, and free charge carriers
(protons and electrons) are formed. Charges need to be separated to convert chemical
energy into electrical energy. The process is carried out by moving the generated electrons
at the anode to the cathode through an external circuit; protons migrate through a nutrient
matrix or medium from the substrate to the cathode due to the presence of a potential gradi-
ent [18], where molecular oxygen or another catalyst and water molecules are formed [28].
However, it is likely that hydroperoxyl radicals (HO2) are formed on the cathode during
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the reduction process as an intermediate product [29]. Microorganisms, in turn, can enter
symbiosis with plant roots, forming protective biofilms and producing antibiotics to protect
plants from pathogens [30].

When choosing microorganisms, it is necessary to consider their ability to transfer
electrons to the anode (Figure 4), which can be caused by various mechanisms: direct
electron transfer through cytochromes and electron-conducting molecular saws (nanowires)
with the help of electroactive compounds (mediator transfer). General information about
this various mechanisms is summarized in recent reviews and articles [31–37].
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The focus is on natural ecosystems when choosing microorganisms for a PMFC system.
Relatedly, bacteria inhabit the environment in the rhizosphere; they are anaerobes that
produce protons and carbon dioxide and can transfer electrons to the anode during the oxi-
dation of organic compounds. Table 1 presents a description of some rhizospheric bacteria.

Table 1. Rhizospheric microorganisms capable of direct extracellular electron transfer.

Microorganism Description Consumable Substrates References

Desulfobulbus sp. Obligate anaerobes capable of oxidizing sulfur to
sulfate using an anode as an electron acceptor.

Acetate, propionate, butyrate,
lactate, and pyruvate [38–40]

Geobacter sp.

Anaerobic metal-reducing bacteria. Fe (III) and Mn
(IV) are used as electron acceptors. They can

transmit electrons using pili—filamentous
protein formations.

Benzoate, p-cresol,
trichloroethane, benzene,
lactate, acetate, and starch

[41]

Geothrix fermentans

Anaerobic metal reducers. Fe (III) is used as an
electron acceptor. They are capable of forming

extracellular mediators of the quinone series and
riboflavin, which makes it possible to transfer

electrons to the electrode more efficiently.

Acetate, propionate, lactate,
and fumarate [42,43]

Rhodoferax ferrireducens

Facultative metal-reducing anaerobe with a wide
temperature range of growth. Fe (III), Mn (IV),
nitrate, fumarate, and oxygen can be used as

electron acceptors.

Acetate, lactate, propionate,
pyruvate, malate, succinate,

and benzoate
[44]

Shewanella sp.

Facultative anaerobic bacteria using Fe (III) and
Mp (IV) as electron acceptors are capable of

producing flavins that act as electronic
transfer mediators.

Lactate and formate [45,46]

Clostridium butyricum
C. beijerinckii

Obligate anaerobes can use an anode as an
electron acceptor. Hydrogen, which is able to
oxidize at the anode, is produced during the

enzymatic fermentation of substrates.

Glucose, starch, sucrose,
and lactate [47]
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The basic property of microorganisms that allows their use in bioelectric systems [48–50]
is their ability to produce electroactive compounds, as well as to use an anode as an electron
acceptor. Moreover, the use of inorganic anions as an electron acceptor makes it possible to
reduce the salinity of treated wastewater [51,52], for example, when using sulfate-reducing
bacteria that are capable of the assimilatory reduction of sulfates to sulfides [53].

PGPR (plant-growth-promoting rhizobacteria), which promote plant growth, play an
important role in maintaining the vital activity of plants and are used for the development of
PMFC. Such microorganisms include, for example, bacteria of the species Bacillus thuringien-
sis, which are involved in nitrogen fixation processes, sulfur and phosphorus exchanges,
and the synthesis of plant growth stimulants [54]. Bacteria of the genus Pseudomonas sp.
can be also considered as a PGPR-group bacteria [55]. Some species of Pseudomonas sp.
are capable of surfactant destruction [56,57]; they can form biofilms on the surface of an
anode and secrete compounds of the phenase-new series [58]. These compounds play an
important role both in protecting plants from pathogen infection [59] and stimulating the
growth of shoots [60]. Moreover, phenazines act as mediators of the electronic transport
between bacteria and an electrode [61]. Bacteria of the family Ruminococcaceae spp. are not
electroactive but are capable of utilizing cellulose (35–50% of the dry plant weight) while
producing organic substrates, which are additionally used by electroactive microorganisms
as electron donors [62]. Therefore, the use of PGPR-group bacteria can be used in PMFC
systems to stimulate plant growth and protection, which theoretically can have a beneficial
effect on electricity generation.

2.2. Electrodes in PMFC

It is important to choose the right electrode material for the efficient generation of
electrical energy when creating PMFCs along with biological components [63]. Generally,
the electrode material should have high electrical conductivity, electrochemical stability,
porosity, and biocompatibility [64]. Metals (zinc [65], stainless steel [66], and platinum [67])
and carbon materials [68] are usually used as electrodes in bioelectrochemical systems.
Despite the high electrical conductivity of metals in comparison with carbon materials, the
use of stainless steel, for example, increases the period of microorganism adaptation on the
metal anode surface [68]. It causes a decrease in current generation at the initial stage of
the PMFC operation, which is explained by the lower biocompatibility of stainless steel to
microorganisms. Moreover, metals are subject to corrosion processes [66] and have a high
cost, thus limiting their use in PMFC development.

The geometric area of the electrodes affects the output of electricity—the larger the
area, the more contact there is for electroactive microorganisms, which leads to an increase
in current density [69]. In turn, graphite electrodes (felt/fiber) have a developed surface
that promotes the adhesion of microorganisms and the sorption of organic compounds.
This material is not subject to corrosion; therefore, it is promising for the creation of
PMFCs [70]. The addition of granular graphite or activated carbon to the surface of the
anode improves the adsorption of organic compounds and increases the specific surface
area for colonization via bacteria. Electrode modification is used to improve the producible
power of bioelectrochemical systems, which is described in detail in recent articles [71–75].
The use of carbon materials produced from crop waste is also promising in this field [76].

Thus, the choice of electrode material is the key element determining the efficiency
of the entire PMFC system. Existing materials can be modified to reduce their internal
resistance in order to increase the current output and power.

2.3. Application of Proton Exchange Membranes in PMFC System

Various PMFC configurations have been developed so far: sediment PMFCs, constructed-
wetland MFCs, tubular PMFCs, floating-treatment wetland MFCs, flat plate PMFCs, and
power-generating trees. The advantages and disadvantages of each model are detailed in
the review [24]. One of the components of bioelectrochemical systems for power generation
is a proton exchange membrane, which allows the improvement of charge segregation and
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power performance [77]. The most preferred proton exchange membrane is Nafion, but its
use in BES significantly (by 40%) increases the cost of the device [78]. Thus, the search for
new membranes that will have a lower cost and provide high stability and efficiency in
BES is currently underway.

In [79], modified Nafion 117 proton exchange membranes were tested. The modifica-
tion included the treatment of the membrane with solutions of polyvinylidene difluoride
(PVDF) and sulfonated PVDF with the addition of silicon oxide (SiO2). The third mod-
ification involved the polymerization of a Nafion membrane in a methyl methacrylate
(MMA) solution with the addition of sodium sulfite as an initiator. According to the results
obtained, all three methods increase the power generation parameters of MFC systems. The
highest increase in current density, from 0.81 mA/m2 to 18.82 mA/m2, was demonstrated
using the modification of Nafion with MMA.

In [80], a proton exchange membrane based on agar and polyvinyl alcohol (PVA) with
the addition of vermiculite nanoparticles was tested. According to the results obtained,
the proton exchange properties of the tested membranes were 216% higher than those of
the commercial Nafion membrane. In addition, the MFC current density increased (from
605 mA/m2 to 1515 mA/m2) when agar and PVA-based membranes were used. A low
cost and environmental safety, in combination with the increased efficiency of MFC energy
generation, allow the use of agar and PVA-based membranes as an alternative to expensive
Nafion membranes.

Ceramic membranes based on clay, bentonite, coal ash, Na2CO3, Na2SiO3, and H3BO3
were considered in [81]. The use of hybrid ceramic membranes with the addition of
different compounds contributed to the increase in PMFC power density by 78% (up to
22.38 mW/m2) compared to the control (100% clay membrane). There was a decrease
in internal resistance from 346 Ω (control) to 234 Ω. The addition of bentonite, coal
ash, Na2CO3, Na2SiO3, and H3BO3 improved the membrane’s cation transport, reducing
oxygen diffusion to the anode chamber. The membrane demonstrated high stability during
6 months of PMFC operation. In addition, the ceramic membrane is significantly cheaper
than the Nafion membrane.

Thus, one of the important aspects of PMFC operation, power increase, and internal
resistance reduction is the use of proton exchange membranes. At the same time, for the
commercialization of PMFC systems, it is necessary to take into account the cost of the
production of such membranes and the expenses associated with the complication of the
design when using membranes.

2.4. The Influence of Environmental Factors on the Electricity Generation in a PMFC

The metabolic activity of exoelectrogenic microorganisms, which play an important
role in BES functioning and electricity generation, depends on the temperature, the pH,
and the rate of organic substrates’ receipt. Thus, the work [82] showed that, when the air
temperature rises to 30 ◦C, the voltage of the bioelectrochemical system increases from
100 to 150 mV, which may be due to an increase in the metabolic rate of exoelectrogenic
microorganisms. The pH value affects the development of microorganisms. pH of 6–9 is
mostly suitable for the functioning of BES [83]. The power decreases to 158 mW/m2 at a
pH value of 6.0 for the MFC system [84], while the power value is 600 mW/m2 at a pH of
8.0. The inhibition of the metabolic activity of exoelectrogenic microorganisms is observed
with a decrease in pH, which contributes to a decrease in the BES power [85].

Periodic watering is necessary for the normal functioning of plants since soil moisture
affects the generated potential in a PMFC system. The article [86] states that, in the absence
of irrigation, the soil dries up, which leads to a two-fold decrease in the PMFC potential,
but after watering (60–70% of the soil moisture capacity), the potential is restored. Thus,
energy generation changes depending on the time of day [87]. An increase in electrogenic
activity is observed after sunrise due to the launch of photosynthesis processes, the peak of
which is observed from 14 to 15 h. Depending on the system under study, the open circuit
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potential is 600–700 mV at the specified time. Then, the photosynthetic activity of plants
decreases at nightfall, which leads to a decrease in electricity generation to 300–400 mV.

The rate of photosynthesis is affected by the concentration of carbon dioxide in the
atmosphere [88]. The trend towards carbon dioxide emissions increases every year and is
390 ppmv, according to the latest data (mass fractions of a percent per volume), which is 30%
more than the CO2 concentration in the early twentieth century [89]. The increasing CO2
concentration and climate warming significantly affect plant growth [90]. The work [91],
using agricultural plants (Saccharum officinarum and Sorghum bicolor), showed that the rate
of photosynthesis grows significantly with an increase in the CO2 concentration, which in
theory can have a positive effect on the power produced via a PMFC. It should be noted
that plants with the C3 and C4 types of photosynthesis react differently to an increase in
the carbon–acid gas concentration. C4 plants attach CO2 to phosphoenolpyruvate [86],
resulting in the formation of oxalic acid containing four carbon atoms. The photosynthesis
efficiency of C4 plants is significantly higher since the C4 pathway is an extra pump that
supplies additional portions of CO2, increasing its concentration in the plant since the CO2
concentration in the assimilation chamber is lower than in the air, which is a limiting factor
of photosynthesis.

It should be noted that the countries with warm climates and high solar insolation,
as well as “green roofs” cities, have the greatest potential for the PMFC technology’s
implementation to reduce the concentration of carbon dioxide in the air [92].

3. PMFC Technology to Utilize Anthropogenic Pollutants in Aquatic and Soil
Ecosystems: Current Situation and Further Development
3.1. PMFC to Purify Water and Soil Ecosystems from Organic Compounds and Biogenic Elements

Wastewater discharges, containing organic and biogenic (nitrogen, phosphorus, and
carbon) elements in concentrations above the MRL (maximum residue limit), significantly
affect the ecological balance of aquatic ecosystems (Figure 5). Thus begin the eutrophication
and rapid development of microbiota, which entail a decrease in the dissolved oxygen
concentration, causing a decrease in biological diversity [93]. Additionally, the current
active use of oil has a negative impact on ecosystems that have been polluted by its
spills during production and transportation. The sludge formed during oil production is
discharged into specialized ponds, which “age” under the influence of the environment.
So, the oxidation of some components, tarring, and the evaporation of light fractions occur.
These processes lead to increased stability of the oil sludge in purification; therefore, its
disposal is one of the most difficult tasks at present [94].

Bioremediation, based on pollutant biodegradation via microorganisms and plants
during their vital activity, is one of the most effective methods of wastewater and soil
treatment for organic pollutants. It is used for wastewater treatment and the processing
of biodegradable solid household waste to form biogas [95,96]. As was noted, PMFC
technology is promising in the simultaneous processes of generating electricity [21] and
recycling various pollutants [97]. Table 2 summarizes the information on the developed
PMFC for the disposal of anthropogenic pollutants and their purification.

The authors of [98] used Pseudomonas, Azoarcus communis oil destructor bacteria to
clean the soil from oil pollution. The addition of bacteria to the PMFC system contributed to
the better purification of wastewater and soils from hydrocarbons. The maximum specific
power (11.56 mW/m2) was obtained in a system where Spartina sp was used as a plant. It
was almost five times higher compared to the control system without plants, the value of
which reached about 2 mW/m2. Generally, power increases (7.5 mW/m2 and 9.71 mW/m2,
respectively) appeared because of the use of Typha latifolia (broadleaf cattail) and Phragmites
(common reed) plants due to the formation of rhizodeposits that could be consumed by
microorganisms. The internal resistance of the studied systems ranged from 200 Ω to
400 Ω.
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Table 2. PMFC characteristics for soil and wastewater treatment with organic compounds.

Plants Microorganisms Electrode Material
Organic

Compound/
Rate

Purification Rate,
% Max. Output Ref.

Spartina sp.

Pseudomonas
veronii

Ps. chlororaphis
Ps. putida

Ps. libanensis
Azoarcus
communis

Cathode—stainless steel
Anode—stainless steel Oil 99.6 11.56 mW/m2 [98]

Aglaonema
commutatum

Active sludge Cathode—carbon felt
Anode—carbon felt

Oil Up to 82.3 382 mV [99]PAC Up to 45.5 377 mV
Steviare baudiana Soil extraction Cathode—stainless steel

Anode—carbon felt Urea No data 132 mW/m2 [100]

Ozyra sp. Soil extraction Cathode—carbon felt
Anode—carbon felt Compost No data 39.2 mW/m2 [101]

Fimbristylis
ferruginea

Association DC5
(Firmicutes

Proteobacteria
Bacteroidota

Desulfobacterota
Actinibacteriota

Verrucomicrobiot)
Soil extraction

Cathode—glassy carbon fiber
Anode—glassy carbon fiber

Textile
wastewater Up to 97.3

Up to
197.9 mW/m2 [102]

Canna generalis,
Chrysopogon
zizanioides,

Cyperus papyrus
Hymenachne

grumosa
Equisetum hyemale

Wastewater
bacteria

Cathode—graphite
Anode—graphite

BOD5
COD

71
74 0.93 mW/m2 [103]

Chlorella vulgaris Anaerobic sludge
Cathode—carbon felt
Anode—carbon felt

COD
Nitrates

Phosphates

65.3
66.6
95.6

3.64 mW/m2
[104]

Canna indica Cathode—carbon felt
A—carbon felt

COD
Nitrates

Phosphates

57.2
59.8
88.8

22.76 mW/m2

Schoenoplectus
californicus Sludge Cathode—activated carbon

Anode—activated carbon
COD

Nitrogen
Up to 87
Up to 98 8.6 mW/m2 [105]

Canna indica Anaerobic sludge Cathode—stainless steel,
activated carbon

Anode—stainless steel,
activated carbon

Tetracycline 99.66 Up to
124.89 mW/m2 [106]

Sulfatotoxal 100

Canna indica Soil extraction Cathode—graphite plate
Anode—graphite rod

Sodium dodecyl
benzene sulfonate Up to 56.8% 4.01 mW/m2 [107]
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The low solubility of petroleum products is one of the problems of effective purification
from them. Surface-active substances (surfactants) are additionally introduced into PMFC
systems to increase the bioavailability of the hydrophobic substrate for oil-oxidizing bacteria
and, therefore, to increase the degree of biodegradation of oil pollution. It allows an increase
in the voltage from 184.9 to 377.2 mV [99]. Moreover, the introduction of an additional
carbon source available to microorganisms, for example, glucose, contributes to an increase
in the system voltage from 184.9 mV to 325 mV [98]. Biosurfactants should be used instead
of using synthetic surfactants (surfactants). Biosurfactants can increase the bioavailability
of hydrocarbon substrates to change the hydrophobic properties and permeability of
microorganisms’ membranes [108]. Moreover, oil-resistant plants should be used to clean
the soil from oil in PMFC systems. They can release a high amount of root exudates. It
follows that further directions in the development of new soil and wastewater treatment
systems may consist in the selection of effective bacteria–oil destructors.

PMFC systems can be used for the disposal of organic animal waste. The work [100]
used the plant stevia honey and urine samples of livestock (goats, cows, and sheep). It was
noted that the addition of urine stimulated plant growth and significantly increased the
current density of the device. The control sample had fixed the current density at about
10 mA/m2, and this indicator reached a value of 930 mA/m2 with the addition of cow
urine. Thus, it was noted that the use of cattle urine is a good tool aimed at increasing
PMFCs’ characteristics.

Wastewater treatment uses the technology of microbial associations’ enrichment with
bacteria that are isolated from contaminated soils. For example, the authors of [102] used an
association of microorganisms, designating it as DC5. These microorganisms are capable of
oxidizing textile dyes, which can potentially act as a mediator of electronic transport, thus
contributing to an increase in electricity generation during their biodegradation [109]. The
addition of the DC5 association to the PMFC contributes to an increase in the maximum
specific power from 177.3 mW/m2 to 197.94 mW/m2. This approach makes it possible to
improve wastewater treatment from electroactive dyes and at the same time to increase the
electricity generation in PMFC systems.

A plant microbial fuel cell is a promising system for wastewater treatment. Thus, the
work [103] used a reactor for anaerobic purification where wastewater enters the PMFC. A
significant decrease in suspended compounds was observed after two-stage purification.
The treated wastewater, taken from the PMFC, had a BOD5 index lower than the initial one
by 71%; the COD index decreased by 74%.

The plants used can influence the efficiency of purification and the generation of
electricity in a PMFC. The review [104] studied the effectiveness of wastewater treatment
using the Canna indica plant (Indian cane) and single-celled algae Chlorella vulgaris. The
system based on the C. indica plant had a higher voltage (771 mV and 452 mV, respectively).
The internal resistance for a system with a plant was about 100 Ω, with chlorella algae at
335 Ω. At the same time, the paper notes that C. vulgaris can decompose organic compounds,
indicating a mix-trophic type of nutrition that provides better purification from organic
compounds. Conversely, C. indica has an autotrophic type of power supply, and the
degradation of organic compounds occurs at the anode when electroactive microorganisms
are introduced into the system, contributing to a higher voltage output and specific power
of the system.

The work [106] investigated the possibility of removing two antibiotics, tetracecline
and sulfamexosol, from wastewater in a PMFC system. According to the obtained data,
the greatest degree of removal was achieved during the first day of the PMFC operation.
The removal efficiency reached 99%. It was shown that both antibiotics can accumulate in
insignificant amounts in electrode compartments, which is due to electrosorption [110]. It
occurs because of the formation of a double electric layer (DEL) on the surface of cathodes
and anodes, while tetracecline and sulfamexosol do not accumulate in plants. In systems
with C. indicia, the specific power is, on average, 55% higher than in systems without plants.
The resulting power density is 124.89 mW/m2, and the internal resistance ranges from
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600 Ω to 800 Ω for all systems. Generally, the conducted research testifies to the prospects
of PMFC systems in the removal of pharmaceutical preparations from wastewater.

A Canna indica plant-based PMFC system was described in [107], which was used to
remove sodium dodecyl beznesulfonate (SDBS) from a model wastewater mixture. Ac-
cording to the results, the removal efficiency of SDBS was 56.8%, and power values of
4.01 mW/m2 and voltage of 230 mV with a resistance of about 200 Ω were achieved at
an SDBS concentration of 5 mg/L. It should be noted that increasing the SDBS concentra-
tion had a negative effect on the PMFC systems, reducing the power and increasing the
internal resistance.

It should also be noted that, in these works, practically no attention was paid to the
problem of wastewater treatment in a PMFC for surfactants. However, the negative impact
of surfactants on the environment was ignored because of the large scale of production
and use [111]. Therefore, currently, there are a great number of studies focusing on the
ways surfactant disposal can be achieved in wastewater, including the development of
approaches to decentralized treatment methods [112,113]. Generally, surfactants have
a negative effect on aquatic biota at concentrations ranging from 0.35 mg/dm3 (fresh-
water microalgae S. subspicatus) [114] to 76.14 mg/dm3 (crustaceans D. magna) [115]. The
entry of surfactants with wastewater into natural reservoirs can have a negative impact
on the cultivation of aquaculture in natural conditions. For example, the review [116]
investigated the influence of anionic and cationic surfactants on the survival, behavioral
features, and viscera pathology of African catfish Clarias gariepinus, used as a test object.
Anionic surfactants had the greatest negative effect (linear alkylbeznosulfonate (LAS)
was used as a model toxicant). The behavioral characteristics of the test object included
excessive mucus secretion, chaotic movement, and anger. The lethal concentration of
LAS equaled 10.57 mg/dm3. Gill injuries were caused by the constant contact of this
organ with the environment and surfactants [117,118]. Biological wastewater treatment
from surfactants, when activated sludge is used, provides 95–98% efficiency [119,120].
Microorganisms use surfactants as a carbon source, while biodegradation occurs along
the pathways of ω-oxidation, β-oxidation, α-oxidation, and oxidation of the benzene
ring (if it is presented in surfactants) [121]. The bacteria that can oxidize surfactants
include Azotobacter sp., Bacillus sp., Pseudomonas sp., Citrobacter sp., Acinetobacter sp.,
Klebsiella sp., and Serratia sp. [122–126]. Therefore, the selection of microorganisms that can
simultaneously reduce the concentration of surfactants and achieve exoelectrogenicity is
an urgent task in PMFC development to purify wastewater from surfactants.

Several works on MFC have demonstrated the combination of wastewater treatment
from surfactants and electricity generation [127–129]. The presented works demonstrate
that water purification in bioelectrochemical systems from surfactants at concentrations
from 10 to 120 mg/dm3 of compounds is possible. The efficiency of this process can reach
up to 90% and depends on the time and structure of the surfactant. In general, the process
of surfactant biodegradation takes from 12 to 96 h. However, high internal resistance
negatively affects the power output of BES [130].

Thus, PMFC can be used for the treatment of wastewater that may contain not only
biogenic elements but also antibiotics and petroleum hydrocarbons, including PAHs. At
the same time, a note should be made concerning the selection of the optimal composition
of the microorganism association to reduce the time of their adaptation to pollutants and
higher electricity generation. It bears emphasis that there are fluctuations in the internal
resistance of various systems (from 100 Ω to 800 Ω), which are associated with different
designs, the distance between the anode and cathode, and the electrical conductivity of
the electrolytes used. Nevertheless, it should be noted that there are rather few works that
have dealt with the treatment of wastewater from surfactants using PMFC systems.

3.2. PMFC Application for Removal of Heavy Metals from Soil and Aquatic Ecosystems

Soil pollution with heavy metals (HM) poses a threat to the environment and agri-
culture [131]. Heavy metals negatively affect agricultural crops, reducing their yield.
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Phytoremediation methods are used to clean soils of heavy metals, the principle of which
is based on biosorption and HM accumulation by various plant components. The removal
rate of heavy metals from soils is about 35% of the initial HM concentration during the soil
phytoremediation [132]. Microorganisms are also able to reduce concentrations of HM ions
by forming chelated complex compounds with them, which is due to the production of
siderophores, organic acids, and extracellular polymeric substances [133]. However, as has
been shown earlier, bioremediation has not become widespread in poor countries due to its
relatively high cost [10]. Therefore, the use of PMFC technology can become a compromise
solution in poor countries not only because of the purification of contaminated soils from
HM but also due to the generation of environmentally friendly electricity [134]. Table 3
presents the parameters of some well-known PMFC systems used for soil purification from
heavy metals.

Table 3. PMFC used for soil purification from heavy metals.

Plant Microorganism Electrode Material Metal Purification Rate, % Max. Generation Ref.

Lolium perenne
Proteobacteria
Bacteroidetes
Firmicutes

Anode—graphite granules and
carbon felt

Cathode—carbon felt
Cr2O7

2− 90–99 55 mA/m2 [135]

Oryza sativa L.

Alphaproteobacteria
Anaerolineae

Clostridia
Deltaproteobacteria

Gammaproteobacteria
Actinobacteria

Bacteroidia
Bacilli

Thermoleophilia

Anode—carbon felt
Cathode—carbon felt As (V) 25.2–41.8 22.2 mW/m2 [136]

Oryza rufipogon Nocardioides
Anaerolinea
Geobacter

Tumebacillus
Azospirillum

Bacillus

Anode—carbon felt
Cathode—carbon felt

Cd (II) Up to 31.7 351 mV [137]
Typha orientalis Up to 30.2 137 mV

Eichhornia
crassipes No data Anode—graphite rod

Cathode—graphite rod Ni (II) Up to ~10 0.86 mW/m2 [138]

Oryza sativa L.
Proteobacteria

Firmicutes
Actinobacteria

Chroroflexi

Anode—carbon felt
Cathode—carbon felt

Cd
Cu
Cr
Ni

35.1
32.8
56.9
21.3

22.2 mW/m2 [139]

Cyperus
alternifolius

Cyperu
smalaccensis

River sludge Anode—carbon felt
Cathode—carbon felt

As
Zn
Cd

6.7
7.3

38.5
10.74 mW/m2 [140]

Raygrass has been used to remove Cr2O7
2− from a PMFC system [135]. According to

the results, the removal efficiency can reach 99% under various conditions. At the same
time, most of the precipitates reduced to Cr (III) took the form of Cr(OH)3. Meanwhile,
an increase in the concentration of Cr2O7

2− from 9 mg/dm3 to 19 mg/dm3 increased the
current density by about two times (up to 55 mA/m2).

The study [136] tried to reduce the absorption of soap using the rice culture Ozyra
sativa L. (seeded rice) since rice consumption is one of the main routes of arsenic’s entry into
the human body. The results show that the use of PMFC technology reduces the arsenic
accumulation in rice by up to 67.9% due to the obstruction of As (III) migration to the plant
roots. The output power equals 22.2 mW/m2.

The article [137] illustrates the PMFC development based on Ozyra rufipogon (wild
rice) and Typha orientalis (oriental cattail) to remove cadmium from the soil. It was shown
that cadmium absorption is carried out mainly via plant roots. The addition of biochar
contributed to the better removal of cadmium from the soil. The use of PMFC reduces
cadmium mobility by binding to carbonates, iron oxides, and organic compounds. When a
PMFC operates in a closed-circuit mode, it was noted that the percentage ratio of the Cd2+

exchange fraction is significantly lower than when the PMFC operates in the open circuit
mode. This is caused by bioelectrochemical processes. Additionally, higher values of the
generated voltage were observed (350 mV vs. 137 mV) when using rice. At the same time,
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the voltage decreased from 400 mV to 150 mV in the control system (without Cd (II)) with
cattail by 112, and the voltage increased to 400 mV in the system with rice by the end of the
experiment. Such a feature may be due to the different compositions of the rhizodeposits.

The study [139] used seeded rice exploitation with HM such as, Cd, Cr−, Cu, and Ni. It
shows that a decrease in the concentration of HM in PMFC (compared with the control rate)
was possible to be achieved during the experiment. The authors noted that the removal of
such heavy metals as Cu was probably due to the transition under the action of an electric
field of Cu to the cathode region, where they react with oxygen and precipitate in the
oxide form. Besides, bacterial biofilms can absorb Cu through the cell membrane. Similar
mechanisms of reduced mobility were observed for Cr and Ni. The maximum current is
1.20 mA, while the fluctuations of this value were caused by a change in the oxygen volume
in the anode compartment from the rice roots. The generated capacity of 22.2 MW/m2

allowed the conclusion that the PMFC system can be applied to soil purification from some
heavy metals in their joint presence.

The above data prove that soil purification from heavy metals in PMFC systems is
practically not inferior to phytoremediation. In some cases, a decrease in the mobility of
some HM [140] can be detected because of their conversion into poorly soluble compounds
due to the course of bioelectrochemical processes in PMFC systems.

Thus, the use of PMFC technology to combat soil pollution still needs further study
since the processes and mechanisms that occur should be considered separately for various
heavy metals and plants. The use of PMFC, according to the research, is promising due to
the economic effect that is caused by electricity generation and low-cost phytoremediation
technologies [141].

3.3. Comparison of Treatment Efficiency of PMFC Technology with Traditional Methods

This section provides estimates of the effectiveness of the PMFC systems described
above compared to conventional approaches to wastewater treatment. Table 4 summarizes
the physicochemical, physical, and biological methods.

Table 4. Comparative analysis of conventional wastewater treatment technologies and PMFC systems.

Treatment
Method Comments Monitored

Indicator

Treatment Efficiency, %
Ref.Current

Method PMFC

Physicochemical
Electrooxidation
and electroco-

agulation

COD 90 57–87
[142]Nitrate 97 59–67

Phosphates 90 88–95

Physical
Membrane
filtration

COD 60 57–87
[143]BOD 65 71

Adsorption Cr (VI) 84 57–99 [144]

Biological

Microalgae
Chlorella
vulgaris

COD 100 57–87

[145]BOD 96 71
Total

nitrogen 61 89

Biofilter with
immobilized
bacteria and
macroalgae

COD 69 57–87
[146]Total

nitrogen 59 89

Active sludge SDS 100 57
[147]COD up to 91 57–87

In [142], electrocoagulation and electrooxidation using electrodes made of Al and Fe
in combination with diamond, which was doped with boron, were used for wastewater
treatment. The high efficiency of these physicochemical methods of wastewater treat-
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ment for such indicators as COD, phosphate, and nitrate concentration should be noted.
Compared to the above-described PMFC systems, the method of the electrooxidation and
electrocoagulation of nitrate is faster (treatment time—60 min).

In [143], a physical method of water purification was used, employing a membrane
made of polyethersulfone and nanocrystalline cellulose (NCC), which was fabricated via
phase inversion. Three membrane samples with different cellulose contents (0%, 1%, and
5%) were prepared. According to the results, the introduction of NCC does not contribute
to the improvement of wastewater treatment performance. When using a membrane
with a 5% NCC addition, the treatment efficiency in terms of BOD and COD was 34%
and 30%, respectively. The best results were obtained when using a membrane made of
polyethersulfone. However, the addition of NCC increased the mechanical and thermal
properties of the membrane. In general, in terms of COD and BOD removal efficiency,
PMFC is superior to the claimed method of membrane wastewater treatment.

The process of purification for a model aqueous solution containing Cr (VI) is presented
in [144]. Kaolin was used as a sorbent for water purification, which was crushed, sieved,
and modified (enrichment and calcination). The removal efficiency for chromium depended
on its concentration, pH, amount of sorbent, and temperature. The highest degree of Cr
(VI) removal was recorded at a pH value of 10 and at a low concentration (70 mg/dm3).
An increase in chromium removal efficiency up to 84% was observed at a kaolin sample
weight of 3 g. In general, this method has approximately similar efficiency in chromium
removal in comparison with PMFC.

In [145], a method of the secondary biological treatment of wastewater from a poultry
processing plant using the microalgae Chlorella vulgaris was used. The wastewater was
used at different dilutions (25%, 50%, 75%, and 100%). The results showed that increasing
the concentration of wastewater leads to the intensive development of the algae biomass,
but there is a decrease in COD treatment efficiency (up to 88% when wastewater was used
without dilution). In general, this method exceeds PMFC systems in terms of BOD5 and
COD by 25% and 13%, respectively. However, the efficiency of treatment for total nitrogen
in the PMFC system was exceeded by almost 30%.

In [146], immobilized bacteria and Caulerpa lentillifera microalgae were used for water
purification. The biofilter was obtained by immobilizing bacteria onto a chitosan-based
aerogel material. The results showed that the simultaneous use of bacteria and microalgae
provided water treatment efficiencies of up to 69%, 59%, and 34% for COD, total nitrogen,
and total phosphorus. At the same time, the efficiency of wastewater treatment using
PMFC is not inferior to this method.

In [147], activated sludge dominated by Pseudomonas medocina and Bacillus bacteria was
used to treat wastewater from SDS. The results showed that the efficiency of wastewater
treatment from surfactants was almost 100%, while the treatment rate depended on the
surfactant concentration and the amount of inoculum. The degree of purification with
activated sludge exceeded the parameters for the PMFC system.

Thus, the efficiency of wastewater treatment for COD and total nitrogen using biologi-
cal treatment methods practically does not differ from PMFC. Physical methods (membrane
filtration and adsorption on kaolin) also do not significantly exceed the PMFC system in
wastewater treatment efficiency in terms of COD, nitrogen, and Cr (VI). The physicochemi-
cal method (electrooxidation and electrocoagulation) is superior to biological wastewater
treatment methods in terms of the rate and may be more preferable for nitrate removal
from water. Nevertheless, PMFC systems imply obtaining not only plant phytomass, which
can be used for processing into useful products, but also electricity, which distinguishes
this technology from biological and physical methods.

3.4. Integration of PMFC into Hydrobotanical Sites for Wastewater Treatment as a Prospect for
Further Development of Bioelectric Systems

The PMFC design features, organized according to the “constructed-wetland” tech-
nology, can replace artificial wetlands, which have been used for more than 50 years [148]
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and are intended for wastewater treatment: household wastewater [149], wastewater from
fisheries farms [150], and municipal–domestic wastewater from small settlements [151].
After wastewater treatment, their reuse is possible [151,152].

The artificial constructed-wetlands (CW) operation principle is based on natural
wastewater treatment processes when plants macrophytes and microorganisms are used,
while purification is carried out under controlled conditions [148]. Wastewater can be puri-
fied from biogenic elements, heavy metals, and organic pollutants, including surfactants in
such systems.

There is a well-known work on the use of CW laboratory models for the removal of
synthetic surfactants from the wastewater of car washes [153]. The results show that the
efficiency of SDS removal (the main component of the detergent in this study) is 90% when
loading 75 dm3/m2 and when using CW with the Phragmites australis plant.

The work [154] investigated the removal degree of SDS, polyethylene glycol (PEG),
and trimethylamine (TMA) using the plant Phragmites australis. The results show that
the greatest removal degree of the selected model toxicants occurs within 7 days, and then
sorption is significantly reduced. Additionally, the plants show signs of chronic toxicity
over a long period of time. The toxicants have been found to accumulate in various plant
components, which makes them unsuitable for use as feed for cattle. The removal degree
of SDS is 35% in 35 days.

The integration of PMFC into hydro-mechanical sites is a promising area of scientific
research [155]. The use of PMFC makes it possible to achieve more efficient (by 30–50%)
wastewater treatment compared to common CW [156]. However, the number of studies
on the large-scale application of PMFC is limited [157]. It is necessary to solve a number
of problems to scale PMFC systems in the future: high internal resistance [158,159], the
selection of the optimal association of microorganisms to reduce competition between
them [159], and the biofouling of the cathode, which worsens the diffusion of oxygen to its
surface [160,161].

Indeed, the internal resistance (Rint) of a PMFC is a combined value consisting of anode
and cathode overvoltage and ohmic losses, which are related to the resistance to charge
transfer [31]. The internal resistance negatively affects the electrochemical parameters of the
PMFC [130,162] and can be decreased by reducing the distance between the electrodes [163],
using more efficient proton exchange membranes (if applied) [81]. Bacteria-producing
electron transport mediators [164] can be used as an approach to reduce anodic overvoltage.
Riboflavins [165], phenazines [166–168], pyocyanins [169], and quinones [170] are distin-
guished among endogenous media. It should be noted that the use of a mediator increases
the current density by increasing the electron transfer rate [166,171]. Various methods
of anode [172,173] and cathode [174,175] modification are effective ways to reduce Rint
(improving the conductivity of the material and reducing the charge transfer resistance).
However, such approaches are most often used for MFC, so methods for improving the
properties of electrode materials are of interest for implementation in PMFC.

The problem of cathode biofouling can arise during the long-term operation of PMFC.
The biofouling process is influenced by the material, surface roughness and charge, and
ionic strength of the electrolyte [176]. In general, biofouling leads to a decrease in the
oxygen transfer to the catalyst layer, increases the charge transfer resistance, and impairs
the proton transfer to the cathode, which leads to an increase in the internal resistance
of the devices [161]. Microbial separators [177], modifications with nanoparticles that
have catalytic oxygen reduction and antimicrobial activity [178], the use of innovative
designs to enable rapid cathode replacement [179], cathode treatment using an alternating
current [180], the use of graphene oxide [181], and the use of antibiotics as part of the
cathode catalyst [182] have been employed to reduce the effects of this process. Despite the
numerous methods used to control biofouling, the most effective strategies are to develop
bifunctional cathode catalysts that will simultaneously increase the generated power of
PMFC systems, reduce internal resistance, and prevent microbial growth on the cathode
without requiring frequent replacement.



Energies 2024, 17, 752 16 of 24

It is essential to focus on improving the efficiency of wastewater treatment systems and
generating electricity, which is achieved with a detailed examination of bioelectrochemical
processes that occur in BES systems.

4. Conclusions

The study of the application possibilities and the development of effective PMFC
technologies is relevant to creating new renewable energy sources and is important for
solving environmental problems. A PMFC system has autonomy and is able to purify
soil and wastewater ecosystems from a wide range of organic and inorganic compounds
due to the influence of plants and microorganisms on each other. Thus, the review shows
that the efficiency of soil purification from heavy metals with the help of PMFC is, on
average, about 30% and 90% from oil. The reduction of such indicators as BOD and COD
for wastewater reaches 71% and 52%, respectively. A decrease in biogenic elements in the
form of phosphates and nitrates is observed when a PMFC is exploited. Purified water can
be reused for household needs. The electricity generated via a PMFC is ecologically clean
and can be used to power and charge low-power devices. Moreover, the system can be
used as a biosensor in monitoring plant conditions. Decentralized electricity generation
and the low cost of manufacturing PMFCs can be used in developing countries, and the
generation of electricity in wetlands can become another application of PMFCs.

The problems of operation, which include high resistance and low power, can be
solved through the careful choice of the material for the anode and cathode manufacturing
by modifying the electrodes in order to both improve their electroconductive properties
and increase the electron transfer rate. Moreover, it is proposed to focus on plants with
C4-type photosynthesis, which is more efficient compared to C3 photosynthesis. More
attention should be paid to the selection of the most effective exoelectrogenic types of
bacteria to increase a PMFC system’s power.

This review examined studies on biological wastewater treatment for synthetic surfac-
tants. Bacteria of the genus Pseudomonas sp. are promising bacteria capable of biodegra-
dation and are most popular for household purposes involving the group of anionic
surfactants. Some species of these bacteria are capable of producing compounds of the
phenazine series. They have been previously used in MFCs. Therefore, this genus of bacte-
ria has the potential for use in a PMFC system, which will combine wastewater treatment
from surfactants and electricity generation.

Thus, the possibility of wastewater treatment using PMFC technology with its reuse
for household purposes, reduction of greenhouse gases, and low amount of waste during
operation favorably distinguishes it from traditional alternative sources of electricity despite
the low power output.
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