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Abstract: Distributed energy resources have demonstrated their potential to mitigate the limitations
of large, centralized generation systems. This is achieved through the geographical distribution of
generation sources that capitalize on the potential of their respective environments to satisfy local
demand. In a microgrid, the control problem is inherently distributed, rendering traditional control
techniques inefficient due to the impracticality of central governance. Instead, coordination among its
components is essential. The challenge involves enabling these components to operate under optimal
conditions, such as charging batteries with surplus solar energy or deactivating controllable loads
when market prices rise. Consequently, there is a pressing need for innovative distributed strategies
like emergent control. Inspired by phenomena such as the environmentally responsive behavior
of ants, emergent control involves decentralized coordination schemes. This paper introduces an
emergent control strategy for microgrids, grounded in the response threshold model, to establish
an autonomous distributed control approach. The results, utilizing our methodology, demonstrate
seamless coordination among the diverse components of a microgrid. For instance, system resilience
is evident in scenarios where, upon the failure of certain components, others commence operation.
Moreover, in dynamic conditions, such as varying weather and economic factors, the microgrid
adeptly adapts to meet demand fluctuations. Our emergent control scheme enhances response times,
performance, and on/off delay times. In various test scenarios, Integrated Absolute Error (IAE)
metrics of approximately 0.01% were achieved, indicating a negligible difference between supplied
and demanded energy. Furthermore, our approach prioritizes the utilization of renewable sources,
increasing their usage from 59.7% to 86.1%. This shift not only reduces reliance on the public grid but
also leads to significant energy cost savings.

Keywords: emergent control; energy management systems; distributed control systems; response
threshold model; smart grid

1. Introduction

Distributed energy systems can solve the problems associated with centralized gener-
ation, such as [1]: high energy losses, hazardous waste generation, and expensive infras-
tructure, among others. Specifically, RES with energy storage devices can be integrated to
formulate HES for a reliable power supply (saving and releasing energy at the adequate
time) to overcome the limitations in the wind and solar resources since their performance
characteristics depend on the environment, which reduces the reliability of the power sup-
ply and imposes additional costs for providers and/or consumers [2]. On the other hand, it
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is necessary to consider the effects of energy management on the consumer, especially the
controllable loads, to ensure an efficient energy system [3].

An MG is a distributed energy network with diverse small energy sources that work
autonomously with respect to the main network [4]. An MG is classically made up of a
local generation system, an energy storage system, consumers, and a connection point to
the grid. The main goal of an MG is to reach a more efficient and reliable energy supply,
to provide a higher quality of energy service, and to make it safer and more sustainable.
The MG control problem is a distributed control problem, which requires coordination and
control mechanisms for its agents without a central authority to manage them [1].

One of the incentives of this paper is to effectively coordinate and integrate the various
agents in an energy system, both on the production and consumption side, to meet energy
needs, maximize the use of renewable energy, and reduce energy from the main network [5].
In this way, it is expected to minimize energy costs and the need to manage the natural
uncertainty of RES, along with the limited storage capacity of batteries [6]. In this sense,
optimal management of these energy resources is essential to have a balance between
demand and supply.

In general, an autonomous management approach of an MG for efficient demand
management must be able, among other things, to turn off controllable loads when the
cost of energy is high, and charge storage devices using only renewable energy, among
other things. For this, new distributed control strategies, such as those based on emergent
control, are necessary.

This paper aims to make use of the RTM [7] to define a self-control mechanism, so that
each component takes part in the energy exchange when the circumstances are favorable.
To create an emerging control proposal that enables effective energy management, it is
necessary to identify the local variables and the rules for decision-making, as well as the
feedback mechanisms between them. The use of an emergent control strategy based on
bio-inspired techniques that allows micro-level coordination distinguishes this paper from
earlier ones in the context of MG. The advantage of using the RTM over other control
methods is based on the potential for creating a distributed control strategy. Each agent is
prompted to act or not by its two main variables, the stimulus and threshold. The threshold
is linked to the accomplishment of the goals, and the stimulus takes context information
into account. Both employ RL as a self-control mechanism to control the agent’s response,
enabling autonomous coordination actions. The main contributions of our paper are:

- Specification of an autonomous MG management approach and self-regulating de-
mand and load generation through emergent control mechanisms, enabling MG
self-organization.

- Definition of an emergent control approach based on the RTM, applicable to both the
generation and demand sides. Traditionally used for task assignment problems, this
is the first application of the RTM in coordination and distributed control contexts.

- Development of a scheme to balance generated and demanded power, combining load
from the main network and renewable sources, and controlling controllable loads and
excess energy storage.

- Schematization of a methodology to apply our emergent control approach in MGs in
any context. Following this methodology, an MG autonomy can be specified.

In summary, this paper’s scientific novelty lies in its autonomous MG management
approach, adapting the RTM—commonly used for distributed task assignment problems—as
a solution for distributed control challenges in the energy sector. Our approach ensures
autonomous component coordination to meet demand based on environmental conditions.

The paper is organized as follows: Section 2 discusses related work. Section 3 outlines
the theoretical framework of our proposal and the process under study. Section 4 introduces
our emergent control system design based on the RTM. Section 5 details the experiments
conducted, quality assessment metrics, and comparisons with other works. The paper
concludes with a summary and future work directions.
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2. Related Work

Shahgholian [8] provides a comprehensive literature review on the operations, applica-
tions, and control of MGs, with a particular focus on local control and coordination among
its components. The author also highlights various research areas, including control strate-
gies, optimization methods, stability, and reactive power compensation techniques. This
paper notably introduces control architectures like decentralized systems and variations
based on MAS.

Liu et al. [9] introduce a consensus MAS DRL algorithm where each DER is an agent.
These agents learn control strategies based on local states and messages received from
neighboring agents.

Zhou et al. [10] discuss distributed communication network characteristics for MGs,
distributed control strategies, and communication reliability issues. However, their work
lacks experimental and case study analyses. Maomao et al. [11] analyze recent classifica-
tions, architectures, technologies, and methods for coordinating residential MGs, including
game theory and MAS.

Zhou et al. [12] propose an MG cluster structure with an autonomous coordination
control strategy that combines normalized droop-based control with adaptive control. The
MG consists of an EP, a PEU, and several small MGs. Areekkara et al. [13] utilize the
MAS paradigm for its autonomy, scalability, flexibility, and adaptability in MG energy
management systems. Harmouch et al. [14] describe the implementation of a decentralized
MAS-EMS for controlling an MG cluster. Each MG within the cluster employs a dedicated
MAS-EMS for power dispatch aimed at minimizing grid power exchange. Another dedi-
cated EMS manages power distribution among various MGs. Kofinas et al. [15] propose a
cooperative MA system for managing a standalone MG’s energy. They use a distributed,
cooperative RL method in a continuous action-state space, enabling MG components to
operate as independent learners while coordinating through shared state variables. Fuzzy
Q-learning techniques were recommended for this purpose.

Hu et al. [11] analyze recent developments in residential MG architectures and tech-
nologies, reviewing key coordination and negotiation methods. Chouikhi et al. [16] present
two EM mechanisms in the context of smart buildings. To begin with, they use negotiation
and multi-leader–follower game techniques to simulate the interactions between energy
suppliers and building occupants. Then, in order to reduce consumer interactions and
maximize energy demand cost, they suggest a distributed game theory-based scheduling
method for energy demand. In this paper, the system entities are modeled using MAS.

Xu et al. [17] define a home energy management framework based on RL, using a
finite Markov decision process for hour-ahead energy consumption scheduling and an
extreme learning machine for predicting electricity prices and solar generation.

Arnone et al. [18] suggest a Building Management System for controlling energy
flows in smart buildings integrated with various energy networks and RES, using heuristic
optimization for 24 h energy generation and consumption scheduling. Aguilar et al. [19] de-
scribe a scheduling system that automatically defines hours of utilization of the controllable
load devices in a home, in such a way that the use of renewable energy is maximized. To
do this, they construct an autonomous cycle of data analysis tasks made up of three tasks: a
scheduling task to create appliance usage schedules, and two tasks to estimate the amount
of renewable energy generated and the amount of demanded load. Garcia et al. [20] con-
ducted a systematic literature review on emergent control systems, focusing on conceptual
bases, methodologies, principles, architectures, and their application in Cyber-Physical
Systems, particularly in Industry 4.0.

Du et al. [21] propose a control strategy for coordinating neighboring autonomous MGs
using a smart switch, focusing on power sharing without considering internal component
coordination. Chai and Peng [22] propose a decentralized coordinated power control
approach for islanding MGs, combining bus voltage signals with fuzzy logic control,
without inter-MG interconnections. Rahman et al. [6] design a cooperative MAS for energy
sharing in MGs, using graph theory to establish communication links between controllable
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batteries and clients. Arwa and Folly [23] explore the use of RL algorithms for MG power
management, highlighting challenges and solutions.

Zheng et al. [24] analyze the energy dispatch optimization of connected MGs, propos-
ing a distributed predictive control model with local predictive control for each MG com-
ponent. Kyriakou and Kanellos [25] propose a method for coordinated scheduling of the
optimal operation of active distribution networks containing complex MGs (prosumers
and electric vehicles), through a strategy of centralized control [26].

Our literature review indicates that while there are numerous studies on MG control and
optimization strategies, as well as architectures and methodologies, few focus on distributed
control architecture addressing DER coordination. Most employ the MAS paradigm, RL, or
predictive or fuzzy control models. However, case studies are limited, lacking benchmarks
for performance analysis and metrics for proposal quality evaluation. Therefore, our study
makes qualitative comparisons with existing works. To our knowledge, this paper is the first
to propose an autonomous management approach for MGs using emerging approaches with
the RTM. MAS-based control schemes allow for MG adaptation, but our emergent control
approach uniquely adjusts component roles based on contextual uncertainty.

3. Theoretical Framework

The RTM used in this paper is presented in this section, as well as the MG components
that will be analyzed.

3.1. Response Threshold Model (RTM)

Drawing inspiration from the behavior of labor division in ant colonies, the RTM [27]
mimics ants’ sensitivity to external and internal stimuli, including the intensity of pheromone
signals. This model allows the colony to adapt to varying environmental conditions [28],
enabling ants to modify their behavior according to the needs and occurrences within the
colony [29]. In general, the sensitivity to external/internal stimuli is quantified using a
parameter called the response threshold (θ). An agent (ant) with a lower response threshold is
more likely to become an active worker, while one with a higher threshold is less likely to be
activated. In a conventional RTM for the division of labor [27], an agent j has the probability
qj of work in a given moment according to the Equation (1):

qj =
sj(t)

2

sj(t)
2 + θij(t)

2 (1)

where sj is the external or internal stimulus and θij is the ant’s sensitivity (response thresh-
old) to perform task j at time t. The task assignment problem, which assumes that each
worker i responds to a stimulus for a specific task j when the intensity of the stimulus
exceeds the worker’s threshold for that stimulus, can be solved with the help of this model.
Additionally, the ants change the intensity of the cumulative stimulus (sj) in accordance
with Equation (2) in order to exert control over the system through a process of individual
or group learning by associating rewards with stimuli [27]:

sj(t + 1) = sj(t) + δ − α·Nact

N
(2)

In the conventional model, the variations in the stimulus’s intensity are caused by the
way the task is carried out; here, Nact denotes the individuals who are actively engaged in
the colony, N are the potential participants, α denotes the task’s efficiency, and δ denotes
the stimulus’s increase in intensity per unit of time. In contrast, the response threshold is
fixed from a simple reinforcement process, such that the threshold decreases when the cor-
responding task is performed and increases when the corresponding task is not performed.
These combined reinforcement processes [30] allow the appearance of specialized workers;
that is, some workers are more sensitive to the stimuli with a particular task j, starting
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from a group of initially identical individuals. The response threshold incorporating RL is
expressed as follows [7]:

θij = θij − yijβ∆t +
(
1 − yij

)
γ∆t (3)

where yij is the proportion of entities of type i performing task j, and β and γ are the
learning and forgetting rates, respectively. This means that according to Equation (3), in the
next ∆t time units, yij fraction of entities of type I do task j, and (1 − yij) fraction of entities
do nothing or something else. In this way, the RTM refers to the potential for responding to
stimuli connected to tasks to address the issue of labor division in a colony.

3.2. System Modeling

An MG is a distributed electrical network with various small energy sources run-
ning parallel to the main grid [4]. The aim of an MG is to provide a higher quality of
energy service, catering to the growing demand for reliable, safe, sustainable, and efficient
electricity supply. Our focus is on an MG composed of a PV system, an energy storage
system, an external source (the main grid), and controllable loads. Below, we describe each
component’s model.

3.2.1. Photovoltaic System

A PV system generates voltage and current from solar cells arranged in series and parallel.
Solar radiation affects the PV (PPV) array’s maximum power output in a variety of ways.
Therefore, a control strategy is needed to efficiently utilize solar radiation to produce the most
power. The output power is defined in the work of Antonanzas–Torres et al. [31] as:

PPV = ηSϕ[1 − 0.005(Ta + 25)] (4)

where η is the conversion efficiency of the PV array, S is the area of the PV array (m2), ϕ is
the solar radiation (kw/m2), and Ta is the ambient temperature [◦C].

3.2.2. Energy Storage System (ESS)

One of the most popular tools to conserve electrical energy in various applications is
the battery, but in addition, supercapacitors can be used to store electricity. In PV or wind
energy conversion systems, batteries act as a backup. In addition to storing excess solar
or wind energy during sunny or windy days, they are used to release the energy during
stationary periods or at night. Various models have been put forth in the area of battery
modeling. The modified simple battery model 3 is employed for this paper, but it is based
on the power [W] rather than the voltage [V] [32].

Vt = VOC −
(

Rint +
K

SOC

)
I (5)

where Vt is the battery’s terminal voltage, Voc is the voltage in the circuit without a load,
Rint is the internal resistance of the battery, K is a polarization constant, I is the effective
value of the discharge current, and SOC is the battery’s state of charge at time t (in percent).

3.2.3. Controllable Loads

Controllable loads refer to devices with manageable energy consumption. They are
categorized as follows [33]:

• Type I: this type consists of various residential loads, like refrigerators, air condi-
tioners, water heating, etc. These loads can be interrupted or controlled (e.g., for
reducing demand).

• Type II: this type contains battery storage, Vehicle-to-Grid, etc., and it can be charged
from or discharged to the grid (it can inject power into the grid). Furthermore, this
type of load can be controlled to accommodate its grid needs.
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• Type III: this type includes the rest of the appliances schedulable, which can be deferred
for a suitable moment. There are diverse appliances (phone chargers, microwaves,
washing machines, tumble dryers, dishwashers, vacuum cleaners, etc.).

Our research primarily focuses on controlling the energy demand of Type III control-
lable load appliances.

4. Design of an Emergent Control System Based on the Response Threshold Model

This section describes the components of the MG considered in this study, and our
emerging control approach based on the RTM.

4.1. Distributed Control Architecture of a Microgrid

The MG analyzed in this paper, depicted in Figure 1, is designed to meet the energy
demands of a residential building. Surplus self-generated energy is stored in a battery,
and the power balance in the MG is maintained as per the energy conservation principle,
expressed by Equation (6):

PT − PL = ∆P (6)

where PT is the total potential delivered or supplied, PL is the total energy consumption of
the building, made up mainly of non-controllable loads (LNC) and controllable loads (LC),
and ∆P is the error in the supply–demand.
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Figure 1 introduces four agents: the PV agent denotes the control mechanism to
deactivate or activate solar energy; the exchange agent manages energy supply from non-
renewable sources; the storage agent handles battery charging and discharging according
to specific conditions; and the load agent deactivates controllable loads when there is no
renewable energy (from solar energy or battery), or the demand is greater than the power
of renewable energy delivered to the energy network, and the energy market cost exceeds
the price that consumers are willing to pay.

Thus, the energy system (ES) includes a PV panel, a battery, a load demand side, and
a connection to the main grid. The batteries store energy during surplus generation and
release it during peak load demand. The main grid is taken as a standby producer that
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begins to compensate when there is a deficit for the demanded energy; that is, when the
storage and/or renewable generation systems fail in the supply of demanded energy. Our
hybrid system’s overall power output (PT) is indicated as follows (Equation (7)):

PT = PH + PE (7)

where PH is the produced power by the renewable systems (e.g., wind turbines, PV panels
(PPV), etc.) and the power in the energy storage system (PBAT) (see Equation (8)), and PE is
the main grid power.

PH = PPV + PBAT (8)

As well, the demand will be divided into controllable (PLC) and non-controllable
(PLNC) (see Equation (9)):

PL = PLC + PLNC (9)

4.2. Specification of the MAS

Utilizing the MultiAgent Systems for INtegrated Automation (MASINA) methodol-
ogy [34,35], we design the emergent control approach based on the RTM. MASINA requires
two steps: (i) specifying the general architecture of the system to derive the MAS, and
(ii) designing each agent.

The first step involves representing the distributed system as a MAS, identifying
agents, relevant variables, parameters, and behaviors, among other aspects. Table 1 sum-
marizes the agent characterization for the MG in Figure 1.

Table 1. Characterization of the agents.

Agent Behavior Environment External Variables Internal Variables
or Parameters

Photovoltaic system
- It is activated when there is

potential to generate solar
energy

Solar radiation
Weather conditions Demand

Conversion efficiency
Solar panel area

ESS

- It is a producer when the
demand exceeds the solar
potential and the energy
is stored.

- When there is an excess of
renewable energy and not
enough energy is stored, it
becomes a consumer.

- When none of the preceding
suppositions are true, it
does nothing.

Renewable sources
Demand SOC

Utility grid

- When batteries and
renewable energy sources
are unable to meet the
demand, it is turned on.

Renewable sources
SOC

Demand

Controllable load

- It is activated when there are
conditions to consume
energy (low prices, energy
from renewable sources, etc.).

Renewable sources
Demand

Market cost
Comfort cost

Now it is necessary to identify the system variables which have the most influence on
the agents’ behavior, in our case:

• Solar radiation.
• Demand.
• Weather conditions.
• SOC.
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• Energy costs.

The second step involves designing agents based on their behavioral models using the
RTM (see Figure 2). With the RTM variables (probability, stimulus and response threshold)
and the internal and external variables of each agent, it is established when an agent can be
active (its ON/OFF states).
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Figure 2 illustrates the RTM model instantiated in each agent of our MAS. The stimulus
sj of each agent (Equation (10)) is characterized by a cumulative function, in which fs is the
instantaneous stimulus based on the behaviors defined in Table 1 and wj is the attenuation
factor of the instantaneous stimulus function.

sj(t + 1) = sj(t) + wj f s(t) (10)

In turn, the expression of the RTM response threshold (Equation (3)), which is related to
the sensitivity to the stimulus, represents the current needs in the denominator, and, in the
numerator, the contribution of the agent to satisfy it. In the context of our MAS, it is specific
to the role that each agent has, so it must consider aspects such as the requested demand
and energy generation capacity, among other things. The following section explains these
aspects in detail for each agent. Finally, the activation probability of an agent (Equation (1))
can be directly used by our agents to define their states.

In summary, the initial step in designing an emergent control system based on the
RTM involves identifying the agents to define the MAS. This process includes determining
their local and external variables. Once the agents are identified, we then proceed to model
their behavior. This involves defining the stimulus and response threshold for each agent,
dictating whether an agent will act or not. The stimulus is designed to assess context
information, while the response threshold is aligned with the objectives. These components
facilitate the implementation of an emergent control approach using the RTM, enabling
autonomous energy management.

Equations (1), (3) and (10) are crucial for determining the behavior of each agent. They
incorporate an implicit RL process as a self-control mechanism to regulate the agent’s
response, along with a feedback process for sharing experiences and information. This
allows for autonomous actions by the agents (see the macro-algorithm of each agent in
Algorithm 1).
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Algorithm 1. Behavior of each agent based on the RTM.

Input: local/external variables

Procedure:

1. Definition of the stimulus using Equation (10)
2. Definition of the response threshold using Equation (3)
3. Determination of the state of the agent using Equation (1)

Output: state of the agent (OFF/ON)

4.3. Emergent Control System for a Microgrid

In this section, a control model for each agent is designed based on the RTM, identify-
ing contextual variables and components to formulate mathematical expressions of stimuli
and thresholds, whose integration will form the final control system.

4.3.1. Photovoltaic Agent

Each PV agent will be activated when the stimulus increases, which occurs when energy
can be produced due to weather conditions (there is radiation (PPVmax), see Equation (4)),
and there is demand (PL) or capability to store energy ((1− Soc)QCAP). In addition, it will
be prone to not activate when its response threshold rises, i.e., when the power delivered to
the electrical network is being covered by the PV ( PPV

PL
> 0 and

(
1− PPV

PL

)
∼= 0); causing the

controller to turn off. Thus, the RTM for one PV agent, in an emergent control scheme, is as
follows, where qPV is its probability to generate solar energy:

sPV(t + 1) = sPV(t)+wPV(PPVmax(P L + (1 − Soc)QCAP)) (11)

θPV(t + 1) = θPV(t)− βPV

(
1 − PPV

PL

)
∆t + γPV

PPV
PL

∆t (12)

qPV(t) =
sPV(t)

2

sPV(t)
2 + θPV(t)

2 (13)

where PPV is the maximum power output of the PV agent that varies according to solar
radiation (see Equation (4)) and wPV is an attenuation factor to make the differences of the
perceived signals less sensitive.

4.3.2. Energy Storage Agent

This section presents the RTM used with the energy storage agent. This emergent
control system must manage three states: consumer, producer, or passive. The following
are the equations for this emergent control system:

Producer:
Equation (14) defines that the stimulus for the production is when there are demand

needs (PL) that are not covered by PPV and there is stored energy (SOC). Thus, the thresh-
old (Equation (15)) is minimized when the power supplied by the solar panels does not
contribute to meeting the demand

((
1 − PPV

PL

)
> 1

)
and there is also stored energy (Soc).

sBAT,S(t + 1) = sBAT,S(t) + wBAT,SSoc(PL − PPV) (14)

θBAT,S(t + 1) = θBAT,S(t)− βBAT,SSoc
(

1 − PPV
PL

)
∆t + γBAT,S

PPV
PL

∆t (15)

qBAT,S(t) =
sBAT,S(t)

2

sBAT,S(t)
2 + θBAT,S(t)

2 (16)

Consumer:
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Equation (17) defines that the stimulus happens when the battery is discharged
(1 − Soc) and there is excess energy from the solar panels. The threshold (Equation (18)) is
adjusted to active the agent when there is storage availability ((1 − Soc) ∼= 1) and the solar
panels cover the energy needs and there is an excess ( PPV

PL
> 1).

sBAT,C(t + 1) = sBAT,C(t) + wBAT,C(1 − Soc)(PPV − PL) (17)

θBAT,C(t + 1) = θBAT,C(t)− βBAT,C(1 − Soc)
PPV
PL

∆t + γBAT,C

(
1 − PPV

PL

)
∆t (18)

qBAT,C(t) =
sBAT,C(t)

2

sBAT,C(t)
2 + θBAT,C(t)

2 (19)

Passive:
Thus, qBAT,S is the probability of supplying energy and qBAT,C is the probability of

consuming energy. Finally, state 3 is a passive state (see Equation (20)).

qBAT,P(t) = 1 − (qBAT,S(t) + qBAT,C(t)) (20)

4.3.3. Main Grid Agent

The RTM applied for the exchange agent is defined in Equations (21)–(23). The agent
is stimulated when the demand (PL) is greater than the power produced by the renewable
systems in the energy storage systems (PL − PH > 1); see Equation (21). The threshold is
adjusted to activate the agent when the ratio between the available power and demand is
not sufficient

(
PH
PL

∼= 0
)

; see Equation (22). Lastly, qE(t) is the probability of activating, or
not, the exchange agent:

sE(t + 1) = sE(t) + wE(PL − PH) (21)

θE(t + 1) = θE(t)− βE

(
1 − PH

PL

)
∆t + γE

PH
PL

∆t (22)

qE(t) =
sE(t)

2

sE(t)
2 + θE(t)

2 (23)

4.3.4. Load Agent

This part of the study focuses on the RTM for the load agent, representing the con-
trollable type III loads of customers. The load agent enables consumers to connect to
the distribution network based on their needs, scheduling the use of controllable loads
to utilize renewable energy or during periods of low energy prices. We assume that the
uncontrollable and controllable loads of other types such as security systems, external
lighting, refrigerators, and heating, are already covered.

Specifically, controllable loads of type III can be switched off when the price of elec-
tricity is high or there is no renewable energy or in the battery, among other reasons. In
particular, in our context, the stimulus to turn on the controllable loads is when the energy
comes from renewable sources (PH − PL > 1) or when the minimum acceptable price
of the energy (costcom f ort) is not exceeded ( costcom f ort − costreal > 1

)
. costcom f ort can be

defined by the user or can be defined as the minimum or average cost of the previous day’s
invoice, or something similar. The threshold is adjusted to activate the agent when there is
surplus energy that comes from renewable sources ( PH

PL
> 1) or the price to pay for energy

is interesting (
costcom f ort

costreal
> 1). When costcom f ort is exceeded and there is no surplus energy,



Energies 2024, 17, 757 11 of 28

then this agent must be turned off to avoid overpayments. Finally, qLC(t) is the probability
of activating, or not, one of the load agents (controllable loads of type III).

sLC(t + 1) = sLC(t) + wLCfLC(t), fLC(t) =

{
(PH − PL), PH ≥ PL(

costcom f ort − costreal

)
, PH < PL

(24)

θLC(t + 1) = θLC(t)− βLCYLC(t)∆t + γLC(1 − YLC(t))∆t (25)

YLC(t) =

{ PH
PL

, PH ≥ PL
costcom f ort

costreal
, PH < PL

(26)

qLC(t) =
sLC(t)

2

sLC(t)
2 + θLC(t)

2 (27)

Table 2 summarizes the different stimulus and response threshold expressions for
each agent of our MAS to model the behavior of each MG component. This allows an
autonomous distributed coordination using our RTM-based emergent control approach.

Table 2. Stimulus and response threshold expressions of each agent.

Agent Instant Stimulus fs(t) Instantaneous Threshold (yij)

Photovoltaic system PPVmax(P L + (1 − Soc)QCAP
PPV
PL

Battery
Producer: Soc(PL − PPV)

Consumer: (1 − Soc)(PPV − PL)

Producer: PPV
PL

Consumer: 1 − PPV
PL

Utility grid PL − PH
PH
PL

Controllable load fLC(t) 1 − YLC(t)

5. Experiments

This section presents the experimental protocol and scenarios for analyzing the behav-
ior of our emergent control system based on the RTM.

5.1. Experimental Protocol

To validate the proposed controller described in Section 4, we explore a series of
case studies, each with its unique characteristics. The experiments simulate a range of
operational situations that controllers might encounter, such as variations in renewable
generation dynamics due to weather conditions, fluctuations in uncontrolled loads, battery
charging and discharging processes, and compensation from the main grid in case of
deficiencies in other MG supply components. Power units are expressed in Watts [W]. We
use the following performance criteria [36] to evaluate the quality of the results:

• Integral square error (ISE): This metric penalizes errors with higher values more
severely than those with lower values. It is particularly useful for indicating overshoots
and aggressive control, which are common following a disturbance.

ISE =
∫ t2

t1

ε(t)2dt (28)

• Integral Absolute Error (IAE): Unlike ISE, IAE does not differentiate between positive
and negative errors. It is frequently used for online controller tuning and is suitable
for typical operations and non-monotonic step responses.

IAE =
∫ t2

t1
|ε(t)|dt (29)
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We also define an objective function J for hyperparameter optimization of our models,
which was defined by Equation (30), which reaches an error close to zero. Mostly, it was
used for the search grid algorithm [37,38] to alter the parameters of our model.

Ji = min{ISE(∆P)} (30)

These metrics help compare different case studies in the absence of similar works,
demonstrating the feasibility and potential of our proposal. Real scenarios are modeled to
conduct proof-of-concept tests. The baseline for our paper is maintaining energy balance
(Equation (6)), with on/off delay time inferred through the ISE and IAE metrics. Hyperpa-
rameter optimization is an ongoing process, evolving as new agents are incorporated into
the ecosystem.

5.2. Energy Scenarios

In order to demonstrate the adaptability and effectiveness of our emergent control
strategy, we conducted several case studies, each designed to test the system under different
conditions. Following is an overview of each one:

5.2.1. Case Study 1: Solar Energy in Remote Rural Locations

This case study analyzes the calibration and performance of the PV agent in an
environment without an ESS. Conducted over 10 sunny days (measured in hours) with
a constant demand of 250 W, the study aims to understand the model’s dynamics by
examining the interplay between the stimulus variable and the threshold. The calibration
process involved is as follows:

1. Setting wPV to modulate the instantaneous stimulus signal such that it allows varia-
tions of the accumulated stimulus in the order of tenths, to prevent overflow.

2. Estimating preliminary values for βPV and γPV with simulations indicating the tem-
poral trends of the stimulus and the threshold as shown in Figure 3B, with the dotted
gray line representing the orientation of the signals. The adjustment is made using
Equation (30) as the objective function.

3. The space around the previously obtained initial values of βPV and γPV is explored.
For that, a sweep is made of βPV between 1 × 10−5/100 × 10−5 and γPV between
1 × 10−5/10× 10−5, obtaining the following values: βPV = 2.1× 10−4 and γPV = 1 × 10−5

and a wPV = 0.0641.

The PV agent is activated in response to solar radiation (ϕ) (see Equation (4)) and
consumer demand (P L) as there are no ESSs to store the produced energy. Figure 3 exhibits
the key variables involved in the PV agent, with stable sunny days (as shown at the top of
Figure 3).

Figure 3A depicts the consistent solar power available throughout the study, providing
a foundational context for the PV agent’s operation. This consistent availability of solar
radiation is crucial for the agent’s activation. In addition, it is observed how the interaction
between the stimulus variables (context-dependent, such as solar radiation) and threshold
intertwine to exhibit a dynamic (see Figure 3B,E,F) which results in the probability of
activation or deactivation of the PV agent (see Figure 3C,D) that comes into operation when
conditions are favorable, which will be explained below.

Figure 3E shows a day (24 h) during which the PV agent must be used to meet
the demand from sunrise to sunset. Figure 3F illustrates how the stimulus (pink line)
exhibits a decreasing behavior at night and an increasing behavior with sunrise, which is
expected. In addition, the threshold (blue line) decreases when the solar panels contribute
to satisfying the demand, translating into an increase in probability when there is solar
radiation (see Figure 3F). At approximately 7:30 am, the PV agent switch is activated to
supply power to the load, and remains activated for almost 8 h, until its deactivation at
3:20 p.m. when the power generated by the panel is no longer sufficient. This reveals
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that the activation mechanism is based on the probability signal (stimulus due to the sun),
which allows the switches to be automated.

Energies 2024, 17, x FOR PEER REVIEW 13 of 29 
 

 

Figure 3A depicts the consistent solar power available throughout the study, provid-
ing a foundational context for the PV agent’s operation. This consistent availability of solar 
radiation is crucial for the agent’s activation. In addition, it is observed how the interaction 
between the stimulus variables (context-dependent, such as solar radiation) and threshold 
intertwine to exhibit a dynamic (see Figure 3B,E,F) which results in the probability of ac-
tivation or deactivation of the PV agent (see Figure 3C,D) that comes into operation when 
conditions are favorable, which will be explained below. 

 
Figure 3. Solar energy in remote rural locations. From top to bottom: (A) Solar power. (B) Relation-
ship between stimulus and threshold. (C) Probability of activation of the solar panels. (D) Smart 
switch activation. Figures (E,F) are the detailed and bounded views in a period of 24 h. 

Figure 3E shows a day (24 h) during which the PV agent must be used to meet the 
demand from sunrise to sunset. Figure 3F illustrates how the stimulus (pink line) exhibits 
a decreasing behavior at night and an increasing behavior with sunrise, which is expected. 
In addition, the threshold (blue line) decreases when the solar panels contribute to satis-
fying the demand, translating into an increase in probability when there is solar radiation 
(see Figure 3F). At approximately 7:30 am, the PV agent switch is activated to supply 
power to the load, and remains activated for almost 8 h, until its deactivation at 3:20 p.m. 
when the power generated by the panel is no longer sufficient. This reveals that the acti-
vation mechanism is based on the probability signal (stimulus due to the sun), which al-
lows the switches to be automated.  

The simulation was conducted 20 times, and the results, including the averages and 
worst results for the ISE and IAE metrics, are summarized in Table 3. The standard devi-
ation (S), trending towards zero, indicates the control system’s stable performance. This 
pattern of stability, as reflected in the ISE and IAE results, is consistent with the results 
achieved in the other case studies (see Sections 5.2.2–5.2.8). This pattern of stability, as 
reflected in the ISE and IAE results, is consistent with the results achieved in the other 
case studies (see Sections 5.2.2–5.2.8). 

Table 3. Performance metrics for case study 1. 

Metrics ∆𝐏 Worst Cases ∆𝐏 % S 
ISE 1.01 × 107 1.5 × 107 67.47% 0.0 
IAE 4.03 × 104 6 × 104 67.17% 0.0 

Table 3 provides a comprehensive overview of the system’s behavior by presenting 
a set of metrics. In the worst-case scenario, where the power supply–demand discrepancy 

Figure 3. Solar energy in remote rural locations. From top to bottom: (A) Solar power. (B) Relationship
between stimulus and threshold. (C) Probability of activation of the solar panels. (D) Smart switch
activation. Figures (E,F) are the detailed and bounded views in a period of 24 h.

The simulation was conducted 20 times, and the results, including the averages and
worst results for the ISE and IAE metrics, are summarized in Table 3. The standard deviation
(S), trending towards zero, indicates the control system’s stable performance. This pattern
of stability, as reflected in the ISE and IAE results, is consistent with the results achieved
in the other case studies (see Sections 5.2.2–5.2.8). This pattern of stability, as reflected in
the ISE and IAE results, is consistent with the results achieved in the other case studies
(see Sections 5.2.2–5.2.8).

Table 3. Performance metrics for case study 1.

Metrics ∆P Worst Cases ∆P % S

ISE 1.01 × 107 1.5 × 107 67.47% 0.0

IAE 4.03 × 104 6 × 104 67.17% 0.0

Table 3 provides a comprehensive overview of the system’s behavior by presenting a
set of metrics. In the worst-case scenario, where the power supply–demand discrepancy
(∆P) is at its maximum, ISE and IAE values reach their highest. These values are compared
to the average ISE (1.01 × 107) and IAE (4.03 × 104) recorded during the experiment. The
difference in magnitude between the worst-case and average scenarios is approximately
67.47% for ISE and 67.17% for IAE. This implies that over the 10-day (or 240-h) study period,
the agent remained deactivated 67% of the time, translating to the PV agent being active
for about 33% of the time. In terms of power supply, this equates to approximately 79 h
or 3.3 days of activation. Table 4 details the parameters derived from the hyperparameter
optimization process specific to this case study.
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Table 4. Optimization of hyperparameters for functional control mode.

Parameter Symbol PV Agent Battery Agent
Producer

Battery Agent
Consumer

Exchange
Agent Load Agent

Initial stimulus si s 100 100 100 100 100

Initial response threshold θij θ 100 100 100 100 100

Attenuation factor w 10.1 × 10−6 0.005 5 × 10−8 5 × 10−8 5 × 10−8

Learning factor β 1.06 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6

Forgetting factor γ 3 × 10−5 3.9 × 10−5 3.9 × 10−5 3.9 × 10−5 3.9 × 10−5

The most relevant parameters of our model are the initial values of the stimuli and
thresholds, as well as the factors used by each model, which significantly impact the speed
and effectiveness of the reinforcement process. Notably, for each parameter, the forgetting
factor outweighs the learning factor. This characteristic enables the agents to effectively
utilize and build upon the knowledge they have acquired. Additionally, the attenuation
factor, which plays a crucial role in modulating the stimulus, is kept relatively small. This
careful calibration ensures that the stimulus is adjusted in a controlled manner, contributing
to the overall precision and responsiveness of the model.

5.2.2. Case Study 2: Variable Solar Power in Remote Rural Areas

In a typical scenario encountered in rural or remote areas, such as farms without
electricity service, inhabitants often turn to alternatives like solar systems to harness
daylight radiation. This case study, inspired by the research of Yousif et al. [39], examines
renewable energy sources without ESS, focusing on the quality and stability of the power
delivered. Over a 10-day period, marked by variability in weather conditions and demand,
the study explores these dynamics. The findings are presented in Table 5 and Figure 4.

Table 5. Performance metrics for case study 2.

Metrics ∆P Worst Cases ∆P % S

ISE 1.40 × 107 1.5 × 107 93.33% 0.0

IAE 4.56 × 104 5.52 × 104 82.6% 0.0

In Figure 4A, there are two significant shifts in energy demand. For the initial five
days, the demand remains low at 100 W, allowing for optimal use of the available solar
power. However, from day 6 onwards, the demand surges to 400 W. Consequently, solar
energy is only sufficient to meet this increased demand on days 6 and 7. Starting from day
8, the solar radiation drops to levels too low to activate the Photovoltaic (PV) agent, as
illustrated in Figure 4D.

Figure 4E highlights the energy deficit resulting from the lack of alternative energy
sources to fulfill the demand. This deficit is corroborated by the data in Table 5, where ∆P
is close to the worst of the scenarios, with 93.33% for ISE and 82.6% for IAE, which means
the percentage that fails to satisfy the demand. As a result, the PV agent’s contribution is
limited to 17.4%, with the shortfall leading to a blackout.

These outcomes, derived from 20 simulations as shown in Table 5, also reveal a
standard deviation (S) tending towards zero. This indicates that despite the challenging
conditions and the resultant shortfall in energy supply, the control system’s performance
remains stable.
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(E) Difference between the power delivered and consumed.

5.2.3. Case Study 3: Coordination between Energy Supply Agents

The objective of this case is to evaluate the coordination of the energy supply agents
(solar energy and main grid) over a 10-day period characterized by variable sunny condi-
tions. This scenario, typical of a residential setting, assumes a constant demand of 250 W
with unvarying costs. The study, inspired by the findings in the work of Hu et al. [11], aims
to assess how photovoltaic systems and the main electrical network collaborate to meet the
energy needs of residential consumers.

In this case study, cloudiness significantly impacts the solar energy output, as observed
in Figure 5A. The reduction in solar radiation due to cloud cover, particularly on days 2–5
and 7–10, leads to a decreased contribution from solar energy, which is clearly demonstrated
in Figure 5B. The impact is most pronounced on days 4–5 and 9–10, where the cloudiness
is so substantial that the Photovoltaic (PV) agent remains inactive, unable to generate
adequate power due to insufficient radiation.

During these days, with the PV agent being inactive, the residential demand for power
cannot be met by solar energy alone. Consequently, as depicted in Figure 5C, the electricity
demand is fulfilled by an external power source. This reliance on an external grid during
periods of reduced solar output underscores the importance of having a diversified energy
supply, particularly in residential settings where consistent power availability is crucial.

Figure 5D illustrates the disparity between the energy supplied and the energy con-
sumed. This difference is quantitatively depicted in Table 6, which shows exceptional
demand satisfaction (∆P = 0), marked by a singular peak in both the IAE and ISE, each at
0.01%. The distribution of contributions from various components of the energy ecosys-
tem is as follows: solar panels account for 13.13%, the battery contributes 0.0%, and the
external power supply provides the majority at 86.88%. This distribution underscores the
predominant role of the external power supply in this energy mix.
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Table 6. Performance metrics for case study 3.

Metrics ∆P Worst Cases ∆P % S

ISE 1513 1.5 × 107 0.01% 0.0

IAE 6.05 6 × 104 0.01% 0.0

5.2.4. Case Study 4: Storage System with Failures

This case study centers on examining the coordination among PV agents, the battery,
and the main electrical network in a situation where the battery, initially 100% charged,
experiences a deep discharge due to a malfunction in its recharging mechanism, rendering
its recovery impossible. Uniformity in energy costs and demand is maintained in this typical
residential scenario. However, the battery charge and discharge controller encounter an
issue in its electrical system, preventing proper charging of the storage system. This study
is grounded in the research presented by Hu et al. [11].

Figure 6A displays solar power alongside the constant demand, highlighting days
(such as 4, 5, 9, and 10) where solar power is insufficient due to weather conditions. In
addition, Figure 6B shows how the photovoltaic agent is activated when there is solar
radiation, which influences the time of the power delivered by the solar panels due to the
level of radiation. Also, it is observed between the period of absence of solar radiation or
cloudiness (see Figure 6A) that the battery comes into operation to supply the demand of
consumers (Figure 6C). On day 4, with inadequate irradiation, solar panels fail to activate,
and the storage device must supply energy all day. However, a failure in the battery
agent leads to its complete discharge. (Figure 6D). The exchange agent intermittently
compensates until it fully assumes supply due to the battery’s complete discharge (SOC = 0)
and insufficient solar radiation from day 9 onwards (Figure 6E).
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Figure 6F depicts the balance achieved in the electrical network, fulfilling demand
through the joint coordination of the agents and compensating for the deficiencies due to
failures. Notably, the utilization of the storage device improves the metrics compared with
case study 2 by reducing peaks caused by the entry of the external electrical network. The
figure shows the difference between the energy delivered and consumed, as quantitatively
represented in Table 7, with excellent demand satisfaction (∆P = 0). A single peak is noted
in the IAE (0.02%) and ISE (0.04%) metrics, with the latter being higher. The contributions
from each component of the energy ecosystem are as follows: solar panels at 13.13%, the
battery at 39.95%, and the external power supply at 46.96%. This distribution highlights the
significant influence of climatic conditions on renewable energy production (solar energy)
and the increased reliance on external energy sources due to the battery’s failure.

Table 7. Performance metrics for case study 4.

Metrics ∆P Worst Cases ∆P % S

ISE 6013 1.5 × 107 0.04% 0.0

IAE 12.05 6 × 104 0.02% 0.0

5.2.5. Case Study 5: Storage System Failure and Restoration

Case Study 5 examines the ecosystem’s response to a battery failure in a typical
residential setting, where the battery, initially fully charged, encounters a communication
failure. This failure prevents the SOC variable from being detected by any system agent
during the first five days. After 120 h, the communication issue is resolved. The scenario
assumes variable solar radiation due to weather conditions and a constant demand over
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10 days. This study, based on the insights from Hu et al. [11], analyzes the impact of a
battery agent problem and its subsequent restoration on the overall energy supply system.

Figure 7A displays solar power in relation to irradiance alongside the actual demand.
It highlights days, such as 4, 5, 9, and 10, where solar power is insufficient due to weather
conditions. In addition, Figure 7B illustrates the activation of the PV agent and its influ-
ence on the power delivered by the solar panels, dictated by the level of solar radiation.
Figure 7C shows that for the first five days, the battery does not operate due to the failure
in communicating the SOC variables. Once this issue is resolved, the battery resumes
operation and supplies the required power for the subsequent days. In Figure 7D, the
dotted line represents the SOC battery charge percentage throughout the period, and
Figure 7E indicates the periods when the power from the external electrical grid is utilized,
particularly after the battery is fully discharged on the 10th day.

Energies 2024, 17, x FOR PEER REVIEW 18 of 29 
 

 

Table 7. Performance metrics for case study 4. 

Metrics ∆𝐏 Worst Cases ∆𝐏 % S 
ISE 6013 1.5 × 107 0.04% 0.0 
IAE 12.05 6 × 104 0.02% 0.0 

5.2.5. Case Study 5: Storage System Failure and Restoration 
Case Study 5 examines the ecosystem’s response to a battery failure in a typical resi-

dential setting, where the battery, initially fully charged, encounters a communication fail-
ure. This failure prevents the SOC variable from being detected by any system agent dur-
ing the first five days. After 120 h, the communication issue is resolved. The scenario as-
sumes variable solar radiation due to weather conditions and a constant demand over 10 
days. This study, based on the insights from Hu et al. [11], analyzes the impact of a battery 
agent problem and its subsequent restoration on the overall energy supply system. 

Figure 7A displays solar power in relation to irradiance alongside the actual demand. 
It highlights days, such as 4, 5, 9, and 10, where solar power is insufficient due to weather 
conditions. In addition, Figure 7B illustrates the activation of the PV agent and its influ-
ence on the power delivered by the solar panels, dictated by the level of solar radiation. 
Figure 7C shows that for the first five days, the battery does not operate due to the failure 
in communicating the SOC variables. Once this issue is resolved, the battery resumes op-
eration and supplies the required power for the subsequent days. In Figure 7D, the dotted 
line represents the SOC battery charge percentage throughout the period, and Figure 7E 
indicates the periods when the power from the external electrical grid is utilized, particu-
larly after the battery is fully discharged on the 10th day. 

 
Figure 7. Storage system failure and restoration. From top to bottom: (A) Continuous line represents 
solar power as a function of irradiance and the dotted line represents the real demand. (B) Real 
power delivered by the solar panels. (C) Period where the battery power is supplied. (D) Dotted line 
represents the SOC battery charge percentage. (E) Period where the power of the external electrical 
grid is used. (F) Difference between the power delivered and consumed. 

Figure 7. Storage system failure and restoration. From top to bottom: (A) Continuous line represents
solar power as a function of irradiance and the dotted line represents the real demand. (B) Real
power delivered by the solar panels. (C) Period where the battery power is supplied. (D) Dotted line
represents the SOC battery charge percentage. (E) Period where the power of the external electrical
grid is used. (F) Difference between the power delivered and consumed.

Figure 7F reveals the difference between the energy delivered and that consumed,
whose behavior is represented quantitatively through Table 8, with excellent demand
satisfaction (∆P = 0), and with a single peak expressed in the metric IAE (0.03%) and ISE
(0.09%), the latter being higher due to the presence of the peak. The contribution of each of
the components of the energy ecosystem is distributed as follows: 13.13% the solar panels,
39.94% the battery, and 46.96% the external power supply, which demonstrates the high
influence of climatic conditions on production from renewable sources (solar energy), and
the greater participation of the external energy source.
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Table 8. Performance metrics for case study 5.

Metrics ∆P Worst Cases ∆P % S

ISE 1.35 × 104 1.5 × 107 0.09% 0.0

IAE 18.05 6 × 104 0.03% 0.0

5.2.6. Case Study 6: Normal Operation of the MG with Constant Demand

The aim of this case study is to evaluate the performance of the energy storage agent in
managing energy supply and consumption processes under constant demand. It operates
under the assumption of stable energy costs over time (costcom f ort > costreal), and varying
solar radiation, as depicted in see Figure 8A. This scenario is typical of a residential
environment powered by various sources, with the study focusing on the coordination of
its components. The foundational research for this case is drawn by Zhou et al. [10].
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Figure 8. Normal operation of the MG with constant demand. From top to bottom: (A) Continuous
line represents solar power as a function of irradiance and the dotted line represents the real demand.
(B) Real power delivered by the solar panels. (C) Period where the battery power is supplied.
(D) Dotted line represents the SOC battery charge percentage. (E) Period where the power of the
external electrical grid is used. (F) Difference between the power delivered and consumed.

Figure 8A shows the solar power with constant demand, evidencing that there are
days where the solar power is not enough to satisfy the demand, such as days 4, 5, 9, and 10,
due to weather conditions. In addition, Figure 8B shows how the PV agent is activated
according to the solar radiation and load demand. On the one hand, it is evident that
in the absence of solar energy, the storage device starts to work and is activated again
when the power of the panel is not enough, which is highlighted between days 1 and 3 of
Figure 8B,C. On the other hand, the battery is completely discharged on day 5, and tries to
recover slowly, but, motivated by the demand and variability of the climatic conditions, the
SOC tends to zero (see Figure 8D). Thus, the external power system comes into operation
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intermittently from day 5, and becomes permanent from day 9, due to insufficient solar
radiation and battery discharge.

Figure 8F presents the difference between the energy delivered and consumed. This
behavior, quantitatively depicted in Table 9, shows excellent demand satisfaction (∆P = 0),
with occasional peaks in the IAE (0.09%) and ISE (0.16%) metrics, the latter being higher
due to the quantity and magnitude of the peaks. Meanwhile, the IAE remains lower than
the ISE due to the infrequent occurrence of these peaks. The energy contributions are
distributed as follows: solar panels at 13.11%, the battery at 46.58%, and the external power
supply at 40.31%. This distribution highlights the significant impact of climatic conditions
on renewable energy production (solar energy) and the subsequent effects on the battery
charging processes.

Table 9. Performance metrics for case study 6.

Metrics ∆P Worst Cases ∆P % S

ISE 2.328 × 104 1.5 × 107 0.16% 0.0

IAE 57.11 6 × 104 0.09% 0.0

5.2.7. Case Study 7: Normal Operation of the MG with Variable Consumption

The focus of this case study is to analyze the coordination between the components
of an MG—specifically the solar panels and external power source—in a scenario where
there is variable consumption against a backdrop of constant solar radiation over a 10-day
period. The battery in this scenario is fully functional and charged (charge and discharge).
This residential scenario, drawing on various energy sources, examines the coordination
between the MG components in response to demand variations. The study is based on the
research conducted by Zhou et al. [10].

Figure 9A shows the solar power and the variation in the demand of the electrical
network, highlighting the excess energy that will allow the battery to be charged. The power
generated by PPV (solar panels) is used depending on the demand needs and availability
of storage in the battery (SOC << 1). For example, on days 1 and 2, only what is required
by the load is supplied, while for the rest of the days, both the demand and the battery
charge are covered (see Figure 9B). It can also be seen in Figure 9C,D, the power delivered
by the battery and the percentage (SOC), respectively, where it is fully discharged on day 6
and begins a gradual recovery process, due to the demand decreases at the end of day 7.
Between days 6 and 8, the battery is completely discharged, so the external power source
comes into operation (see Figure 9E).

Figure 9F presents the difference between the energy delivered and consumed. This
behavior, as quantified in Table 10, indicates excellent demand satisfaction (∆P = 0), with
occasional peaks expressed in the metrics IAE (0.73%) and ISE (0.19%). The ISE is lower
due to the frequency and magnitude of the peaks, whereas the IAE is higher, reflecting
an increase in magnitude due to demand variations on days 6 and 7. The energy contri-
butions are distributed as follows: solar panels at 27.92%, the battery at 58.38%, and the
external power source at 13.72%. This distribution signifies that 86.26% of the energy comes
from renewable sources, underscoring the MG’s effective management and utilization of
renewable energy.

Table 10. Performance metrics for case study 7.

Metrics ∆P Worst Cases ∆P % S

ISE 2.84 × 104 1.5 × 107 0.19% 0.0

IAE 73.26 6 × 104 0.73% 0.0
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Figure 9. Normal operation of the MG with variable consumption. From top to bottom: (A) Con-
tinuous line represents solar power as a function of irradiance and the dotted line represents the
real demand. (B) Real power delivered by the solar panels. (C) Period where the battery power is
supplied. (D) Dotted line represents the SOC battery charge percentage. (E) Period where the power
of the external electrical grid is used. (F) Difference between the power delivered and consumed.

5.2.8. Case Study 8: Energy Price Variability

This case study investigates the functionality of the entire energy ecosystem amidst
energy price fluctuations over a 10-day period, focusing on how these changes affect
behavior around the cost of comfort. The scenario assumes constant solar radiation, a fully
charged (100%) battery at the start, and normal operation for charging and discharging
processes. The non-controllable loads consume 200 W, and the controllable loads consume
50 W, representing a scenario with diverse energy sources and fluctuating energy costs.

The dotted line in Figure 10A indicates solar power related to irradiance, while the
solid line shows the actual potential delivered by the solar panels. For the initial two days,
the energy supply is solely from the battery and solar agents, as shown in Figure 10B.
Despite high battery charge levels and solar panel energy surpluses, these surpluses are
not utilized until the third day.

The battery has a high percentage of load, and the energy surpluses of the solar
panels are not used, but from the third day on, the excess energy from the solar panels
is gradually used to charge the battery, which is evidenced by the overlapping of both
signals (see Figure 10A) This charge is very tenuous (See Figure 10C). Figure 10B shows the
three states of the battery: when PBAT > 0 then it supplies power; when PBAT = 0 then it
does nothing; and when PBAT < 0 then it charges. On day 7th, the batteries are completely
discharged for the first time, and that is when the external electrical energy comes into
operation to supply the energy deficiencies (see Figure 10D). It should be noted that the
batteries manage to partially charge themselves in periods of excess solar energy, but are
not enough to achieve 100% charge. So, coordinated control is obtained between the solar
panels, the batteries and the external electrical network.
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Figure 10. Energy price variability. From top to bottom: (A) The dotted line represents solar power
as a function of irradiance and the solid line represents the real potential delivered by the solar
panels. (B) Continuous line is the battery power supplied. (C) Dotted line represents the SOC battery
charge percentage. (D) Period where the power of the external electrical grid is used. (E) The dotted
line represents the cost of comfort and the continuous line the variations in the price of energy.
(F) Demand or power consumed by the apartment. (G) Difference between the power delivered
and consumed.

Figure 10E shows the variations in the price of energy. When the batteries are charged
in the first 6 days, despite the cost increase, it is not relevant because the external source
does not act. But then, in the second cycle of variations in the price of energy that occurs
between days 8 and 9, it affects the operation of the electrical network, which causes the
deactivation of controllable loads to reduce consumption. Most of the time (91.46%), full
energy supply is guaranteed to both controllable and non-controllable loads, but only 8.54%
of the time, controllable loads are turned off due to high energy prices.

Figure 10G quantitatively represents the difference between the energy delivered
and consumed. In other words, a measure of satisfaction of consumers who seek to have
the trend as close to zero as possible, which is shown in Table 11, when the peaks and
transitions of the energy sources are minimal with values of 0.10% in the case of the IAE
and 0.17% in the ISE. The latter is higher because it penalizes the peaks that appear. To
calculate the above measurements, the worst case is considered when the error is maximum
(250 W) during the 10 days.

Table 11. Performance metrics for case study 8.

Metrics ∆P Worst Cases ∆P % S

ISE 2.54 × 104 1.5 × 107 0.17% 0.0

IAE 66.53 6 × 104 0.10% 0.0
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5.3. General Discussion

The results of the case studies, reflecting the contributions of the MG generation sources,
are summarized in Table 12. The data are expressed in hours, days, and percentages relative
to a period of 240 h/10 days/100 percent. Each case study explores a variety of scenarios
that can occur in electrical networks. These scenarios include weather variations, component
failures, market price fluctuations, and changes in consumer demand, among others.

Table 12. Summary of the case studies.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PPV

Hours 78.02 41.75 31.52 31.5 31.52 31.47 67 65.17

Day 3.25 1.74 1.31 1.31 1.31 1.31 2.79 2.72

% 32.51% 17.40% 13.13% 13.13% 13.13% 13.11% 27.92% 27.15%

PBAT,S

Hours 0 0 0 95.87 95.86 111.8 140.1 141.4

Day 0.00 0.00 0.00 3.99 3.99 4.66 5.84 5.89

% 0.00% 0.00% 0.00% 39.95% 39.94% 46.58% 58.38% 58.92%

PE

Hours 0 0 208.5 112.7 112.7 96.75 32.93 33.5

Day 0.00 0.00 8.69 4.70 4.70 4.03 1.37 1.40

% 0.00% 0.00% 86.88% 46.96% 46.96% 40.31% 13.72% 13.96%

Figure 11 graphically represents the percentage contribution of each component. In
cases 1 and 2, only the solar panels are involved, with differences between the two cases
due to climatic variability.
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According to Figure 11, blackouts are caused by an energy deficit when other supply
sources are absent, leading to a vulnerable and deficient electricity supply. Conversely,
from cases 3 to 8, there is evident perfect coordination among the various agents to ensure
energy supply under any condition. Cases 4–6 exhibit similar behaviors, as do cases 7 and 8,
where most of the energy supply is from renewable sources. This situation is advantageous
for consumers, as renewable energy is generally cheaper and less polluting than fossil
fuel-based sources such as gas and oil.
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This paper has demonstrated the technical feasibility of our proposal through sim-
ulations. However, for real-world implementation, other technological aspects must be
considered. Specifically, the emerging agent-oriented RTM-based controller would operate
at the tertiary level of an MG control architecture, necessitating coordination, control, and
communication processes with higher-level agents. This would require communication
capabilities depending on the distributed nature of the MG components. For wireless
communication needs, technologies like GSM, GPRS, 3G, 4G, and Wi-Max could be utilized;
ZigBee, WiFi, or Bluetooth are suitable for shorter distances. Wired solutions might include
Power Line Communication (PLC), fiber optics, and DSL for longer distances, or RS485
and Ethernet for shorter distances [9].

5.4. Qualitative Comparison with Previous Works

In comparing our work with previous studies (refer to Table 13), several criteria have
been considered:

1. Context of Distributed Control: one criterion is whether the study is within the context
of distributed control.

2. Energy Problem Involving Both Supply and Demand: another criterion is whether the
study addresses the energy problem involving both supply and demand simultaneously.

3. Consideration of New Agents: lastly, we consider if the study incorporates dynami-
cally new agents, such as new renewable energy sources.

The x symbol on Table 13 indicates that this work meets that criterion.

Table 13. Comparison with previous works.

Criteria vs. Works 1 2 3

[14] x

[15] x x

[16] x

[20] x x

[40] x

[10] x x

[12] x

[13] x x

Our approach x x x

Following is a qualitative comparison with some of the previous works: Harmouch
et al. [14] suggest a decentralized MA-EMS with the goal of minimizing power exchange
with the main grid. While it shares a similar architecture with our paper, it does not search
into the coordination between different elements or variations in market prices, and the
study time periods are shorter. Additionally, its objective is to minimize grid reliance rather
than satisfy consumer needs.

Kofinas et al. [15] recommend a cooperative MAS for managing the energy of a
stand-alone MG. The MAS learns to control the MG components, but it requires previous
experience to define the control rules. Moreover, it does not consider the participation of
controllable loads on the demand side. Zhou et al. [9] propose an autonomous coordination
control strategy for MGs, and Areekkara et al. [13] study a MAS approach to model an MG
EMS with diverse forecasting agents and a real-time correction agent.

Chouikhi, et al. [16] present electricity management mechanisms in smart buildings
to reduce total energy cost and the peak to the average consumption ratio, and maximize
the exploitation of renewable energy. Unlike our proposal, which focuses on controllable
loads, this work analyzes various loads within building apartments but does not detail
their distribution within the building.
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Zheng et al. [40] examine self-organization algorithms that are appropriate for task
distribution in industrial manufacturing processes with significant task dependencies. They
propose two algorithms based on the RTM for task dependencies. They only rely on local
interactions between the relevant agents and the environment for decision-making. It is a
different application of the RTM compared to our approach as an emergent control strategy.

The rest of the works [9,11,17,18] fall along the same lines as the previous ones: they
do not simultaneously consider both sides (producer and consumer), or they do not allow
distributed control or the natural integration of new agents. These aspects are covered
by our proposal. It is worth highlighting the works [11,12,19] that address trends in
coordination strategies around energy management systems as an MG. In these works, it
can be verified that the RTM has not been previously used, showing that our RTM-based
approach is an innovative proposal. Additionally, this paper indicates the way to specify an
MG using the MAS paradigm with an emergent coordination approach between its agents
(see Section 4.2).

6. Conclusions

Based on the emergent control paradigm, this paper proposes a distributed control
architecture for MGs. Specifically, it is based on the RTM, which was inspired by how
ants react to internal or external stimuli of local variables in their environment. The
paper suggests an emergent control approach for MGs composed of heterogeneous agents,
including batteries, solar panels, controllable loads, and external energy sources. These
agents must coordinate to satisfy consumer demand.

One of the main features of our emergent control method is its robustness. It adapts
to component failures, changes in climatic conditions, or economic variables, ensuring
the achievement of global goals. The activation mechanisms derived from this approach
significantly improve performance, with IAE metrics as low as 0.01% (in case study 3),
indicating minimal difference between supplied and demanded power.

The research results demonstrate the potential of this approach to address several
challenges in the energy ecosystem: (i) MG component decentralized coordination based
on local environmental knowledge; (ii) Robustness in distributed control actions in the
face of different failures (see cases 3, 4 and 5); (iii) RES prioritization. From cases 3 to 8,
there is evidence of perfect coordination between the various agents to guarantee the
energy supply in any condition ∆P = 0. Cases 4–6 show similar behaviors, as well as
cases 7 and 8, where most of the energy comes from renewable energy sources, 59.7% and
86.1%, respectively. The main findings of the research work focus on the definition of an
autonomous distributed control based on the RTM, and the definition of a methodology to
apply our emergent approach to control an MG. Our approach allows maximizing the use
of renewable energy, uses controllable charging when it is least expensive, and optimizes
the use of batteries, among other things. On the other hand, one of the main limitations of
this work is the implementation in a reduced number of energy agents.

Future work aims to integrate additional RES such as wind and geothermal and con-
sider their joint performance. The study will also dig into controllable loads and other
agents like electric vehicles, exploring various user comfort levels for load adjustment.
The emergent control proposal will be integrated into a MAPE-K (Monitor-Analyze-Plan-
Execute plus Knowledge) model [41] for smart energy management in smart grids. Fur-
thermore, the approach will be implemented in an energy simulator like ESDL-based
Energy System Simulator (ESSIM) [42] and investigated for compatibility with advanced
RL models, including Deep RL.

Additionally, other conditions, such as penalties stipulated in electricity supply con-
tracts for interruptions to consumer supply, can be incorporated into the design of our
emerging controller. Under these conditions, maintaining the stability of the MG requires
action on the electricity supply networks rather than on the consumers. Another aspect
for future studies is the monitoring of frequency values to control the balance between the
electrical energy produced and consumed. Finally, while future work will concentrate on
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distributed control issues, there is also a potential to explore more complex component
models and apply MG design methods to size components appropriately according to
various needs and operational requirements.
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Nomenclature and Abbreviations

Subscripts
i For agents/individuals
j For tasks, j = {PV, ESS, UG}
Variables
θ Response threshold
s Stimulus
q Activation probability
Nact Quantity of active entities
N Quantity of entities that may be active in the colony
fs Instant stimulus
yij Portion of entities of type i doing task j
PPV Maximum active power output PV [W]
ϕ Solar radiation [kw/m2]
Ta Ambient temperature [◦C]
Vt Terminal voltage of the battery [V]
SOC Battery state of charge at t [%].
I The effective value of the discharge current [A]
PT Total active power generated [W]
∆P Error in the supply-demand [W]
PH Generated active power by the renewable systems [W]
PE Main grid active power [W]
PBAT Active power in the energy storage system [W]
PL Total energy consumption or demand [W]
PLC Power consumed by controllable loads [W]
PLNC Power consumed by uncontrollable loads [W]
costcom f ort Comfort cost
costreal Market cost
Abbreviations
DER Distributed energy resources
DRL Deep Reinforcement Learning
EP Energy pool
PEU Power exchange unit
EMS Energy Management System
ES Energy system
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ESS Energy storage system
HES Hybrid energy systems
LC Controllable loads
LNC Non-controllable loads
MAS Multiagent Systems
MASINA Multiagent Systems for Integrated Automation
MG Microgrid
PV Photovoltaic
RES Renewable Energy Systems
RTM Response Threshold Model
RL Reinforcement Learning
UG Utility grid
WECS Wind energy conversion systems
Parameters
α Scale factor that measures the efficiency in performing the task
δ Increase in the stimulus’s intensity per unit of time
β Learning rate
γ Forgetting rate
η Conversion efficiency of the PV array
S Area of the PV array [m2]
VOC Circuit voltage [V]
Rint Internal resistance of the battery [Ω]
K Polarization constant
wj Attenuation factor of the instantaneous stimulus function (fs)
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