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Abstract: In order to explore the law of gas–solid countercurrent cooling heat transfer in a vertical sin-
ter cooling furnace at a high temperature, based on the Euler model and the local non-thermodynamic
equilibrium theory, an exergy efficiency model was built to evaluate the heat transfer process in the
vertical sinter cooling furnace with different parameter changes. It was found that the inlet tempera-
ture of cooling air and sinter inlet temperature are the main factors affecting the temperature field
and gas–solid heat transfer characteristics in the furnace. Under the conditions of each parameter, the
cooling air temperature presents a radial “M” shape distribution. The axial cooling section is the most
intense area of gas–solid heat transfer, and this part has the best heat transfer effect. When the inlet
temperature of cooling air and the inlet temperature of sinter increase, the outlet temperature of sinter
and the outlet temperature of cooling air increase. When the sinter equivalent diameter increases,
the cooling air outlet temperature decreases gradually, while the sinter outlet temperature increases
gradually. When the diameter and height of the cooling section increase, respectively, the outlet
temperature of the sinter decreases and the outlet temperature of the cooling air increases. Based
on dimensional analysis, the heat transfer correlation formula suitable for certain test conditions
is obtained.

Keywords: high-temperature sintered ore vertical cooling furnace; gas–solid counterflow cooling
heat transfer; exergy efficiency model; heat transfer correlation

1. Introduction

The iron and steel industry is an important basic industry in China, but it has a
long process and high energy consumption, with an energy efficiency of only 30–50%.
The sintering process, which is the third most energy-consuming process, has a waste
heat recovery rate of only 22%, with more than 70% of the waste heat not being utilised.
Efficient recycling of sintering waste heat is of great significance to the steel industry
in terms of energy saving, consumption reduction, quality improvement and efficiency
enhancement [1]. The traditional cooling methods are ring cooling and belt cooling; the
disadvantages of these methods include poor containment, uneven cooling of the sintered
ore, and low waste heat recovery [2]. A vertical sintering cooling furnace is formed based
on dry coke quenching technology, which has the advantages of low air leakage rate, high
waste heat recovery rate, etc. [3].

The gas flow and gas–solid heat transfer problems inside the vertical cooling furnace
of sinter ore are the key problems affecting the waste heat recovery of vertical cooling
furnace. Feng Junsheng’s team established an unsteady gas–solid heat transfer model in the
ring cooler and analysed the influence of different parameters on the waste heat recovery of
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the ring cooler [4]. Based on the porous medium model and combined with the gas–solid
packing bed dynamics theory, a mathematical model of gas flow in the sintered vertical
tank was established [5]. According to the regression analysis of the experimental data, the
modified Ergun correlation and gas–solid heat transfer correlation are obtained [6]. The
gas–solid heat transfer characteristics of sinter were studied by establishing an experimental
device for gas–solid heat transfer [7]. The basic law of gas–solid heat transfer process in
vertical tank of sinter waste heat recovery was studied in combination with experiment
and numerical simulation [8]. The air pressure drop performance in the sinter bed was
studied experimentally, and the correlation of air FPD in the sinter BL was described in
the form of Eu [9]. TIAN et al. [10] established a numerical calculation model of three-
dimensional flow and heat transfer in the ring cooler, optimized and analysed the operating
parameters of the ring cooler, and established a model with the exergic heat recovery as
an objective function [11]. Tian Fuyou et al. [12] studied the influence of wall effect in
vertical cooling furnace on the resistance coefficient, and proposed the resistance prediction
formula of mixed particle size sinter filled bed [13]. In order to accurately analyse the gas
resistance in a packed bed with different particle sizes, many scholars have revised the
Ergun equation from the perspectives of wall effect [14,15], particle shape [16] and particle
size distribution [17,18]. Soma [19] and Dunbar et al. [20] were the first to propose the
concept of exergy transmission. Zude Cheng et al. [21] conducted detailed energy efficiency
and exergy efficiency analyses on gas–solid heat transfer in vertical coolers. Prommas
et al. [22] investigated the effect of porous structural parameters and thermodynamic
conditions on the energy and exergy transfer process. Acevedo et al. [23] analysed the heat
loss and irreversible properties of a holding furnace based on the first and second laws
of thermodynamics.

The above literature illustrates that the vertical furnace cooling process is an important
means of recovering steel waste heat with high efficiency, and the introduction of the exergy
can better evaluate the effectiveness of the process, but the related research is relatively
lacking at present. In order to obtain the law of gas–solid countercurrent heat transfer
in a vertical sinter ore cooling furnace, the key technology of coordinated matching of
furnace cooling gas–solid flow field is developed to achieve continuous, stable and efficient
cooling in a high-temperature sinter ore furnace. A simulation study of the cooling furnace
structural parameters and operating parameters on the vertical sinter ore furnace system
gas–solid countercurrent heat transfer law, revealing the high temperature sintered ore
cooling heat transfer law, obtained the heat transfer correlation that can be used in certain
test conditions, providing the theoretical basis for the development of subsequent vertical
sinter ore cooling furnace.

2. Modelling of Vertical Cooling Furnaces

Numerical simulation is used to analyse the vertical cooling furnace. This section
describes the mathematical model, physical model, mesh model, and boundary conditions
used in the simulation.

2.1. Mathematical Mode
2.1.1. Continuity Equation

∂(ερ)

∂t
+ u

∂(ερu)
∂x

+ v
∂(ερv)

∂y
+ w

∂(ερw)

∂z
= 0 (1)

where ε is the porosity of sintered ore; ρ is the air density, kg/m3; u, v, and w are the velocity
components of the air in the x, y, and z directions, respectively, m/s.
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2.1.2. Equation of Motion

∂

∂xj
(uiuj) =

[
∂

∂xj

(
µ

∂ui
∂xj

)
− ∂P

∂xj
+

∂

∂xj

(
µ

∂uj

∂xi

)
− 2

3
∂

∂xi

(
µ

∂uj

∂xj

)]
+ gi − fi + Si (2)

where ui is the apparent velocity of air in the direction i, m/s; uj is the apparent velocity
of air in the direction j, m/s; gi is the volume force of air in the direction of i, fi is the
resistance acting in the opposite direction per unit volume of air, N/m3; P is the surface
force of air, N/m2; Si is the source term in the direction of i, N/m3.

2.1.3. Equation for Conservation of Energy

The fluid energy equation is:

ε(ρc) f
∂Tf

∂τ
+ (pc) f u f · ∇Tf = ε∇ ·

(
λ f∇Tf

)
+ εq f + hv

(
Ts − Tf

)
(3)

The solid energy equation is:

(1 − ε)(ρc)s
∂Ts

∂τ
= (1 − ε)∇ · (λs∇Ts) + (1 − ε)qs − hv

(
Ts − Tf

)
(4)

where ρ f is the air density, kg/m3; ρs is the density of ore, kg/m3; Tf is the temperature of
cooling air, K; Ts is the temperature of sintered ore, K; hv is the integrated volumetric heat
transfer coefficient, W/(m3·K).

2.1.4. Equations for Exergy and Exergy Efficiency

“Exergy” is the usable energy, which represents the maximum amount of energy that
can be reversibly converted into useful work to the maximum extent possible in theory.
Exergy can be used as a parameter to evaluate the value of energy. Since the pressure inside
the vertical cooling furnace is not much different from the ambient pressure, the value of
exergy carried by the cooling air is calculated by the temperature of the cooling air, and the
expression is as follows:

e f ,out = (h f ,out − h0)(1 −
T0

Tf ,out − T0
ln

Tf ,out

T0
) (5)

The exergy-value of the outlet cooling air per unit time:

E f ,out = e f ,out·q f (6)

From Equations (5) and (6):

E f ,out = (h f ,out − h0)(1 −
T0

Tf ,out − T0
ln

Tf ,out

T0
)q f (7)

Similarly, the value of exergy of the inlet cooling air per unit time is known as:

E f ,in = (h f ,in − h0)(1 −
T0

Tf ,in − T0
ln

Tf ,out

T0
)q f (8)

The sintered ore carries a value of exergy per unit time:

Es,in = (hs,in − h0)(1 −
T0

Ts,in − T0
ln

Ts,out

T0
)qs (9)
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where T0 is the ambient temperature and is taken as 273.15 K; Tf ,out is the cooling air
outlet temperature, Tf ,in is the cooling air inlet temperature, Ts,in is the sintered ore inlet
temperature, Ts,out is the sinter outlet temperature K; h0 is the enthalpy of cooling air at
ambient state, h f ,out is the enthalpy of cooling air at inlet temperature, and hs,in is the
enthalpy of sintered ore at inlet temperature, kJ/kg.

Energy in the process of conversion will have the problem of energy loss, exergy
efficiency can succinctly and effectively represent the effect of waste heat recovery in the
cooling process; the expression is as follows:

ηe =
E f ,out − E f ,in

Es,in
(10)

2.2. Geometric Model

In the vertical sinter ore cooling furnace, the cooling air is sent into the cross-shaped
duct by the air supply device, and after passing through the cross-shaped duct, the air
is sent to the furnace by the air cap. And when heat exchange is completed, the high
temperature gas enters into the waste heat boiler from the outlet to generate electricity. The
geometrical model of the vertical sinter cooling furnace is shown in Figure 1, where (a) is
the schematic diagram of the three-dimensional structure of the vertical sinter ore cooling
device, and (b) is the sectional view at the central axis of the sinter ore cooling device. H is
the height of the cooling section, D is the diameter of the cooling section, and α is the tilting
angle of the air cap.

Energies 2023, 16, x FOR PEER REVIEW 4 of 26 
 

 

The sintered ore carries a value of exergy per unit time: 

,0

, , 0

, 0 0

( )(1 ln )
s out

s in s in s

s in

TT
E h h q

T T T
= − −

−
 (9) 

where 0T  is the ambient temperature and is taken as 273.15 K; 
,f outT  is the cooling air 

outlet temperature, 
,f inT  is the cooling air inlet temperature, 

,s inT  is the sintered ore in-

let temperature, 
,s outT  is the sinter outlet temperature K; 0h  is the enthalpy of cooling 

air at ambient state, 
,f outh is the enthalpy of cooling air at inlet temperature, and 

,s inh is 

the enthalpy of sintered ore at inlet temperature, kJ/kg. 

Energy in the process of conversion will have the problem of energy loss, exergy ef-

ficiency can succinctly and effectively represent the effect of waste heat recovery in the 

cooling process; the expression is as follows: 

, ,

,

f out f in

e

s in

E E

E


−
=  (10) 

2.2. Geometric Model 

In the vertical sinter ore cooling furnace, the cooling air is sent into the cross-shaped 

duct by the air supply device, and after passing through the cross-shaped duct, the air is 

sent to the furnace by the air cap. And when heat exchange is completed, the high tem-

perature gas enters into the waste heat boiler from the outlet to generate electricity. The 

geometrical model of the vertical sinter cooling furnace is shown in Figure 1, where (a) is 

the schematic diagram of the three-dimensional structure of the vertical sinter ore cooling 

device, and (b) is the sectional view at the central axis of the sinter ore cooling device. H 

is the height of the cooling section, D is the diameter of the cooling section, and α is the 

tilting angle of the air cap. 

  

(a) (b) 

Figure 1. Schematic diagram of geometric structure of vertical sinter cooling furnace. (a) Three-
dimensional schematic of the model; (b) schematic of the profile of the model.

2.3. Mesh Model

Unstructured meshing is carried out in the computational region of the model using
Fluent 2020 R2, and the appropriate mesh size is selected to ensure the computational speed
and achieve the computational accuracy at the same time. As the tip of the cone is prone
to mesh distortion, the local mesh of the air cap part is encrypted. Figure 2 is a schematic
diagram of the grid model.
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Figure 2. Grid model diagram of vertical sinter cooling device. (a) Integral mesh model; (b) local
hood mesh model.

The calculated results are affected by the number and quality of model meshes, and
the mesh model is verified for independence before numerical calculation. Specific working
conditions are selected for mesh independence validation, and the specific parameters are
shown in Table 1.

Table 1. Table of calculated working parameters.

Parameters Numerical Value

Mass flow rate of sintered ore (kg/s) 102
Inlet speed of cooling air (m/s) 7.8

Inlet temperature of sintered ore (◦C) 750
Inlet temperature of cooling air (◦C) 20
Sintered ore particle diameter (mm) 14.25

Cooling section diameter (m) 9.0
Height of cooling section (m) 6.0

Variations in sinter outlet temperature and cooling air pressure loss are selected to
verify the independence of the grid model, and five different numbers of grid models are
obtained based on the number and quality of grids, and the results are shown in Figure 3.
Grid 4 is selected for the simulation with a grid number of 1.46 million.
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2.4. Model Reliability Verification

The vertical cooling process for sinter ore is not yet commonly used in existing indus-
trial practice, and the paper chose to compare the accuracy of the heat transfer calculation
model with the experimental data from the literature [24]. The working condition pa-
rameters are as follows: gas velocities of 0.4 m/s, 0.8 m/s, 1.2 m/s, 1.6 m/s, 2.0 m/s,
particle equivalent diameter of 11.45 mm, and height of the cooling section of 0.455 m. The
gas flow resistance per unit height/L under the above working condition parameters is
compared and analysed in terms of the trend of gas flow resistance per unit height with
respect to the inlet velocity of the cooling air. The results of a comparative analysis of the
simulated and measured values are shown in Figure 4, the error is within 10%, in line with
the requirements of model validation.
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2.5. Boundary Conditions

A sinter cooling furnace is a typical gas–solid heat transfer device, and the gas–solid
two-phase heat transfer process in the cooling furnace is very complicated. If various
factors in reality are taken into account, the calculation will be too complicated and difficult,
and it is difficult to achieve accurate mathematical modelling and simulation research. The
shape of the sinter ore in actual production is irregular, and the size of the ore particle is
very uneven, so it is difficult to conduct an accurate numerical description and simulation
research on it. At the same time, the particle size of the ore is very small relative to
the diameter of the cooling furnace, so the sinter ore in the furnace can be averaged
and statistically processed. Therefore, under the condition of ensuring the accuracy of
the simulation calculation and reflecting the law of gas–solid heat transfer and flow, the
problem of flow heat transfer in cooling furnace is simplified.

The boundary conditions in the simulation involve thermal and flow variables. Con-
sidering that the flow of cooling wind in the furnace is incompressible, the boundary
conditions were set as follows: (1) the cooling air flow inside the duct is not considered,
and the conical surface on the air cap is used as the inlet condition for the cooling air
velocity; (2) the cooling air outlet is a pressure outlet; (3) the sintered ore inlet flow size
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is set to 102 kg/s, and the outlet at its bottom is a pressure outlet; (4) the wall surface is
adiabatic; inside the cooling furnace body; and (5) there is only sintered ore, so the portion
of the mesh except for the annular air ducts is defined as the porous medium zone, and the
porous zone is homogenised.

3. Influence of Gas–Solid Heat Transfer in Vertical Cooling Furnaces

The main parameters that affect the heat transfer effect of vertical sinter cooling furnace
include operating parameters and structural parameters. The operating parameters mainly
include cooling air inlet temperature, sinter inlet air temperature equivalent diameter, and
the structural parameters include cooling section height and cooling section diameter.

3.1. Effect of Cooling Air Inlet Temperature on Gas–Solid Heat Transfer Characteristics

The heat transfer process in the furnace was numerically simulated by changing only
the inlet air temperature. The inlet air temperature parameters are shown in Table 2, in
which the inlet temperature is 750 ◦C, the height of the cooling section is 7 m, the diameter
of the cooling section is 11.25 m, and the equivalent diameter of the sinter is 14.45 mm.

Table 2. Simulation parameters for inlet air temperature.

serial number 1 2 3 4 5 6

Inlet air temperature (◦C) 20 30 40 50 60 70

In order to obtain the effect of sinter equivalent diameter on the temperature field in
the furnace, it is necessary to analyse the axial and radial temperature distribution of the
cooling air in the furnace with the equivalent diameter.

The central section of sinter vertical cooling furnace is selected as the characteristic
section to reflect the change in axial cooling air temperature in the furnace. The z = 3.5 m
section is the characteristic section, which reflects the change in radial cooling air tempera-
ture in the furnace.

As can be seen from Figure 5, the temperature of the cooling air in the central section of
the furnace gradually becomes larger when the inlet temperature of the cooling air becomes
larger. This is due to the fact that with the increase in the inlet air temperature, when other
parameters in the furnace remain unchanged, the heat exchange effect between the cooling
air and the hot sintered ore is enhanced, so that the temperature of the cooling air also
increases. In addition, the temperature of the cooling air is lower in the furnace near the
wall and at the hood. This is due to the high flow rate of the cooling air at the hood and the
shorter heat exchange time with the hot sinter, so the temperature of the cooling air at this
place is lower compared with that in the centre of the furnace. As the sintered ore particles
near the wall are larger, and there are more gaps between the particles, which is conducive
to the flow of cooling air, the contact area between the cooling air and the sintered ore is
larger, and the heat exchange effect is stronger, so the temperature of the cooling air in this
area is also lower.

Figure 6 shows that the cooling air temperatures show a trend of higher temperatures
in the centre part than in the surroundings in all this cross-section, and with the increase
in the inlet air temperature, the temperature of the cooling air in this cross-section also
increases. The main reason is that the sintered ore in the centre part of the furnace is
more closely stacked, and the sintered ore particles in this part are smaller and at higher
temperatures, while the smaller gaps between the particles of this part of the sintered ore
lead to a higher cooling air velocity in this part, and the heat exchange between the cooling
air and the sintered ore is stronger in this region, and the temperature of the cooling air is
also higher. In addition, with the increase in inlet air temperature and the constant flow rate
of cooling air inlet, the apparent flow rate of gas in the furnace increases. This phenomenon
makes the time required for the sinter at the same temperature inlet to be cooled to a certain
temperature decrease continuously. When the sinter moves at a certain speed, the contact
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time between the cooling wind and the sinter increases, so the temperature of the cooling
wind also increases successively.

Energies 2023, 16, x FOR PEER REVIEW 8 of 26 
 

 

at the hood and the shorter heat exchange time with the hot sinter, so the temperature of 

the cooling air at this place is lower compared with that in the centre of the furnace. As 

the sintered ore particles near the wall are larger, and there are more gaps between the 

particles, which is conducive to the flow of cooling air, the contact area between the cool-

ing air and the sintered ore is larger, and the heat exchange effect is stronger, so the tem-

perature of the cooling air in this area is also lower. 

 

Figure 5. Variation in cooling air temperature with cooling air inlet temperature at the central section 

of the furnace. 

Figure 6 shows that the cooling air temperatures show a trend of higher temperatures 

in the centre part than in the surroundings in all this cross-section, and with the increase 

in the inlet air temperature, the temperature of the cooling air in this cross-section also 

increases. The main reason is that the sintered ore in the centre part of the furnace is more 

closely stacked, and the sintered ore particles in this part are smaller and at higher tem-

peratures, while the smaller gaps between the particles of this part of the sintered ore lead 

to a higher cooling air velocity in this part, and the heat exchange between the cooling air 

and the sintered ore is stronger in this region, and the temperature of the cooling air is 

also higher. In addition, with the increase in inlet air temperature and the constant flow 

rate of cooling air inlet, the apparent flow rate of gas in the furnace increases. This phe-

nomenon makes the time required for the sinter at the same temperature inlet to be cooled 

to a certain temperature decrease continuously. When the sinter moves at a certain speed, 

the contact time between the cooling wind and the sinter increases, so the temperature of 

the cooling wind also increases successively. 

Figure 5. Variation in cooling air temperature with cooling air inlet temperature at the central section
of the furnace.

Energies 2023, 16, x FOR PEER REVIEW 9 of 26 
 

 

 

Figure 6. Variation in cooling air temperature with cooling air inlet temperature. 

A radial straight line is taken for a certain height in the furnace to reflect the variation 

law of each parameter of the section at the same height in the furnace. In order to clearly 

observe the changes of the section at the same height and select the section with drastic 

parameter changes for analysis, the line graph with z = 1 (the radial direction is taken at 

1m above the hood) is selected for data processing. 

Figure 7 shows the variation in cooling air temperature along the axial direction at 

different cooling air inlet temperatures. As can be seen from Figure 5, the temperature of 

the cooling air in the pre-storage section under different cooling air inlet temperature is 

basically unchanged, because in the pre-storage section of the cooling air flow is extremely 

slow, this part of the basic is not involved in the heat transfer, so the temperature of the 

cooling air in the pre-storage section of the basic remains unchanged in each operating 

condition. In the main cooling section from −2 m to 2 m, the heat exchange between the 

sinter and the cooling air is the most intense, and the heat exchange effect of this part is 

greatly affected by the inlet air temperature. As the inlet air temperature increases, the 

temperature difference between the cooling air and the sinter decreases, and the heat ex-

change efficiency decreases. Therefore, when the inlet air temperature of the cooling air 

rises, the temperature of the cooling air in the furnace is also higher. The section from 2 m 

to 7 m is the secondary heat exchange area, and the temperature of sintered ore in this 

area is higher. With the increase in inlet wind temperature, the heat exchange effect be-

tween sintered ore and cooling wind becomes weaker, the heat exchange coefficient also 

decreases, and the inlet wind temperature has little influence on the cooling wind temper-

ature in this part. From the figure, it can be seen that the temperature of the cooling air in 

this part also basically does not change. Starting from −2 m is the exit section of the sin-

tered ore; the cooling wind is basically not involved in heat exchange in this part, so the 

cooling wind temperature in this area is not affected by the inlet wind temperature, but 

this area is close to the inlet wind cap. So, with the increase in the inlet wind temperature, 

the temperature of the cooling wind in this area is also higher, but basically unchanged 

within the same working condition. 

Figure 8 shows the radial variation in cooling air temperature under different cooling 

air inlet temperatures. In z = 1 m cross-section of the furnace cooling air temperature along 

the radial first increased and then decreased, showing the shape of the “M” type distribu-

tion. The distribution of cooling air temperature along the radial direction at the same 

cross-section is not much affected by the working condition parameters, basically showing 

Figure 6. Variation in cooling air temperature with cooling air inlet temperature.



Energies 2024, 17, 761 9 of 24

A radial straight line is taken for a certain height in the furnace to reflect the variation
law of each parameter of the section at the same height in the furnace. In order to clearly
observe the changes of the section at the same height and select the section with drastic
parameter changes for analysis, the line graph with z = 1 (the radial direction is taken at
1 m above the hood) is selected for data processing.

Figure 7 shows the variation in cooling air temperature along the axial direction at
different cooling air inlet temperatures. As can be seen from Figure 5, the temperature of
the cooling air in the pre-storage section under different cooling air inlet temperature is
basically unchanged, because in the pre-storage section of the cooling air flow is extremely
slow, this part of the basic is not involved in the heat transfer, so the temperature of the
cooling air in the pre-storage section of the basic remains unchanged in each operating
condition. In the main cooling section from −2 m to 2 m, the heat exchange between the
sinter and the cooling air is the most intense, and the heat exchange effect of this part
is greatly affected by the inlet air temperature. As the inlet air temperature increases,
the temperature difference between the cooling air and the sinter decreases, and the heat
exchange efficiency decreases. Therefore, when the inlet air temperature of the cooling air
rises, the temperature of the cooling air in the furnace is also higher. The section from 2 m
to 7 m is the secondary heat exchange area, and the temperature of sintered ore in this area
is higher. With the increase in inlet wind temperature, the heat exchange effect between
sintered ore and cooling wind becomes weaker, the heat exchange coefficient also decreases,
and the inlet wind temperature has little influence on the cooling wind temperature in this
part. From the figure, it can be seen that the temperature of the cooling air in this part also
basically does not change. Starting from −2 m is the exit section of the sintered ore; the
cooling wind is basically not involved in heat exchange in this part, so the cooling wind
temperature in this area is not affected by the inlet wind temperature, but this area is close
to the inlet wind cap. So, with the increase in the inlet wind temperature, the temperature
of the cooling wind in this area is also higher, but basically unchanged within the same
working condition.
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Figure 8 shows the radial variation in cooling air temperature under different cooling
air inlet temperatures. In z = 1 m cross-section of the furnace cooling air temperature
along the radial first increased and then decreased, showing the shape of the “M” type
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distribution. The distribution of cooling air temperature along the radial direction at the
same cross-section is not much affected by the working condition parameters, basically
showing a low temperature in the central part of the chamber. The temperature on both
sides of the air temperature rises, and the temperature of the cooling air immediately
adjacent to the wall is decreasing. The reason is that the inlet air cap is cone-shaped, so
the cooling wind enters the furnace through the cross duct, resulting in the centre part of
the cooling wind temperature is small. And, with the cooling wind from the hood to the
surrounding flow process and sintered ore cooling heat exchange, in the flow process of
cooling, wind temperature increases and sintered ore is cooled. Near the wall, due to the
wall effect, the cooling air temperature is slightly reduced at the wall.
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Table 3 shows the values of sintered ore and cooling air outlet parameters under
different operating conditions, and the results are analysed below.

Table 3. Parameters of cooling air and sinter simulation results at different cooling air inlet temperatures.

Serial Number Sinter Outlet
Temperature (◦C)

The Exergy Value of the
Sintered Ore Outlet (kJ/kg)

Cooling Air Outlet
Temperature (◦C)

The Exergy Value of the
Cooling Air Outlet (kJ/kg)

1 128.66 5408.46 692.81 31,809.14
2 145.16 6475.05 693.42 31,555.77
3 161.57 7555.36 694.89 31,429.27
4 177.51 8619.79 695.24 31,324.28
5 193.14 9675.43 695.48 31,161.58
6 208.44 10,718.44 695.64 31,169.59

Figure 9 shows the variation in cooling air and sinter outlet temperature for different
sinter inlet air temperatures. When the inlet temperature of the sintered ore is 750 ◦C, the
inlet velocity of the cooling air is 7.8 m/s, the height of the cooling section is 7 m, and the
diameter of the cooling section is 10 m, the outlet temperatures of both the sintered ore and
the cooling air increase with the increase in the inlet air temperature, and the increase in
the outlet temperature of the sintered ore has a linear distribution, while the increase in
the outlet temperature of the cooling air decreases gradually. The reason is that when the
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cooling air inlet speed is unchanged, the influence of gas–solid heat transfer in the furnace
is strengthened as the cooling air inlet temperature increases, so that the temperature at the
cooling air outlet increases. Meanwhile, the sinter outlet temperature increases at the same
rate as the cooling air inlet temperature increases.
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Figure 9. Variation in cooling air and sinter outlet temperature with cooling air inlet air temperature.

Figure 10 shows the increase in exergy and the variation in exergy efficiency of the
cooling air in the cooling furnace for different cooling air inlet air temperatures. As the
cooling wind inlet wind temperature increases, the temperature at the cooling wind outlet
also increases, which results in a larger heat exchange between the wind and the mine.
At the same time, the speed of the inlet cooling wind is constant, and the heat exchange
effect in the furnace increases, resulting in the exergy carried by the cooling wind at the exit
also increases. The exergy efficiency is affected by the increase in cooling wind exergy and
sinter ore inlet exergy as shown in the formula. When the inlet temperature of the sintered
ore is stable, the increase in the inlet air temperature leads to the increase in the exergy of
the cooling air at the outlet, and then the exergy efficiency also increases.
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3.2. Influence of Inlet Air Temperature on the Heat Exchange Effect of Vertical Sinter Ore
Cooling Furnace

Numerical simulation of the heat transfer process in the furnace is carried out by
changing the inlet ore temperature. The parameters of the inlet mine temperature are
shown in Table 4, where the inlet air temperature is 20 ◦C, the height of the cooling section
is 7 m, the diameter of the cooling section is 11.25 m, and the equivalent diameter of the
sintered ore is 14.45 mm.

Table 4. Simulation parameters for inlet air temperature.

Scenario serial number 1 2 3 4 5 6

Imported ore temperature (◦C) 600 680 760 840 920 1000

Figure 11 shows that with the increase in the sinter ore inlet temperature, the temper-
ature of the sinter ore in the central section of the furnace gradually becomes larger. The
reason is that with the increase in the inlet ore temperature, the cooling air and the hot
sintered ore also undergo intense heat exchange, and the heat exchange effect is enhanced.
However, the contact time between the sintered ore and the cooling air is constant due
to the other parameters in the furnace remaining unchanged, which makes the sintered
ore discharged before it is completely cooled. As a result, the temperature of the sinter in
the central section of the furnace increases as the sinter inlet temperature increases. At the
same time, as the sinter inlet temperature increases, the temperature of the sintered ore
near the wall is lower and the temperature of the sintered ore in the furnace tends to be the
same. This is because the higher temperature inlet sintered ore is not cooled to the same
extent in the same time, so the temperature distribution in the furnace is not consistent.
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the furnace.

Figure 12 shows the variation in cooling air temperature with sinter ore inlet tem-
perature at z = 3.5 m section in the furnace, and the following analyses are made. The
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temperature of the sintered ore at the same height in the furnace increases gradually with
the increase in the inlet temperature of the sintered ore. This is also because the high-
temperature sintered ore is not sufficiently cooled in the furnace, and the higher the inlet
temperature is, the heat exchange within the same cooling time is basically the same, so
the overall temperature of the sintered ore in the furnace also increases. In addition, the
temperature of the sintered ore near the wall is lower than the temperature of the sintered
ore in the centre of the furnace.
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Figure 13 shows the variation in sinter ore temperature along the axial direction in the
furnace for different sinter ore inlet temperatures. With the increase in the sinter ore inlet
temperature, the overall trend of the sinter ore temperature in the furnace increases, but
the inlet ore temperature does not have much influence on the heat exchange process in
the furnace. The temperatures of cooling air in the pre-storage section and sinter outlet
section are basically unchanged under the same operating conditions. The reason is that
the simulation process treats the high-temperature sinter as an isotropic porous medium,
so when the inlet boundary value of the sinter temperature is changed, the overall heat
transfer in the furnace is also enhanced with the increase in the inlet mine temperature,
which makes the temperature of the cooling air at the same position also increase, but it
remains unchanged under the same working condition.

Figure 14 shows the radial variation in sinter temperature at z = 1 m with different
sinter inlet temperatures, and the following analyses are made. With the increase in sinter
inlet temperature, the sinter in the furnace at the same height along the radial distribution
of double “hump” type, basically flat at the cap, in the middle of the furnace diameter to
reach the maximum, and near the wall and gradually decreased.

Table 5 shows the values of sinter and cooling air outlet parameters under differ-
ent schemes.

Figure 15 shows the trend of cooling wind and sinter outlet temperature with the
sinter inlet temperature. When the inlet temperature of the cooling air is 20 ◦C, the inlet
air velocity of the cooling air is 7.8 m/s, the height of the cooling section and the diameter
of the cooling section are 7 m and 10.0 m, respectively, the outlet temperatures of the
cooling air and the sintered ore both increase with the increase in the sintered ore inlet
temperature. The reason is that when the cooling wind flow rate is constant, the cooling
time of the cooling wind on the sintered ore is also relatively constant. The sinter that is not
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completely cooled within the same time is discharged, which increases the temperature
of both the sinter and the cooling air at the outlet. In addition, the rate of increase in the
outlet mine temperature becomes faster with the increase in the inlet mine temperature,
while the rate of increase in the outlet temperature of the cooling air and the change in
the inlet temperature of the sintered ore are basically the same, and both of them show a
linear relationship.
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Table 5. Parameters of cooling air and sinter simulation results at different sinter inlet temperatures.

Serial Number Sinter Outlet
Temperature (◦C)

The Exergy Value of the
Sintered Ore Outlet (kJ/kg)

Cooling Air Outlet
Temperature (◦C)

The Exergy Value of the
Cooling Air Outlet (kJ/kg)

1 63.531 1545.69 523.29 23,147.11
2 91.984 3139.42 615.04 27,603.44
3 134.81 5803.41 703.39 31,858.97
4 193.19 9678.83 790.04 36,106.02
5 263.57 14,537.28 870.97 39,975.96
6 337.49 19,759.82 942.8 43,597.03
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Figure 16 shows the amount of exergy change and the change in energy efficiency of
the cooling air in the furnace at different sinter ore inlet temperatures. Both the exergy
increase and the energy efficiency of the cooling air in the furnace increase with the increase
in the sinter inlet temperature, and basically show a linear distribution. The reason is
that the cooling air outlet temperature increases linearly with the increase in sinter inlet
temperature, and the exergy increases with the increase in sinter inlet temperature after the
cooling air absorbs heat, and the increase is basically the same, as shown in the equation of
exergy calculation.
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3.3. Effect of Particle Equivalent Diameter on Gas–Solid Heat Transfer Characteristics

The heat transfer process in the furnace is numerically simulated by changing the
sinter equivalent diameter. The parameters of the sinter equivalent diameter were selected
as shown in Table 6, in which the inlet air temperature was 20 ◦C, the inlet ore temperature
was 750 ◦C, the height of the cooling section was 7 m, and the diameter of the cooling
section was 11.25 m.

Table 6. Simulation parameters for equivalent diameter.

Serial number 1 2 3 4 5 6

Equivalent diameter (mm) 6.05 10.30 14.45 18.80 23.05 27.30

Figure 17 illustrates the cooling air temperature distribution with sinter equivalent
diameter in the centre profile of the shaft furnace. The sinter equivalent diameter has
little influence on the overall heat transfer process in the furnace. The high-temperature
sintered ore enters the furnace from the roof inlet and moves slowly from top to bottom,
while the cooling air enters the furnace from the air cap and moves from bottom to top. In
this process, the sintered ore moves to the cooling section and starts to be cooled, and the
cooling wind absorbs heat and is gradually heated, and changing the equivalent diameter
of the sintered ore in the process of gas–solid heat transfer does not have much effect on
the heat transfer process in the furnace, so the trend of change in the figure is not obvious.
The temperature of sintered ore in the centre part of the furnace tends to be the same, while
the temperature near the wall decreases, because the sintered ore particles contact the wall
of the cooling furnace, the hot sintered ore not only exchanges heat with the cooling air, but
also exchanges heat with the wall at lower temperature, so the temperature of the sintered
ore near the wall is lower.
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Figure 18 demonstrates the variation in cooling air temperature with equivalent
diameter at the 3.5 m cross-section in the furnace. The cooling air temperature in the
furnace does not change significantly at this cross-section, and the diameter of the sinter
particles does not have much influence on the heat exchange process in the furnace. The
temperature of the cooling air is the highest in the centre of the furnace, and gradually
decreases along the radial direction to the surrounding area. The reason is that the cooling
air along the radial flow to the surrounding process has been and hot sinter ore heat transfer,
and basically in thermal equilibrium, the temperature and the sinter ore temperature is
basically the same, the temperature is the lowest near the wall.
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Figure 19 shows the variation in cooling air temperature along the axial direction in
the furnace for different sinter equivalent diameters, and the trend in the figure is analysed.
With the increase in sinter equivalent diameter, the overall change in cooling air temperature
in the furnace is not obvious, and the temperature of cooling air in the pre-storage section
and sinter outlet section is basically unchanged under different working conditions. The
reason is that the heat exchange effect in the furnace remains unchanged for a certain sinter
inlet temperature and cooling air inlet temperature, which makes the effect of changing the
sinter equivalent diameter on the temperature field in the furnace insignificant.

Figure 20 shows the radial variation in cooling air temperature with different equiva-
lent diameters, and the trend is analysed in the figure. With the increase in the equivalent
diameter of the sinter ore, the cooling air temperature in the cross-section along the radial
direction of the middle of the low sides of the high class “M” type distribution. However,
with the equivalent diameter from 18.80 mm to 27.30 mm, the temperature of the cooling
air in the cooling furnace at the very centre of the cooling air is higher, because with the
increase in the equivalent diameter of the sintered ore, the sintered ore and the cooling air
at the part of the air cap heat transfer is the most intense, and at the same time, in the area
nearer to the centre of the furnace, the lower the porosity of the sintered ore, the higher the
flow rate of the cooling air, the convection in the region of the best heat transfer, so there is
a higher temperature.
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Table 7 shows the values of sinter and cooling air outlet parameters under differ-
ent schemes.

Figure 21 demonstrates the variation in outlet cooling wind and sintered ore tem-
perature with equivalent diameter. As can be seen from Figure 19, when the cooling air
inlet temperature is 20 ◦C, the cooling air inlet wind speed is 7.8 m/s, the height of the
cooling section and the diameter of the cooling section are 7 m and 10.0 m, respectively,
the outlet wind temperature decreases with the increase in the equivalent diameter of the
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sintered ore and the cooling air temperature decreases at a faster rate; the outlet mine
temperature also increases with the increase in the equivalent diameter of the sintered ore
and the magnitude of the increase in temperature becomes greater with the increase in the
equivalent diameter of the sintered ore. Increases in the rate of temperature increase with
the equivalent diameter of the sintered ore. This is because the expansion of the diameter
of the sintered ore particles, the cooling air and sintered ore contact area becomes larger,
resulting in a convective heat transfer coefficient with the expansion of the equivalent
diameter of the particles, and as the gas–solid heat transfer becomes smaller, the export
temperature of the ore rises and the export air temperature decreases.

Table 7. Parameters for cooling air and sinter simulation results at different equivalent diameters.

Serial Number Sinter Outlet
Temperature (◦C)

The Exergy Value of the
Sintered Ore Outlet (kJ/kg)

Cooling Air Outlet
Temperature (◦C)

The Exergy Value of the
Cooling Air Outlet (kJ/kg)

1 128.71 5411.66 693.81 26,147.18
2 128.55 5401.43 692.88 26,108.42
3 128.66 5408.45 692.81 26,105.06
4 128.9 5423.46 692.55 26,094.11
5 129.11 5437.85 691.07 26,031.77
6 129.76 5478.86 689.37 25,960.18
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Figure 22 demonstrates the amount of exergy change and the change in exergy ef-
ficiency of the cooling air in the cooling furnace for different equivalent diameters. The
increase in cooling air exergy decreases as the equivalent diameter increases. The reason
is that the change in equivalent diameter of sintered ore makes the stacking density of
particles change, and the larger the equivalent diameter is, the smaller the stacking density
becomes, which makes the effect of heat exchange between the sintered ore and the cooling
air increase. When the particle size decreases when the cooling air and sintered ore heat
transfer is more gentle, the sintered ore heat transfer time is relatively longer, so is the
equivalent diameter of the cooling air when the change in exergy is smaller, and expanding
the equivalent diameter increases the cooling air exergy changes.
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3.4. Establishment of Gas–Solid Two-Phase Heat Transfer Correlation in a Furnace

In order to study the gas–solid heat transfer process in vertical cooling furnace, the
dimensionality of heat transfer coefficient is analysed by the Π theorem.

According to the theoretical analysis, the factors affecting the heat transfer coefficient h
in the furnace are air density, air flow rate u, diameter of sinter particles d, air viscosity µ,
specific pressure heat capacity Cp, sinter thermal conductivity λ, etc., then there is the
following relationship between the formula:

h = f (ρ, u, d, µ, Cp, λ) (11)

The seven variables mentioned above are all composed of the basic measures mass M,
length L, time T and temperature Θ, so d, λ, µ, u are chosen as the basic measures, and the
rest of the variables can be expressed by the four basic measures.

According to the Π theorem, the number of variables minus the number of basic
measures is the number of Π-numbers, and three Π-numbers, Π1, Π2 and Π3, can be
obtained, then Equation (11) can be expressed as:

Π1 = f ( Π2, Π3) (12)

The quantitative representation of all variables is shown in Table 8.

Table 8. Dimensions of variables.

The Variable Name Symbol Dimension

Heat transfer coefficient h MΘ−3T−1

Air density ρ ML−1

Air flow rate u LΘ−1

Particle diameter d L
Air viscosity µ ML−1Θ−1

Specific constant pressure heat capacity Cp ML−1Θ−1

Thermal conductivity λ MLΘ−2T−1

(1) Π1 = daλbµcudh = La (MLT−1Θ−3
)b

(ML−1Θ−1
)c

(LΘ−1
)d

MT−1Θ−3

Then, the dimensionless form of Π1 is:
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For mass dimensionsM : b + c + 1 = 0
For length dimensionsL : a + b − c + d = 0
For time dimensionsT : −b − c + d = 0
For temperature dimensionsΘ : −3b − c − d − 3 = 0

Solution:a = 1, b = −1, c = 0, d = 0;

And then:Π1 =
hdp
λ

(2) Π2 = daλbµcudρ = La (MLT−1Θ−3
)b

(ML−1Θ−1
)c

(LΘ−1
)d

ML−3

Then, the dimensionless form of Π2 is:

For mass dimensionsM : b + c + 1 = 0
For length dimensionsL : a + b − c + d − 3 = 0
For time dimensionsT : −b = 0
For temperature dimensionsΘ : −3b − c − d = 0

Solution:a = 1, b = 0, c = −1, d = 1;

And then:Π2 =
ρudp

µ

(3) Π2 = daλbµcudcLa (MLT−1Θ−3
)b

(ML−1Θ−1
)c

(LΘ−1
)d

L−2T−1Θ−2

Then, the dimensionless form of Π3 is:

For mass dimensionsM : b + c = 0
For length dimensionsL : a + b − c + d + 2 = 0
For time dimensionsT : −b − 1 = 0
For temperature dimensionsΘ : −3b − c − d − 2 = 0

Solution:a = 0, b = −1, c = −1, d = 0;

And then:Π3 = µc
λ

It can be known from fluid mechanics that Nu = hd
λ , Re = ρud

µ , Pr = µc
λ , so Π1 = Nu,

Π2 = Re, Π3 = Pr; therefore, the following dimensionless equation is obtained:

Nu = f (Re, Pr) (13)

The bed porosity is also a major factor affecting the heat exchange process between the
sinter particles and the cooling air in the furnace as analysed in the previous section, so the
dimensionless number is added to the equation of magnitude. In addition, the temperature
difference between sinter and cooling air obtained from the simulation calculation exists in
the cooling section in the region of more than 50 ◦C. At the same time, the cooling section
is the most important gas–solid exchange process. At the same time, the cooling section is
the most important gas–solid heat transfer area, so it is necessary to consider the change
in the relevant physical properties in the heat transfer correlation equation, and it is not
possible to distinguish the influence of the change in different physical properties on the
heat transfer process only by the difference of the Pr number index. Therefore, a correction
coefficient Ct [25] on temperature is introduced with the following expression:

Ct =
Tf

Ts
(14)

Combining the above analyses, the following dimensionless equations can be obtained:

Nu = f (Re, Pr, ε, Ct) (15)

By a process similar to the analysis of the bed pressure drop correlation equation, it
can be seen that Equation (15) is also written in the form of a power function:

Nu = kεaRebPrc(
Tf

Ts
)

d

(16)
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It can be shown that Equation (16) is the initial form of the correlation equation for
the heat transfer of the flow within the bed of sintered ore particles obtained by using the
method of magnitude analysis, where k, a, b, c, and d are coefficients to be determined.

The pending coefficients of the dimensionless equations were obtained from the data
obtained from the design conditions using multiple regression analysis, and fitted based
on Matlab 2022. The pending coefficients of the fitted equation are shown in Table 9.

Table 9. Results of fitting the empirical formula for the coefficients to be determined.

Coefficients to Be Determined k a b c d

Fit the results 0.0466 −0.2 0.9582 0.4 0.0002

The empirical coefficients were substituted into the heat transfer correlation equation,
which was fitted to obtain the correlation equation for heat transfer in the furnace:

Nu = 0.0466ε−0.2Re0.9582Pr0.4(
Tf

Ts
)

0.0002

(17)

The conditions of use for this bed pressure drop correlation are as follows:
2300 ≤ Re ≤ 12700, the range of cooling air inlet temperature is 20 ◦C~70 ◦C, the range
of sinter inlet temperature is 600 ◦C~750 ◦C, the range of sinter equivalent diameter is
6.05 mm~27.30 mm, the range of bed porosity is 0.35~0.6, the range of height of cooling
section is 6 m~8.5 m, and the range of bed diameter is 9 m~11.5 m.

Figure 23 shows the error analysis of the heat transfer correlation formula and the
calculation results. As can be seen from Figure 23, the calculated results by the heat transfer
correlation formula basically fall within the range of 30%, indicating that the calculation
accuracy of this correlation formula is high, and the heat transfer correlation formula
obtained by fitting is suitable for the prediction of the heat transfer effect in the furnace
under this condition, which can provide an important reference for the subsequent research.
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4. Conclusions

Based on the established cooling furnace calculation model, the heat transfer mecha-
nism of vertical sintering cooling furnace is studied. This paper mainly analysed the law of
temperature distribution and heat transfer characteristics in sinter cooling furnace with
different parameters, and adopt the concept of “exergy” to analyse the heat transfer effect
in the cooling furnace. The specific conclusions are as follows:

• The cooling air inlet temperature and sinter ore inlet temperature are the main factors
affecting the furnace temperature and gas–solid heat transfer characteristics, while
other factors have less influence. The cooling air temperature in the furnace under
each working condition shows a trend of low cooling air temperature in the middle,
gradually increasing to the maximum value along the radial direction and then grad-
ually decreasing. The cooling section is the most intense region of gas–solid heat
exchange, and the temperature difference between the sintered ore and the cooling
air in this section is the largest. The temperature of the cooling air in the pre-storage
section and the sinter exit section is basically stable and does not change with the
parameter changes.

• When the inlet air temperature increases, the outlet mine temperature increases, and
the outlet mine temperature increases linearly, while the cooling air outlet temperature
increases gradually. When the inlet mine temperature increases, both the outlet mine
temperature and the outlet wind temperature increase, and the outlet mine tempera-
ture rise speed is gradually accelerated, but the outlet wind temperature rise speed is
basically unchanged. When the sinter equivalent diameter increases, the outlet air tem-
perature gradually decreases, and the decreasing speed gradually increases, while the
outlet temperature gradually increases, and the increasing speed gradually increases.
When the diameter and height of the cooling section increase, respectively, the outlet
mine temperature decreases gradually, and the outlet air temperature decreases with
the expansion of the cooling section diameter.

• Heat transfer correlations suitable for certain test conditions were obtained:

Nu = 0.0466ε−0.2Re0.9582Pr0.4(
Tf

Ts
)

0.0002

The results of the calculations through the heat transfer correlation formula basically
fall within the 30% range, and the accuracy of the calculations is high.
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