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Abstract: Sampling and 14C detection of biomass are now essential steps to ensure the accuracy of
the 14C method, but they require additional time and economic investment. When there are multiple
types of biomass fuels, it is not possible to guarantee the uniformity of sampling. The 14C activity
of biomass fuels exhibits variability, and this value significantly impacts the precision of the 14C
method. Therefore, this study aims to investigate the influencing factors of 14C activity in biomass
fuels. It also provides predicted values of 14C activity for different types of biomass fuels for each
year from 2020 to 2030. Additionally, this study discusses the potential blending ratio measurement
errors that may arise due to the uncertainties of the predicted values. The reduction in the 14C
activity of biomass fuels can occur due to the utilization of fossil fuels, human activities, and the
photosynthesis mode of C3 plants. This study presents a prediction method for determining the
reduction factor. The other component of the prediction methodology involves determining the
original 14C activity of biomass fuels. The 14C activity of the annual biomass is equal to the 14CO2

activity (the 14C activity of CO2) of the surrounding environment, and it experiences a decline of
0.355 pMC/year. The 14C activity has ranges of five types of perennial biomass fuels, including
wood chips and branches, bark, leaves, wasted furniture, and abandoned building wood, for the
time period between 2020 and 2030, are 97.34~102.84, 96.35~106.27, 96.35~102.64, 111.00~118.60, and
111.32~129.47 pMC, respectively. Based on these, this study introduces a new formula for calculating
blending ratios, which enhances the current methodology. The calculation errors of blending ratios
caused by the uncertainties of the predicted values are generally negligible, with the exception of
wasted furniture and construction wood. The annual decrease in the blending ratio calculation error,
caused by the uncertainty associated with the predicted value, can be observed. This study aims to
reduce the implementation time and economic cost of the 14C method while ensuring the accuracy of
biomass blending ratio detection.

Keywords: co-combustion; 14C; blending ratio; 14C activity of biomass; radiocarbon

1. Introduction

Biomass–coal co-firing power generation technology has been identified as an effective
approach to facilitate the achievement of “carbon peaking and neutrality” [1] and the
utilization of biomass resources [2–4]. Currently, a significant amount of research has
been dedicated to accurately determining the biomass/coal co-firing blending ratio [5–7].
This is performed in order to establish a foundation for the precise calculation of carbon
emission reduction.

Among the various methods available, the 14C method is widely regarded as having
the highest potential for accurately determining the blending ratio [8]. The 14C method is
utilized to quantitatively measure the proportion of biogenic fuels, which contain a specific
concentration of 14C, to fossil fuels, where the radiocarbon has completely decayed. This
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is achieved by analyzing the 14CO2 activity in the flue gas [9,10]. The 14C activity is the
percentage ratio of the 14C/12C value in the substance to the 14C/12C value in the interna-
tional standard reference material (oxalic acid). In this particular process, the 14C activity of
pure biomass is utilized as the reference value in the calculation formula, as demonstrated
in Equation (1), and it significantly influences the accuracy of the calculation results [5].
The conventional method for obtaining this reference value, in order to ensure the accuracy
of the co-firing blending ratio calculation results, typically involves the sampling -14C
detection process of the biomass fuels combusted in furnaces [11]. Alternatively, some
standards recommend using the 14C activity of the current atmospheric CO2 as a predictor
of the 14C activity of biomass fuels [12]. Biomass is continually undergoing photosynthesis
and respiration during its growth cycle, and the carbon in its body is derived from CO2 in
the air. Due to the carbon exchange cycle, the 14C activity of biomass should theoretically
be equal to the 14C activity of atmospheric CO2. However, it is important to note that the
actual value may deviate from this theoretical expectation, either increasing or decreasing,
due to various influencing factors.

fcb
biomass =

Afluegas − ANaOH × fcb
NaOH

Abiomass
× 100% (1)

where fcb
biomass and Abiomass are the carbon-based blending ratio and the 14C activity of

biomass, respectively. Afluegas and ANaOH × fcb
NaOH are the 14C activity of CO2 in flue gas

absorbed by NaOH.
The 14C activity of biomass is subject to various factors, including the growth cycle,

growth location, and biomass types. The atmospheric 14CO2 activity remained in a state of
dynamic equilibrium with minor fluctuations around 100 pMC until the 1960s. However,
the frequent nuclear explosion tests conducted during this period resulted in a nearly
twofold increase in the atmospheric 14CO2 activity [13]. The significant utilization of fossil
fuels during the later period has resulted in a decline in the atmospheric 14CO2 activity.
This decline has continued in recent years at a rate of 0.3 to 0.5 pMC/year [14]. Figure 1
illustrates the 14C activity of the atmospheric background in the northern hemisphere,
spanning the years 1920 to 2019. For annual agricultural waste, such as straw, in recent
years, it has been observed that the predicted 14C activity closely approximates the 14C
activity of the atmospheric background for that specific year [15,16]. However, the 14C
activity of perennial biomass, especially wood board, which undergoes growth cycles
that may be influenced by fluctuations in atmospheric 14CO2 activity, exhibits significant
variability [11,12,17,18]. This is the influence of the growth cycle and types on the 14C
activity of biomass. Another aspect to consider regarding the impact of biomass types is the
potential for varying photosynthesis patterns, which can cause slight isotopic fractionation.
This, in turn, can lead to notable disparities in the 14C activities of C3 and C4 biomass [19].
Moreover, in certain regions, the extensive utilization of fossil fuels and human-induced
activities may lead to a decrease in the local 14CO2 activity compared to the atmospheric
background 14CO2 activity, and this reduction can result in a decrease in the 14C activity
of biomass within that specific area [20,21]. The aforementioned statement highlights the
impact of growth location on the 14C activity of biomass.

Previous studies have examined the prediction of 14C activity in pure biomass, consid-
ering various influencing factors. Fellner [12] and Mohn [18] provided the predicted value
of 14C activity for biogenic fractions in waste power plants in 2008 and 2009. However, this
value was only applicable to the biomass fraction in waste and solid recovered fuels, and
the predicted year is no longer relevant today. Tang [11] proposed a formula to predict
the 14C activity of biomass fuels in biomass–coal co-combustion power plants. However,
the study lacked sufficient investigation into factors such as the growth cycle. Biomass
fuels used in power plants come from a variety of sources, making it difficult to obtain
accurate 14C activity reference values through sampling and testing. This process also
incurs additional time and economic costs. Furthermore, when government departments
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visit power plants to monitor biomass blending ratios, they are not permitted to conduct
uniform sampling of biomass fuels and 14C testing due to time constraints. Therefore,
conducting a comprehensive study on various influencing factors is crucial for accurately
predicting 14C activity values for different biomass fuels in the future. This is essential for
the effective application of the 14C method in industrial power plants.
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Figure 1. The 14C activity of the Northern Hemisphere atmospheric background from 1920–2019.
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In this study, we conducted a detailed investigation of the various factors influencing
the 14C activity of biomass fuel in biomass and coal-coupled combustion power plants.
This involved sampling, 14C detection, calculation, and other methods. Additionally, we
proposed an innovative prediction model for the 14C activity of biomass in co-combustion
power plants. The proposed calculation method can eliminate the need for sampling,
sample preparation, and the 14C detection of biomass fuel in the 14C method. This can
significantly improve the timeliness and cost effectiveness of the 14C method and provide
a great convenience for government testing departments to monitor biomass blending
ratios in real time. We investigate the effects of the growth cycle, growth location, and
biomass type in order to develop this method. The anticipated 14C activity levels of yearly
biomass, wood chips, bark, branches, leaves, waste furniture, and construction wood
were also computed for each year spanning from 2020 to 2030. This study addresses
the requirement for the optimal and rational utilization of the 14C method in industrial
power plants. Furthermore, the advancement of the 14C methodology has facilitated
the widespread adoption and advancement of biomass energy utilization technologies,
leading to a reduction in the reliance on fossil fuels and contributing to sustainable socio-
economic development.

2. Materials and Methods
2.1. Biomass Classification

In the present study, the classification of biomass fuels was conducted, distinguishing
between annual biomass and perennial biomass. Among the various types of biomasses,
the annual biomass consists of C3 plants, such as wheat straw and rice straw, as well as C4
plants, which are represented by corn straw. Plants that initially produce the four-carbon
compound malic acid or aspartate instead of the three-carbon compound 3-phosphoglyceric
acid in the photosynthetic carbon cycle are called C4 plants. Plants that initially produce
3-phosphoglyceric acid are called C3 plants. Perennial biomass encompasses various forms
of organic waste, such as forestry residues (wood chips, branches, bark, and leaves), as well
as wasted furniture wood and construction wood, commonly known as wood board.
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2.2. Sampling and Processing
2.2.1. Tree Ring Samples

Tree rings, which exhibit annual growth patterns, serve as the most accurate indicators
of atmospheric 14CO2 levels within a given year. In this study, the rings of camphor trees
were sampled from ten cities in Zhejiang Province, China, including Hangzhou, Ningbo,
Jinhua, Quzhou, Wenzhou, Lishui, Taizhou, Jiaxing, Shaoxing, and Huzhou. The sampling
sites were all in the suburbs far from the main urban area, and there were no highways
within 1 km and no residential houses within 100 m. The objective was to examine the
influence of regional factors on atmospheric 14CO2 activity in different locations. This was
achieved by analyzing data from various economic indicators of each city and combining
them with the 14C activity of the collected tree ring samples. Following the collection
process described by Hou [20], representative samples of tree rings were obtained for each
city’s atmospheric 14CO2 activity in 2019.

2.2.2. C3 Plants Samples

In this paper, the most typical C3 biomass fuels, wheat straw and rice straw, were
selected for this study. Wheat straw and rice straw were collected from two townships in
Pingdingshan, China, and two townships in Hangzhou, China, respectively, at the maturity
of the wheat and rice. The two sampling points in Pingdingshan were Wangping Village
and Guangtian Township, and the two sampling points in Hangzhou were Linjiang Village
and Hongdong Village. While the straw samples were collected, air carbon dioxide was
collected from the field at different times of the day for the subsequent comparison of the
14C activity of CO2 and straw samples. The sampling point of carbon dioxide is within 3 m
of the sampling point of straw. The air was passed through two 1 mol/L NaOH solutions
at a flow rate of 4 L/min to absorb CO2 from the air. After being absorbed, the NaCO3
solution was converted into SrCO3 precipitation for the purpose of subsequent sample
preparation and testing. The carbon in SrCO3 comes from atmospheric CO2.

2.2.3. 14C Sample Preparation and Detection

A high-vacuum graphitization synthesis system, comprising a high-vacuum ion pump
and a high-vacuum reactor, was employed to transform the tree rings, straw, and air
CO2 samples into graphite [5,7,11]. The preparation process of graphite samples includes
oxidation combustion and catalytic reduction. The graphite samples were submitted to an
accelerator mass spectrometry facility for the purpose of detecting their 14C activities.

2.3. Data Acquisition

This study collected data on various variables, including the resident population,
gross regional product (GDP), gross industrial product (GIP), fossil energy consumption,
fiscal revenue, and fiscal expenditure, for dozens of cities in different years. The data were
partially obtained from the yearbooks of each city, including nine districts in Beijing in
2009 [24], fifteen cities in 2010 [25–39], five cities in 2014 [40–44], and ten cities in Zhejiang
Province in 2019 [45–54]. Furthermore, previous studies have gathered atmospheric 14C
activity data for specific years in various cities throughout the country [15,55–58]. These
data sources were utilized to establish a solid foundation for the examination of regional
influencing factors.

The prediction of 14C activity in perennial biomass necessitates the utilization of
growth function models specific to each tree species. In this study, a total of 14 commonly
found tree species were selected for analysis. The subsequent sections will discuss the
growth function models for these species.

2.4. Prediction Method
2.4.1. Regional Influencing Factors

In this study, the standard equation method was used to resolve the linear fitting
equations of the six economic indicators of a specific region with respect to the reduction
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factor of atmospheric 14CO2 activity (RF, defined as the ratio of the atmospheric 14CO2
activity at the site to the 14CO2 activity of the northern hemisphere atmospheric background
in the current year), as shown in the subsequent equation:

RF = a0 + a1 × x1 + a2 × x2 + a3 × x3 + a4 × x4 + a5 × x5 + a6 × x6 (2)

where x1~x6 are the economic indicator data of each city in the dataset and a0~a6 are the
fitting coefficients in front of each variable of the linear equation. The dataset includes data
from previous studies and data from 10 cities in Zhejiang Province obtained by this study.
The dataset is divided into training sets and test sets.

J(a0, a1, a2, a3, a4, a5, a6) =
1

2m
×

m

∑
i=1

(ha(x(i))− RF(i))
2

(3)

Equation (3) defines the cost function (J(a0, a1, a2, a3, a4, a5, a6)) for fitting the equation,
i.e., the average value of the residuals of each array in the training set. ha(x(i)) and RF(i)

are the fitting value and actual value of the reduction factor. Our aim is to fit a suitable
a0~a6 that minimizes the value of this cost function. Since the image model of this cost
function contains only one extreme point, the a0~a6 corresponding to the position of this
extreme point is the prediction result. Define matrix X, RF, and ω as the matrix composed
of each city’s economic indicators, reduction factor, and a0~a6, respectively, and then there
is the following formula to find the matrix ω. XT is the transpose of X.

J(a0, a1, a2, a3, a4, a5, a6) =
1

2m
× (RF − Xω)T × (RF − Xω) (4)

∂

∂αj
J(a) = 0 (5)

ω = (XTX)
−1

XTRF (6)

2.4.2. Annual Biomass

C3 plants are a classification of plants that produce a three-carbon compound called
3-phosphoglyceric acid as their initial product of CO2 assimilation in the photosynthetic
carbon cycle. Certain plants undergo isotopic fractionation to a certain extent when they
absorb CO2 from the atmosphere. This process leads to a reduction in their own 14C activity
in comparison to the 14CO2 activity in the surrounding air. This study was based on the
isotope fractionation correction method [59] and aimed to forecast the degree of variation in
the 14C activity of C3 plants compared to atmospheric CO2. 13C is a kind of stable isotope
of carbon. 13C content refers to the value of 13C/12C of the substance. This was achieved
by utilizing the difference in 13C content (expressed in thousandths of a percent) between
C3 plants and air CO2, as shown in the subsequent equation:

14CN
14C

= (
13aN
13a

)

θ

= (
1 + 13δN
1 + 13δ

)
θ

(7)

where the numerator is the correlation value of C3 plants, which is equal to the corrected
value, while the denominator term is the correlation value of air CO2, which is equal to the
pre-corrected value. In this study, four sets of data obtained from the four sampling sites
were fitted to the value of the correction parameter θ, and then we can calculate the degree
of deviation of the 14C activity of C3 plants relative to the atmospheric CO2 in each location
using the 13δ values of C3 plants and air CO2. This is a more accurate way of correcting for
the 14C activity of annual C3 biomass. 13a and 13δ represent the 13C activity value and its
thousandth difference from the standard matter.
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2.4.3. Perennial Biomass

Based on previous studies [12], the average 14C activity of perennial plants is calculated
according to the following equation:

14C =

∫ t2
t1

pMC(t)× dV
dt dt∫ t2

t1
dV
dt dt

(8)

V is the growth function model of the plant and pMC(t) is the atmospheric 14C activity
in the corresponding year. t is the age of the plant. The growth function represents the
relationship between plant volume and age. The harvesting age refers to the stage in the
plant’s growth when it reaches the cutting standard. In this study, the growth function
models for 14 different tree species were initially gathered. The common plant growth
function is presented in Table S1, and the growth model functions for these trees are
presented in Table 1. Additionally, the age at which each tree reaches maturity, also known
as the age at felling, is provided in the table. The growth patterns exhibited by the majority
of tree species adhered to the Chapman–Richard and Logistic models. Subsequently,
the average 14C activity of trees at various ages, which were harvested each year, was
individually calculated. The 14C activity prediction values for wood chips and branches
were determined by selecting the average values of the 14C activity from the harvested
trees within the specified age range. For the analysis of bark and leaves, it is necessary to
establish prediction values based on the annual renewal cycles of these tree components.
Wood board fuels primarily derive from discarded furniture and abandoned construction
wood, with an average lifespan of 10~30 years and 50~60 years. Therefore, the wood
board fuels that were harvested in a specific year were actually cut down several decades
ago. Both the service life and the age at which the tree is cut down are considered in the
prediction process. For instance, the year of the felling of waste poplar furniture in 2023
should fall within the range of 1993 and 2013. Within this range, the 14C activity of poplar
at each harvesting age, corresponding to each felling year, represents an average term of
the predicted value.

Table 1. The growth function models of fourteen kinds of trees.

Tree Types Growth Function Harvesting
Age

Eucalyptus V(t) = 0.07965
1+exp(2.7076−0.8577×t) 6~10

Cypress V(t) = 0.01927 × [1 − 0.98444 × exp(−0.08419 × t)]4.52246 40~50

Sassafras V(t) = 0.725806 × [1 − exp(−0.07412 × t)]5.205163 20~50

Birch V(t) = 0.91692
1+exp(5.41257−0.17846×t) 15~50

Oak V(t) = 0.7013 × [1 − exp(−0.0334 × t)]5.2521 50~100

Willow V(t) = 1.55274 × [1 − 3.18331 × exp(−0.40973 × t)]3.04096 15~20

Cedar V(t) = 0.210524 × [1 − 0.7323 × exp(−0.02487 × t)]5.16562 20~40

Pinus Massoniana V(t) = 0.35833 × [1 − exp(−0.04606 × t)]5.22947 25~40

Chinese Red Pine V(t) = 0.166
1+216.656×exp(−0.164×t) 30~60

Larch V(t) = 0.045
1+1035.485×exp(−0.407×t) 30~40

Camphor V(t) = 1.1768
1+50.4297×exp(−0.0907×t) 30~80

Poplar V(t) = 0.5483 × [1 − exp(−0.1848 × t)]3.9547 10~20
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Table 1. Cont.

Tree Types Growth Function Harvesting
Age

Beech V(t) = A × [1 − exp(0.0333 − 0.0167 × t)]2 50~100

Locust V(t) = 0.41129 × [1 − exp(−0.03468 × t)]1.54264 10~60

2.5. Improved Methodology

Based on the prediction of 14C activity of various types of biomasses, the following
equation was proposed in this study for the calculation of the biomass/coal co-combustion
blending ratio:

fcb
biomass =

Afluegas − 14Cair × fcb
air

n
∑

i=1

14Cpre_i × ffuel_i

× 100% (9)

where 14Cpre_i is the prediction value of the 14C activity of different types of biomass fuel
and ffuel_i is the carbon-based percentage of the biomass fuel. The specific calculations
will be described in subsequent chapters. Afluegas is the 14C activity of flue gas CO2.
14Cair × fcb

air represents the 14C activity originated from the air CO2. Unlike the traditional
14C calculation formula (such as Equation (1)), the 14C activity value of biomass in the
denominator of this formula is not obtained through actual detection but is a predicted
value based on the research results in this paper. This approach eliminates the need
for sampling and the 14C detection of biomass fuel, improving the timeliness and cost
effectiveness of the 14C method while ensuring accuracy. In addition, when there are
multiple types of biomass fuels in the power plant, achieving uniform sampling becomes
challenging. Predicting the 14C activity of biomass can provide a quick way to determine
the blending ratio.

3. Results and Discussion
3.1. Regional Influencing Factors
3.1.1. Fitting Results at the City Level

The research results in this section are based on the city as the smallest unit. Figure 2
illustrates the correlation between atmospheric 14CO2 activity and various socio-economic
factors, including the number of residents, GDP, GIP, fossil energy consumption, fiscal
revenue, and fiscal expenditure, in ten cities located in Zhejiang Province in the year 2019.
These data were obtained through the tree ring sample -14C detection process conducted
in this study. Similar to the findings of previous research [15], there is a tendency for
the atmospheric 14CO2 activity in a given region to exhibit a negative correlation with
the level of economic development in that region. Hangzhou and Ningbo, being the two
most prominent cities in Zhejiang Province, exhibit the lowest levels of atmospheric 14CO2
activity. The level of fossil energy consumption exhibits a significant negative correlation
(R2 = 0.885), making it the primary factor responsible for the decline in atmospheric 14CO2
activity. Since only 10 cities’ tree rings were sampled in this study, which may be under-
representative, multiple sets of data from other studies were used in the fitting at the
same time, encompassing different cities and different years, to make it more statistically
representative. The findings of previous research [15,21,57,58] demonstrate consistent
outcomes, as depicted in Figures S1 and S2. These figures illustrate the correlation between
the reduction factor of atmospheric 14C activity and local economic indicators in various
cities nationwide in 2010 and 2014, respectively. In the present study, the standard equation
method, as described in Section 2.4.1, was employed to perform linear regression analysis
on a dataset comprising data from 27 cities (refer to Figures 1, S1 and S2). The test set
for detecting the relative errors of the prediction results consisted of data from four cities:
Jiuquan, Yantai, Hangzhou, and Lishui.
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Figure 2. The correlation between atmospheric 14CO2 activity and various socio-economic factors of
ten cities of Zhejiang in 2019. The meaning of each figure is the relationship between the reduction
factor and the resident population, the gross domestic product, the gross industrial product, the fossil
energy consumption, the fiscal revenues and the fiscal expenditures.

The results of the prediction are presented in Table 1. To compare the fitting results of
various factors, the statistical software SPSS 26.0 was employed to analyze the correlation
among these factors. The analysis revealed that fossil energy consumption, the number
of resident populations, and the GDP exhibited the highest level of significance, while the
remaining three factors demonstrated comparatively weaker significance. Therefore, in
addition to conducting a full factor fitting analysis with six economic indicators, alternative
analyses were performed. These included the one-factor fit analysis involving the amount of
fossil energy consumption, the two-factor fit analysis involving the amount of fossil energy
consumption and the number of resident populations, and the three-factor fit analysis
involving the three most significant factors. Based on the obtained results, it is evident that
the four fitting methods can be ranked in terms of accuracy as follows: two factor, single
factor, three factor, and full factor. The test set’s average error for the two-factor fit was
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−0.07%, whereas the average error for the full-factor fit was −0.21%. This discrepancy
suggests that certain factors, such as fiscal revenues and expenditures, which exhibit weak
correlations, have a detrimental effect on the accuracy of the fitting process. For the analysis
at the city level, the reduction factor should be determined using the following equation:

RF = 1.0 − 9.4 × 10−6 × a1 − 4.0 × 10−6 × a4 (10)

where a1 and a4 are the number of resident population and fossil energy consumption,
respectively.

3.1.2. Fitting Results at the District Level

The results of this study in this section differ from the previous ones, and they are
based on a smaller area that can be used as the minimum unit. In this study, we have also
established the prediction equation at a smaller regional level by analyzing the atmospheric
14CO2 activity data from various districts of Beijing in 2009, as documented in the study by
Xi [55]. The correlation between atmospheric 14CO2 activity and various local economic
indicators is depicted in Figure S3. Based on the SPSS analysis, it was found that only
the significance coefficient of fossil energy consumption at the district level exceeded 0.7
(0.709). Therefore, both the single-factor fit and the full-factor fit were conducted.

As indicated in Table 2, there is a notable enhancement in the precision of the single-
factor model in comparison to the full-factor model, with average relative errors of −0.04%
and 0.89% for the test set, specifically the Huairou and Changping districts, respectively.
This observation implies that in a smaller geographical area, the influence of additional
factors will significantly affect the accuracy of predicting the reduction factor. This can
be attributed to the fact that fossil energy consumption has the most direct impact, which
becomes more evident at smaller regional scales. For the district level, the calculation of
the reduction factor should be based on the following equation:

RF = 0.97 − 3.3 × 10−5 × a4 (11)

where a4 is the value of fossil energy consumption.

Table 2. The multifactor linear fitting results at the city level.

Fitting
Methods a0 a1 a2 a3 a4 a5 a6

Relative
Error (%)

Full factor 1.0 × 100 −1.4 × 10−5 −5.4 × 10−7 −8.6 × 10−8 −3.4 × 10−6 −3.3 × 10−6 7.6 × 10−6 −0.21
Single factor 1.0 × 100 - - - −6.0 × 10−6 - - −0.15
Two factor 1.0 × 100 −9.4 × 10−6 - - −4.0 × 10−6 - - −0.07

Three factor 1.0 × 100 −7.6 × 10−6 - −4.2 × 10−7 −3.6 × 10−6 - - −0.18

3.2. 14C Content Bias of C3 Biomass

Similar to the previous study [11], the isotopic fractionation effect resulting from
various photosynthetic pathways causes the 14C activity of C3 biomass to be slightly lower
than the local atmospheric 14CO2 activity. The correction coefficient was derived by aligning
the calculations with the methodology outlined in Section 2.4.2, as illustrated in Table 3. RS
refers to rice straw and WS refers to wheat straw.

Table 3. The multifactor linear fitting results at the district level.

Fitting
Methods a0 a1 a2 a3 a4 a5 a6

Relative
Error (%)

Full factor −9.5 × 10−1 −3.2 × 10−5 −2.2 × 10−5 1.8 × 10−5 −6.3 × 10−5 −4.2 × 10−4 7.0 × 10−4 0.89
Single factor 9.7 × 10−1 - - - −3.3 × 10−5 - - −0.04
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It is evident that the atmospheric 14CO2 activity in Pingdingshan surpasses that of
Hangzhou due to the same underlying factor previously discussed in this paper, namely,
the level of fossil energy consumption, as shown in Table 4. The 1 content of the air in both
locations exhibits a comparable pattern, which can be attributed to the lower 13C content
of fossil fuels compared to atmospheric CO2 [19]. A comparison between wheat straw
and rice straw demonstrates that the 14C activity ratio of wheat straw to the surrounding
air is lower than that of rice straw. Additionally, the value of θ calculated is also higher
for wheat straw compared to rice straw. The corrected calculated θ values for both wheat
and rice ranged from 1.33 to 1.43, suggesting that the correction parameter for C3 biomass
remains relatively consistent. Based on the findings of this research and the values of the
13C activity range of C3 plants [19], it can be determined that the reduction factor of 14C
activity for C3 biomass, such as wheat, which undergoes a growth cycle including winter, is
approximately 0.974. On the other hand, the reduction factor of 14C activity for C3 biomass,
such as rice, which does not experience winter during its growth cycle, is calculated to
be 0.981.

Table 4. The correction coefficient for isotopic fractionation of C3 biomass.

Site Sample 14C (pMC) 13δ (‰) 13a (%) 14Cn/14C 13an/13a θ

LinJiang RS 96.31 −25.02 97.50
0.9836 0.9877 1.3345Air 97.91 −12.89 98.71

HongTong RS 96.01 −28.43 97.16
0.9795 0.9848 1.3527Air 98.02 −13.45 98.66

WangPing WS 96.19 −30.05 97.00
0.9725 0.9808 1.4341Air 98.90 −11.02 98.90

GuangTian WS 97.13 −31.12 96.89
0.9738 0.9815 1.4228Air 99.75 −12.85 98.72

3.3. Perennial Biomass
3.3.1. Growth Function

Firstly, the average 14C activity of each tree at various ages for each year of felling
was computed using Equation (8) and utilized for subsequent calculations. The results of
the calculations are demonstrated by utilizing Pinus massoniana and Poplar as illustrative
examples, as depicted in Figure 3. The figure includes distinct colored labels to indicate the
various years of tree felling. For trees that were felled after 1960, both pinus massoniana
and poplar exhibited a pattern of increasing and then decreasing average 14C activity with
age. Additionally, the peak of 14C activity gradually decreased as the felling years increased.
This phenomenon can be attributed to the peak of atmospheric 14CO2 activity resulting
from the nuclear explosion in the 1960s. It was observed that trees with faster growth rates
during this period exhibited higher 14C activity values, which aligns with the findings of
a previous study [12,18]. Unlike Pinus massoniana, the 14C activity of poplar exhibited a
significant and rapid change as it aged. When the 14C activity of a particular age reaches
its maximum, it subsequently experiences a rapid decline to its lowest level as the tree
grows. In contrast, the 14C activity of pinus massoniana changes at a slower rate. This
disparity can primarily be attributed to variations in the growth function of the two entities.
The rapid growth rate of poplar trees results in a strong dependence of their mean 14C
activity on the atmospheric 14CO2 activity during the years of rapid growth. Consequently,
when the atmospheric 14CO2 activity experienced a rapid decline after the 1960s, the mean
14C activity of poplar trees of the same age also exhibited a rapid decline. The calculation
method for the remaining tree species is consistent and will not be individually discussed
in this context.
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3.3.2. Prediction of Different Types of Perennial Biomass

Based on the method proposed in Section 2.4.3 for predicting the 14C activity of peren-
nial biomass, the 14C activity of various fuel sources, including wood chips, branches,
tree bark, leaves, and wood board fuels (such as waste furniture and abandoned construc-
tion wood), is calculated for each year from 2020 to 2030. The detailed results of these
calculations are presented in the subsequent subsections.

Wood Chips and Branches

Table 5 presents the predicted 14C activity of wood chips and branches from a total of
14 different tree species. Given that wood chips and branches are forestry waste following
tree felling, their 14C activity is primarily influenced by the age of the felled tree, i.e., the
tree’s maturity age. This is in contrast to discarded furniture and construction wood, which
have lifespans spanning several decades. Due to the fact that the age of mature trees of oak
and beech is more widely distributed and longer, 50~100 years old, the 14C activity of wood
chips and branches of oak and beech is higher. It is probable that the oak and beech trees
that were cut down in the past few years were planted prior to the occurrence of nuclear
explosions, and their growth patterns coincided with the periods of highest atmospheric
14CO2 levels. In contrast, eucalyptus and poplar are characterized by their rapid growth,
leading to a similarity in their 14C activity with atmospheric 14CO2 in recent years. The
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extent of the uncertainty primarily stems from the age range of the mature trees that are
eligible for harvesting. The uncertainty of 14C activity in mature trees increases with a
wider age range, as accurately determining their exact felling age becomes challenging.

Tree Bark

Table 6 presents the predicted 14C activity of the tree bark. The 14C activity of the bark
is primarily influenced by the tree’s age at maturity and the manner in which the bark is
renewed. The barks of eucalyptus and birch undergo annual renewal, resulting in their 14C
activity being equal to the atmospheric 14CO2 activity of the present year. The shedding of
bark in the other species does not occur throughout the year, with bark formation primarily
taking place during the early stages of growth. Therefore, the atmospheric 14CO2 activity
within the range of planting years, as determined by the age range of mature trees, is likely
to reflect the 14C activity of the bark. As a result of this phenomenon, the 14C activity
pattern of the bark exhibited a tendency to increase with the age of maturity. The 14C
activity of the bark from various tree species varied between 96.35 and 140.47 pMC in
2020~2030.

Leaves

Table 7 presents the predicted 14C activity in the leaves of 14 different tree species. The
predicted approach for determining the 14C activity of leaves is comparable to that used for
tree bark. The 14C activity of deciduous tree leaves is influenced by the atmospheric 14CO2
activity during the year they are cut down, whereas evergreen trees exhibit a broader range
of variability in their 14C activity. The level of prediction uncertainties in deciduous wood,
such as eucalyptus, is lower in comparison to evergreen wood, such as cypress. Leaf fuel
in power plants, derived from deciduous species or identifiable specific species, exhibit
significantly reduced uncertainty in their projected 14C activity values.

Waste Furniture

In this study, seven kinds of tree species commonly used in furniture making were
selected as raw materials for waste furniture. Table 8 presents the predicted 14C activity
of the wasted furniture derived from seven different tree species. The lifespan of wasted
furniture typically falls within the range of 10 to 30 years. It results in a higher average
14C activity for wasted furniture, as well as a wider range of uncertainty, unless precise
information regarding the furniture’s lifespan and the specific tree species used can be
obtained. The elevated projected 14C activity observed in camphor wood furniture can
be primarily attributed to the extensive age of camphor wood and the growth cycle of
camphor wood as a material for furniture, which coincides with the period of highest
atmospheric 14CO2 activity in the 1960s.

Abandoned Construction Wood

Table 9 presents the predicted 14C activity of abandoned construction wood derived
from 14 different tree species. Abandoned furniture typically has a lifespan of 50–60 years;
therefore, the year of tree harvesting must also be backward when calculating its age. The
average 14C activity and its associated uncertainty of abandoned construction wood exhibit
a notable increase compared to that of wasted furniture. This observation can be attributed
to the rapid decline in atmospheric 14CO2 activity following its peak, which is particularly
evident in construction wood derived from poplar and eucalyptus. By the year 2030, the
level of uncertainty in the predicted 14C activities of various species of waste construction
wood will have significantly decreased, and this reduction will continue to occur as the
years progress. This trend suggests that the significant fluctuations in biomass 14C activity,
caused by the impact of nuclear explosions, are gradually diminishing.
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Table 5. The predicted 14C activity of wood chips/branches.

Year Eucalyptus Cypress Sassafras Birch Oak Willow Cedar Pinus
Massoniana

Chinese
Red Pine Larch Pine Camphor Poplar Beech Locust

2030 97.84 ± 0.67 105.30 ± 2.15 101.26 ± 4.43 99.87 ± 4.33 110.27 ± 9.64 102.15 ± 1.21 99.80 ± 1.41 99.38 ± 1.23 102.33 ± 5.76 102.93 ± 2.17 105.81 ± 11.2 98.54 ± 1.28 112.97 ± 8.97 103.97 ± 11.1

2029 98.19 ± 0.67 105.79 ± 2.22 101.67 ± 4.53 100.25 ± 4.41 110.83 ± 9.32 102.60 ± 1.21 100.18 ± 1.43 99.75 ± 1.25 102.76 ± 5.93 103.36 ± 2.20 106.34 ± 11.2 98.91 ± 1.30 113.45 ± 8.97 104.49 ± 11.7

2028 98.55 ± 0.67 106.30 ± 2.30 102.08 ± 4.64 100.64 ± 4.50 111.39 ± 8.96 103.07 ± 1.14 100.57 ± 1.46 100.13 ± 1.27 103.21 ± 6.11 103.80 ± 2.22 106.88 ± 11.3 99.26 ± 1.33 113.92 ± 8.95 105.02 ± 12.3

2027 98.90 ± 0.67 106.83 ± 2.39 102.50 ± 4.76 101.04 ± 4.60 111.95 ± 9.11 103.54 ± 1.05 100.96 ± 1.49 100.51 ± 1.29 103.67 ± 6.31 104.24 ± 2.26 107.43 ± 11.5 99.63 ± 1.36 114.39 ± 8.91 105.57 ± 12.9

2026 99.26 ± 0.67 107.37 ± 2.50 102.93 ± 4.90 101.44 ± 4.70 112.51 ± 9.23 103.98 ± 0.99 101.36 ± 1.52 100.90 ± 1.31 104.14 ± 6.53 104.69 ± 2.31 107.99 ± 11.6 99.99 ± 1.37 114.85 ± 8.84 106.15 ± 13.5

2025 99.61 ± 0.67 107.93 ± 2.61 103.37 ± 5.05 101.85 ± 4.82 113.07 ± 9.34 104.38 ± 0.97 101.76 ± 1.56 101.29 ± 1.33 104.62 ± 6.77 105.15 ± 2.36 108.56 ± 11.7 100.37 ± 1.43 115.30 ± 8.74 106.74 ± 14.3

2024 99.96 ± 0.66 103.82 ± 2.74 103.82 ± 5.21 102.26 ± 4.94 113.62 ± 9.43 104.78 ± 0.94 102.17 ± 1.59 101.69 ± 1.36 105.12 ± 7.04 105.62 ± 2.42 109.13 ± 11.7 100.75 ± 1.47 115.74 ± 8.62 107.36 ± 15.1

2023 100.32 ± 0.66 109.13 ± 2.88 104.28 ± 5.40 102.68 ± 5.08 114.17 ± 9.51 105.18 ± 1.06 102.58 ± 1.64 102.09 ± 1.39 105.63 ± 7.32 106.10 ± 2.49 109.72 ± 11.8 101.14 ± 1.50 116.17 ± 8.46 108.01 ± 15.9

2022 100.68 ± 0.68 109.77 ± 3.04 104.75 ± 5.60 103.11 ± 5.22 114.71 ± 9.57 105.62 ± 1.21 103.00 ± 1.68 102.50 ± 1.42 106.16 ± 7.61 106.59 ± 2.56 110.31 ± 11.8 101.53 ± 1.52 116.59 ± 8.26 108.68 ± 16.6

2021 101.04 ± 0.72 110.45 ± 3.22 105.24 ± 5.82 103.55 ± 5.39 115.25 ± 9.61 106.08 ± 1.28 103.44 ± 1.73 102.92 ± 1.45 106.71 ± 7.90 107.09 ± 2.63 110.91 ± 11.8 101.93 ± 1.54 117.01 ± 8.03 109.37 ± 17.0

2020 101.43 ± 0.78 111.15 ± 3.41 105.74 ± 6.07 104.00 ± 5.57 115.78 ± 9.62 106.58 ± 1.37 103.88 ± 1.79 103.35 ± 1.49 107.27 ± 8.21 107.60 ± 2.70 111.52 ± 11.8 102.34 ± 1.55 117.41 ± 7.74 110.07 ± 17.1

Table 6. The predicted 14C activity of tree bark.

Year Eucalyptus Cypress Sassafras Birch Oak Willow Cedar Pinus
Massoniana

Chinese
Red Pine Larch Pine Camphor Poplar Beech Locust

2030 96.35 ± 0.15 121.08 ± 7.07 113.1 ± 15.1 96.35 ± 0.15 118.56 ± 56.9 102.89 ± 1.24 109.04 ± 6.56 110.34 ± 5.26 124.61 ± 29.2 111.79 ± 3.81 125.55 ± 49.9 101.85 ± 2.28 118.56 ± 56.9 116.46 ± 37.4

2029 96.7 ± 0.15 122.48 ± 8.49 113.97 ± 17.0 96.7 ± 0.15 117.98 ± 57.5 103.36 ± 1.15 109.63 ± 6.97 111 ± 5.6 126.13 ± 29.9 112.49 ± 4.11 125.33 ± 50.1 102.27 ± 2.24 117.98 ± 57.5 117.56 ± 38.5

2028 97.06 ± 0.15 123.95 ± 8.81 114.88 ± 17.9 97.06 ± 0.15 117.34 ± 58.1 103.84 ± 1.04 110.25 ± 7.19 111.68 ± 5.76 127.75 ± 31.8 113.22 ± 4.22 125.1 ± 50.3 102.69 ± 2.19 117.34 ± 58.1 118.72 ± 40.8

2027 97.41 ± 0.15 125.46 ± 8.64 115.82 ± 18.3 97.41 ± 0.15 116.67 ± 58.8 104.28 ± 0.98 110.89 ± 7.45 112.38 ± 5.96 129.51 ± 35.0 113.99 ± 4.35 124.87 ± 50.6 103.11 ± 2.15 116.67 ± 58.8 119.97 ± 44.5

2026 97.77 ± 0.15 127.13 ± 9.53 116.83 ± 19.8 97.77 ± 0.15 115.97 ± 59.5 104.68 ± 0.95 111.56 ± 7.79 113.11 ± 6.24 131.44 ± 38.6 114.81 ± 4.53 124.62 ± 50.8 103.54 ± 2.09 115.97 ± 59.5 121.33 ± 48.7

2025 98.12 ± 0.15 128.99 ± 10.8 117.94 ± 21.9 98.12 ± 0.15 115.23 ± 60.2 105.07 ± 0.93 112.26 ± 8.17 113.86 ± 6.57 133.52 ± 41.9 115.67 ± 4.76 124.36 ± 51.1 103.97 ± 2.03 115.23 ± 60.2 122.78 ± 52.7

2024 98.48 ± 0.15 131 ± 11.48 119.11 ± 23.4 98.48 ± 0.15 114.43 ± 61.0 105.47 ± 1.08 113.02 ± 8.8 114.67 ± 7.15 135.48 ± 39.9 116.6 ± 5.22 124.1 ± 51.3 104.41 ± 2.14 114.43 ± 61.0 124.17 ± 51.3

2023 98.83 ± 0.15 133.15 ± 12.4 120.37 ± 25.2 98.83 ± 0.15 113.57 ± 61.9 105.91 ± 1.25 113.81 ± 9.49 115.54 ± 7.76 136.71 ± 38.7 117.61 ± 5.69 123.82 ± 51.6 104.88 ± 2.29 113.57 ± 61.9 125.12 ± 50.3

2022 99.19 ± 0.15 135.5 ± 13.6 121.72 ± 27.4 99.19 ± 0.15 112.65 ± 62.8 106.38 ± 1.31 114.65 ± 10.1 116.47 ± 8.28 137.2 ± 38.2 118.69 ± 6.06 123.52 ± 51.9 105.34 ± 2.35 112.65 ± 62.8 125.62 ± 46.9

2021 99.54 ± 0.15 137.95 ± 13.7 123.14 ± 28.5 99.54 ± 0.15 111.66 ± 63.8 106.89 ± 1.41 115.53 ± 10.6 117.46 ± 8.68 137.46 ± 38.0 119.83 ± 6.31 123.22 ± 52.2 105.8 ± 2.51 111.66 ± 63.8 125.98 ± 49.5

2020 99.89 ± 0.12 140.47 ± 13.4 124.61 ± 29.2 99.89 ± 0.12 110.62 ± 64.8 107.43 ± 1.44 116.47 ± 11.7 118.54 ± 9.61 137.69 ± 37.7 121.08 ± 7.07 122.9 ± 52.5 106.27 ± 2.6 110.62 ± 64.8 126.33 ± 49.1
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Table 7. The predicted 14C activity of leaves.

Year Eucalyptus Cypress Sassafras Birch Oak Willow Cedar Pinus
Massoniana

Chinese
Red Pine Larch Pine Camphor Poplar Beech Locust

2030 98.83 ± 0.71 121.08 ± 7.07 96.35 ± 0.15 96.35 ± 0.15 96.35 ± 0.15 96.35 ± 0.15 109.04 ± 6.56 110.34 ± 5.26 124.61 ± 29.2 96.35 ± 0.15 125.55 ± 49.9 96.35 ± 0.15 96.35 ± 0.15 96.35 ± 0.15

2029 99.19 ± 0.7 122.48 ± 8.49 96.7 ± 0.15 96.7 ± 0.15 96.7 ± 0.15 96.7 ± 0.15 109.63 ± 6.97 111.00 ± 5.6 126.13 ± 29.9 96.7 ± 0.15 125.33 ± 50.1 96.7 ± 0.15 96.7 ± 0.15 96.7 ± 0.15

2028 99.55 ± 0.73 123.95 ± 8.81 97.06 ± 0.15 97.06 ± 0.15 97.06 ± 0.15 97.06 ± 0.15 110.25 ± 7.19 111.68 ± 5.76 127.75 ± 31.8 97.06 ± 0.15 125.1 ± 50.3 97.06 ± 0.15 97.06 ± 0.15 97.06 ± 0.15

2027 99.9 ± 0.71 125.46 ± 8.64 97.41 ± 0.15 97.41 ± 0.15 97.41 ± 0.15 97.41 ± 0.15 110.89 ± 7.45 112.38 ± 5.96 129.51 ± 34.9 97.41 ± 0.15 124.87 ± 50.6 97.41 ± 0.15 97.41 ± 0.15 97.41 ± 0.15

2026 100.25 ± 0.67 127.13 ± 9.53 97.77 ± 0.15 97.77 ± 0.15 97.77 ± 0.15 97.77 ± 0.15 111.56 ± 7.79 113.11 ± 6.24 131.44 ± 38.6 97.77 ± 0.15 124.62 ± 50.8 97.77 ± 0.15 97.77 ± 0.15 97.77 ± 0.15

2025 100.6 ± 0.71 128.99 ± 10.8 98.12 ± 0.15 98.12 ± 0.15 98.12 ± 0.15 98.12 ± 0.15 112.26 ± 8.17 113.86 ± 6.57 133.52 ± 41.9 98.12 ± 0.15 124.36 ± 51.1 98.12 ± 0.15 98.12 ± 0.15 98.12 ± 0.15

2024 100.96 ± 0.72 131 ± 11.48 98.48 ± 0.15 98.48 ± 0.15 98.48 ± 0.15 98.48 ± 0.15 113.02 ± 8.8 114.67 ± 7.15 135.48 ± 39.9 98.48 ± 0.15 124.1 ± 51.3 98.48 ± 0.15 98.48 ± 0.15 98.48 ± 0.15

2023 101.31 ± 0.71 133.15 ± 12.4 98.83 ± 0.15 98.83 ± 0.15 98.83 ± 0.15 98.83 ± 0.15 113.81 ± 9.49 115.54 ± 7.76 136.71 ± 38.7 98.83 ± 0.15 123.82 ± 51.6 98.83 ± 0.15 98.83 ± 0.15 98.83 ± 0.15

2022 101.71 ± 0.91 135.5 ± 13.6 99.19 ± 0.15 99.19 ± 0.15 99.19 ± 0.15 99.19 ± 0.15 114.65 ± 10.1 116.47 ± 8.28 137.2 ± 38.2 99.19 ± 0.15 123.52 ± 51.9 99.19 ± 0.15 99.19 ± 0.15 99.19 ± 0.15

2021 102.17 ± 1.04 137.95 ± 13.7 99.54 ± 0.15 99.54 ± 0.15 99.54 ± 0.15 99.54 ± 0.15 115.53 ± 10.6 117.46 ± 8.68 137.46 ± 37.9 99.54 ± 0.15 123.22 ± 52.2 99.54 ± 0.15 99.54 ± 0.15 99.54 ± 0.15

2020 102.64 ± 1.03 140.47 ± 13.4 99.89 ± 0.12 99.89 ± 0.12 99.89 ± 0.12 99.89 ± 0.12 116.47 ± 11.7 118.54 ± 9.61 137.69 ± 37.7 99.89 ± 0.12 122.9 ± 52.5 99.89 ± 0.12 99.89 ± 0.12 99.89 ± 0.12

Table 8. The predicted 14C activity of waste furniture.

Year Eucalyptus Birch Willow Pinus Massoniana Chinese Red Pine Camphor Poplar

2030 106.03 ± 5.12 109.76 ± 7.24 113.00 ± 8.87 108.62 ± 6.67 114.62 ± 8.93 117.84 ± 6.32 107.11 ± 5.65

2029 106.52 ± 5.25 110.42 ± 7.52 113.80 ± 9.47 109.24 ± 6.98 115.45 ± 9.13 118.46 ± 6.32 107.65 ± 5.86

2028 107.02 ± 5.42 111.11 ± 7.82 114.65 ± 10.28 109.87 ± 7.32 116.29 ± 9.31 119.07 ± 6.30 108.19 ± 6.10

2027 107.54 ± 5.64 111.83 ± 8.13 115.55 ± 11.12 110.54 ± 7.71 117.16 ± 9.45 119.67 ± 6.27 108.76 ± 6.34

2026 108.08 ± 5.90 112.57 ± 8.47 116.52 ± 11.90 111.24 ± 8.15 118.04 ± 9.57 120.26 ± 6.22 109.36 ± 6.70

2025 108.63 ± 6.21 113.34 ± 8.82 117.54 ± 12.77 111.98 ± 8.61 118.93 ± 9.64 120.83 ± 6.15 109.97 ± 7.06

2024 109.21 ± 6.53 114.15 ± 9.18 118.65 ± 12.83 112.75 ± 9.11 119.84 ± 9.65 121.40 ± 6.07 110.62 ± 7.46

2023 109.80 ± 6.88 114.98 ± 9.54 119.84 ± 14.94 113.56 ± 9.65 120.76 ± 9.61 121.95 ± 5.96 111.29 ± 7.90

2022 110.43 ± 7.24 115.84 ± 9.89 121.11 ± 16.02 114.42 ± 10.20 121.68 ± 9.50 122.47 ± 5.85 112.00 ± 8.39

2021 111.08 ± 7.63 116.74 ± 10.25 122.49 ± 17.25 115.32 ± 10.78 122.60 ± 9.33 122.98 ± 5.71 112.76 ± 8.95

2020 111.77 ± 8.05 117.67 ± 10.59 123.96 ± 18.58 116.26 ± 11.37 123.52 ± 9.38 123.47 ± 5.56 113.55 ± 9.55
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Table 9. The predicted 14C activity of abandoned construction wood.

Year Eucalyptus Cypress Sassafras Birch Oak Willow Cedar Pinus
Massoniana

Chinese
Red Pine Larch Pine Camphor Poplar Beech Locust

2030 151.83 ± 13.9 112.99 ± 6.96 132.55 ± 7.36 139.16 ± 4.12 115.27 ± 4.69 121.63 ± 32.4 139.67 ± 5.14 142.47 ± 5.28 128.16 ± 7.50 118.63 ± 19.1 122.27 ± 5.55 149.86 ± 3.48 112.20 ± 3.17 125.88 ± 3.19

2029 153.87 ± 13.3 111.68 ± 6.75 131.30 ± 8.41 138.59 ± 5.62 114.39 ± 4.93 116.71 ± 30.2 138.92 ± 6.71 141.75 ± 7.16 126.82 ± 8.20 115.38 ± 18.4 121.26 ± 6.08 149.80 ± 6.78 111.49 ± 3.35 124.91 ± 3.93

2028 155.13 ± 11.8 110.43 ± 6.53 129.84 ± 9.42 137.73 ± 7.19 113.45 ± 5.16 112.36 ± 26.1 137.87 ± 8.32 140.68 ± 9.05 125.33 ± 8.85 112.37 ± 17.2 120.15 ± 6.60 149.10 ± 10.5 110.74 ± 3.53 123.78 ± 4.69

2027 155.42 ± 9.28 109.21 ± 6.30 128.18 ± 10.4 136.58 ± 8.93 112.47 ± 5.39 108.74 ± 20.2 136.52 ± 10.0 139.25 ± 11.0 123.71 ± 9.50 109.67 ± 15.7 118.94 ± 7.15 147.75 ± 14.1 109.96 ± 3.71 122.49 ± 5.50

2026 154.65 ± 17.0 108.05 ± 6.07 126.32 ± 11.4 135.08 ± 10.9 111.44 ± 5.65 105.96 ± 15.6 134.82 ± 11.95 137.43 ± 13.1 121.95 ± 10.2 107.30 ± 13.8 117.62 ± 7.75 145.73 ± 17.6 109.14 ± 3.92 121.04 ± 6.39

2025 152.83 ± 23.9 106.92 ± 5.85 124.24 ± 12.4 133.20 ± 13.3 110.36 ± 5.94 103.83 ± 13.1 132.75 ± 14.1 135.18 ± 15.4 120.05 ± 10.8 105.26 ± 11.9 116.17 ± 8.41 143.03 ± 20.7 108.27 ± 4.13 119.41 ± 7.31

2024 150.05 ± 28.7 105.83 ± 5.63 121.95 ± 13.5 130.87 ± 15.9 109.21 ± 6.25 102.12 ± 10.9 130.27 ± 16.4 132.49 ± 17.8 118.01 ± 11.5 103.56 ± 10.0 114.60 ± 9.12 139.71 ± 23.3 107.35 ± 4.34 117.59 ± 8.22

2023 146.41 ± 31.3 104.79 ± 5.41 119.48 ± 14.2 128.12 ± 18.3 108.03 ± 6.45 100.75 ± 8.22 127.42 ± 18.3 129.40 ± 19.8 115.86 ± 11.9 102.17 ± 8.18 112.91 ± 9.64 135.85 ± 24.9 106.39 ± 4.57 115.62 ± 9.11

2022 142.05 ± 31.8 103.81 ± 5.17 116.94 ± 13.9 125.11 ± 18.9 106.83 ± 6.23 99.75 ± 5.58 124.34 ± 18.6 126.07 ± 19.9 113.69 ± 11.6 101.06 ± 6.54 111.19 ± 9.46 131.66 ± 24.7 105.43 ± 4.73 113.58 ± 9.86

2021 137.06 ± 30.5 102.91 ± 4.89 114.44 ± 12.9 122.02 ± 17.8 105.68 ± 5.99 99.08 ± 3.70 121.21 ± 17.4 122.69 ± 18.6 111.56 ± 11.1 100.19 ± 5.10 109.49 ± 8.68 127.37 ± 22.8 104.50 ± 4.58 111.56 ± 10.3

2020 131.62 ± 31.6 102.10 ± 4.58 112.03 ± 13.2 118.92 ± 16.2 104.59 ± 5.99 98.64 ± 2.42 118.10 ± 16.4 119.33 ± 17.9 109.53 ± 11.1 99.53 ± 3.87 107.85 ± 8.86 123.08 ± 23.7 103.61 ± 4.04 109.61 ± 9.20
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3.3.3. Summary of Values

Given the challenge of identifying the specific tree species associated with perennial
biomass fuels used in power plants, it becomes imperative to present average values of
14C activity for various categories of perennial biomass fuels. The values of poplar and
eucalyptus were chosen as representative values for wood chips, branches, bark, and leaves
in power plants located in northern and southern China because the poplar and eucalyptus
are the primary sources of forestry waste and are known for their fast growth. As shown in
the first three columns in Table 10, the first row represents northern China, and the second
row represents southern China. For the wood board fuels, the predicted average value was
determined using the average value of each type of tree. The outcomes of the computations
are presented in Table 10, while a more detailed representation of the results for select years
can be observed in Figure 4.

Table 10. The average values of predicted 14C activity of perennial biomass fuels.

Year Wood Chips,
Branches Tree Bark Leaves Waste Furniture Abandoned

Construction Wood

2030 98.54 ± 1.28
97.84 ± 0.67

101.85 ± 2.28
96.35 ± 0.15

96.35 ± 0.15
98.83 ± 0.71 111.00 ± 6.97 129.47 ± 22.36

2029 98.90 ± 1.30
98.19 ± 0.67

102.27 ± 2.24
96.70 ± 0.15

96.70 ± 0.15
99.19 ± 0.70 111.65 ± 7.22 128.35 ± 25.52

2028 99.26 ± 1.33
98.55 ± 0.67

102.69 ± 2.19
97.06 ± 0.15

97.06 ± 0.15
99.55 ± 0.73 112.32 ± 7.51 127.07 ± 28.06

2027 99.63 ± 1.36
98.90 ± 0.67

103.11 ± 2.15
97.41 ± 0.15

97.41 ± 0.15
99.90 ± 0.71 113.01 ± 7.81 125.64 ± 29.78

2026 99.99 ± 1.39
99.26 ± 0.67

103.54 ± 2.09
97.77 ± 0.15

97.76 ± 0.15
100.25 ± 0.67 113.72 ± 8.13 124.04 ± 30.61

2025 100.37 ± 1.43
99.61 ± 0.67

103.97 ± 2.03
98.12 ± 0.15

98.12 ± 0.15
100.60 ± 0.71 114.46 ± 8.47 122.25 ± 30.58

2024 100.75 ± 1.47
99.96 ± 0.66

104.41 ± 2.14
98.48 ± 0.15

98.48 ± 0.15
100.96 ± 0.72 115.23 ± 8.83 120.26 ± 29.79

2023 101.14 ± 1.50
100.32 ± 0.66

104.88 ± 2.29
98.83 ± 0.15

98.83 ± 0.15
101.31 ± 0.71 116.03 ± 9.21 118.09 ± 28.33

2022 101.53 ± 1.52
100.68 ± 0.68

105.34 ± 2.35
99.19 ± 0.15

99.19 ± 0.15
101.71 ± 0.91 116.85 ± 9.59 115.82 ± 26.22

2021 101.93 ± 1.54
101.04 ± 0.72

105.80 ± 2.51
99.54 ± 0.15

99.54 ± 0.15
102.17 ± 1.04 117.71 ± 9.99 113.56 ± 23.51

2020 102.34 ± 1.55
101.43 ± 0.78

106.27 ± 2.60
99.89 ± 0.15

99.89 ± 0.12
102.64 ± 1.03 118.60 ± 10.44 111.32 ± 20.30

Starting from the year 2023, the 14C activity of waste furniture surpasses that of
abandoned construction wood, with respective values of 118.09 and 116.03 pMC. This
significant increase is in contrast to the findings of previous studies [12,18]. The main
reason is that the previous study focused on predicting the 14C activity of fuels in 2010.
During that year, the raw materials used for wood board fuels were not influenced by
the effects of a nuclear explosion. The average 14C activity of waste construction wood is
expected to exhibit an annual increase, whereas the average 14C activity of other types of
perennial biomass fuels is anticipated to decrease over time. Additionally, the uncertainties
associated with these predicted values are expected to decrease progressively. In accordance
with the findings of the preceding study [11,12,18], the primary factor contributing to
uncertainty in the projected 14C activity of biomass remains wood board fuels, albeit with
a diminishing impact over time. In power plants, the identification of the fuel source
can significantly decrease the level of uncertainty associated with the calculation of the
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biomass/coal blending ratio. If the origin of the fuel source cannot be ascertained, the
estimated values provided in this study may be utilized, and a comprehensive analysis of
the associated errors is subsequently presented.
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of several kinds of biomass fuel in 2020; (b) 14C activity of several kinds of biomass fuel in 2023;
(c) 14C activity of several kinds of biomass fuel in 2026; (d) 14C activity of several kinds of biomass
fuel in 2030.

3.4. Prediction Formula

This study aims to propose a comprehensive method for predicting the 14C activity of
biomass fuels used in biomass–coal co-firing power plants. The method consists of two
steps, as illustrated in Figure 5. The initial step involves determining the reduction factor
“RF”, followed by determining the original 14C activity of the fuel “14Cori”. The predicted
value is denoted as “14Cpre = RF × 14Cori”.

The initial step in the process involves identifying the origin of the fuel, a task that is
typically straightforward. Based on the resident population, fossil energy consumption,
and gross industrial product, the local atmospheric 14CO2 reduction factor is calculated
using the methodology outlined in Section 3.1. For C3 annual biomass, the total reduction
factor is calculated by multiplying the local atmospheric 14CO2 reduction factor by an
isotope fractionation effect reduction factor ranging from 0.974 to 0.981. However, for C4
annual biomass and perennial biomass, the total reduction factor is equal to the reduction
factor for the regional influence factor. Secondly, the original 14C activity of annual biomass
corresponds to the 14CO2 activity of the atmospheric background during the growth period.
The proposal for the 14CO2 activity of atmospheric background after 2019 has not been
put forth yet. According to previous studies [22,23], the atmospheric background 14CO2
value after 2019 can be predicted using the formula “14CO2_year = −0.355 × year+ 816.82”.
Detailed information regarding the original 14C activities of various species of perennial
biomass is provided in Section 3.3.
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3.5. Improved Methodology for Determining Biomass Blending Ratios

Based on the previous discussion in Section 3, the equation in Section 2.5 can be
expanded as follows:

fcb
biomass =

Afluegas − 14Cair × fcb
air

n
∑

i=1

14CO2_year_i × RF1 × RF2 × ffuel_i +
n
∑

j=1

14CO2_year_j × RF1 × ffuel_j +
n
∑

k=1

14Cori × RF1 × ffuel_k

× 100% (12)

where RF1 and RF2 are the reduction factor caused by the regional influences and the
photosynthesize routine of C3 biomass and the subscript “i, j, k” represents C3 annual
biomass, C4 annual biomass, and perennial biomass, respectively. Other corresponding
values have been given in detail above. Advancements in methodology have made it
possible to accurately predict average 14C activity values for complex types of biomass fuels,
greatly facilitating the use of the 14C method in biomass–coal co-combustion power plants.
When government monitoring authorities visit power plants, the combined combustion
ratio of biomass can be quickly obtained. In the following section, we will thoroughly
discuss the errors in the improved methodology.

3.6. Error Analysis

The primary aim of this study is to establish a benchmark value for the 14C activity of
pure biomass. This benchmark will be used to determine the co-firing ratios of biomass
and coal in industrial power plants using the 14C method. Therefore, it is imperative
to examine the potential calculation error in the blending ratio due to the uncertainty
associated with the predicted value of the 14C activity in biomass fuels. According to the
blending ratio calculation formula [5], it is evident that the calculation error of the blending
ratio, denoted as “Eratio [%]”, resulting from the uncertainty of the 14C activity of biomass,
denoted as “Ebiomass [%]”, is independent of the actual blending ratio value. Instead, it is
solely associated with “Eratio“, and the “Eratio [%]” is determined by the following formula:

Eratio =
Ebiomass

100 + Ebiomass
× 100 (13)

The prediction error of biomass 14C activity, as proposed in this study, comprises two
primary components. The first component pertains to the error in predicting the reduction
factor value, while the second component relates to the error in predicting the original
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14C activity value. According to the findings presented in Section 3.1, it is evident that
the prediction error associated with the reduction factor, resulting from the prediction of
the regional influence factor, is merely −0.07%, and this error has a negligible impact on
the measurement of the blending ratio. For C3 plants, the impact of isotopic fractionation
effects on error is minimal and can be considered negligible. Therefore, the primary source
of the error lies in the accuracy of predicting the original 14C activity of biomass fuels.

For annual plants, the projected value of the original 14C activity corresponds to
the projected value of atmospheric 14CO2 activity in future years, as demonstrated in
Section 3.4. According to the consistent trend observed in the atmospheric 14CO2 levels
over the past years, it can be inferred that any potential error associated with it is negli-
gible. Table 11 presents the maximum potential errors in the measurement of blending
ratios caused by uncertainties in the predicted values of 14C activity for different types
of perennial biomass fuels. The errors resulting from the predicted quantities of wood
chips, branches, bark, and leaves are relatively minor and exhibit a declining trend over
time. The discrepancy in predicted values between poplar and eucalyptus is attributed to
the contrasting growth patterns of these two trees. During the temporal span from 2020
to 2030, the measurement error associated with the maximum blending ratio attributable
to the projected values of waste furniture varied between ±6.11 and 8.30%, whereas the
corresponding range for abandoned construction wood was ±14.73 to 20.07%. The error
resulting from the predicted value of waste furniture exhibits a gradual decrease as the
number of years increases. Conversely, the error stemming from the predicted value of
abandoned construction wood initially increases and subsequently decreases with the
passage of time, reaching its peak in the year 2025. From this trend, it is evident that the
stabilization of atmospheric 14CO2 activity in recent years has resulted in a decrease in
the errors associated with the measurement of the biomass/coal blending ratio predicted
values over time. However, in recent years, due to the significant uncertainty in predicting
the wood board fuel, it is advisable to use the sampling -14C detection method to improve
accuracy. This method involves obtaining the actual 14C activity and comparing it with the
predicted value, especially when this type of fuel constitutes a significant portion of the
power plant’s fuel source.

Table 11. The maximum potential errors in the measurement of blending ratios caused by uncertain-
ties in the predicted values of 14C activity for different types of perennial biomass fuels.

Year Wood Chips,
Branches Tree Bark Leaves Waste

Furniture
Abandoned

Construction Wood

2030 ±1.29
±0.68

±2.19
±0.16

±0.16
±0.71 ±6.11 ±14.73

2029 ±1.30
±0.67

±2.15
±0.15

±0.15
±0.70 ±6.29 ±16.59

2028 ±1.32
±0.67

±2.09
±0.15

±0.15
±0.73 ±6.49 ±18.09

2027 ±1.34
±0.67

±2.04
±0.15

±0.15
±0.71 ±6.70 ±19.16

2026 ±1.38
±0.67

±1.98
±0.15

±0.15
±0.66 ±6.90 ±19.79

2025 ±1.41
±0.66

±1.91
±0.15

±0.15
±0.70 ±7.12 ±20.07

2024 ±1.44
±0.66

±2.01
±0.15

±0.15
±0.71 ±7.35 ±19.85

2023 ±1.46
±0.66

±2.14
±0.15

±0.15
±0.70 ±7.58 ±19.35

2022 ±1.47
±0.67

±2.19
±0.15

±0.15
±0.89 ±7.80 ±18.46

2021 ±1.49
±0.71

±2.31
±0.15

±0.15
±1.01 ±8.03 ±17.15

2020 ±1.50
±0.77

±2.39
±0.12

±0.12
±1.00 ±8.30 ±15.42
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4. Conclusions

In an effort to enhance the utilization of the 14C method in determining blending ratios
in biomass–coal co-firing power plants, this study investigates key factors that influence
the 14C activity of biomass fuels. These factors include the growth location, growth cycle,
and biomass species. This study also provides predicted values of the 14C activity for
different types of biomass fuels for each year from 2020 to 2030 and proposes a new
formula for determining the biomass blending ratio. The aim is to improve the timeliness
and accuracy of the 14C method in biomass–coal co-firing power plants. Meanwhile, this
study discusses the potential measurement errors in the blending ratio caused by the
predicted values. This study innovatively proposes a methodology for predicting biomass
14C activity, which is suitable for biomass and coal co-combustion power plants, and
promotes the application of the 14C method in industrial power plants. In this study, the
sampling and detection process of biomass fuel in the traditional 14C method has been
eliminated. This makes the calculation of biomass and the coal blending ratio more efficient
and cost effective and facilitates real-time monitoring of the blending ratio in each power
plant by government departments.

(1) The utilization of fossil fuels and various human activities will result in a dis-
cernible decline in the atmospheric 14CO2 activity in comparison to the background level.
Linear regression can be used to fit atmospheric 14CO2 activity reduction factors to various
economic indicators. At the city level, the indicators considered for the analysis include
the resident population and fossil energy consumption. At a smaller regional level, the
analysis focuses solely on the resident population as an indicator.

(2) The photosynthetic process in C3-type biomass, such as wheat and rice straw, leads
to a decrease in its 14C activity in comparison to the atmospheric 14CO2 activity in its
surroundings. The reduction factors obtained from the fitting calculations ranged from
0.974 to 0.981.

(3) Perennial biomass was classified into various categories, including wood chips and
branches, bark, leaves, waste furniture, and abandoned construction wood. The predicted
14C activity ranges of the five perennial biomass fuels were 97.34~102.84, 96.35~106.27,
96.35~102.64, 111.00~118.60, and 111.32~129.47 pMC for the time period between 2020 and
2030, respectively.

(4) The level of uncertainty in the predicted values of abandoned construction wood
initially increases and subsequently decreases over time, while the uncertainty in the
predicted values of the remaining perennial biomass fuels decreases steadily year after
year. The largest source of uncertainty was observed in the predicted values of abandoned
construction wood, followed by waste furniture. Conversely, the predicted values of other
fuels exhibited relatively small levels of uncertainty.

(5) The prediction formula for 14C activity in biomass fuels comprises two components:
the reduction factor and the original 14C activity. The error in the reduction factor’s
prediction is minimal and has a negligible impact on the accuracy of the blending ratio
computation. The variability in the estimated quantities of wood chips and branches, bark,
and leaves introduces a maximum error of ±2.39% in the calculation of the blending ratio.
Conversely, the predicted values of waste furniture and abandoned buildings cause errors
ranging from ±6.11~8.30% to 14.73~20.07%, respectively. Overall, the frequency of errors
exhibits a decreasing trend as the year progresses.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/en17040942/s1, Figure S1: The relationship between atmospheric
14CO2 activity and several local economic indicators of several cities in 2010; Figure S2: The re-
lationship between atmospheric 14CO2 activity and several local economic indicators of several
cities in 2014; Figure S3: The relationship between atmospheric 14CO2 activity and several local
economic indicators of several districts of Beijing in 2009; Table S1: The commonly used plant growth
function models.
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Abbreviations

Abbreviations/Symbols Description
fcb
biomass The carbon-based blending ratio

Afluegas The 14C activity of CO2 in flue gas
ANaOH The 14C activity of the CO2 absorbed by NaOH
Abiomass The 14C activity of biomass
fcb
NaOH The carbon-based fraction of CO2 absorbed by NaOH

RF Reduction factor
RF1 The local atmospheric 14CO2 reduction factor
RF2 The isotope fractionation effect reduction factor
a0∼ a6 The fitting coefficients in front of each variable of the linear equation
x1 Resident population
x2 Gross domestic product
x3 Gross industrial product
x4 Fossil energy consumption
x5 Fiscal revenues
x6 Fiscal expenditures

J(α0,α1,α2,α3,α4,α5,α6)
The cost function for fitting the equation (the average value of the
residuals of each array in the training set)

hα(x(i)) The fitting value of RF under some values of a0∼ a6

RF(i) The actual values of RF
X The matrix composed of each city’s economic indicators (x1∼ x6)
ω The matrix composed of a0∼ a6
14C The 14C activity of biomass

14CN
The corrected value of the 14C activity of biomass, that is, the 14C
activity of C3 biomass

13aN
The corrected value of the 13C activity of biomass, that is, the 13C
activity of C3 biomass

13a The 13C activity of air CO2
13δn The thousandth difference of the 13C content of C3 biomass
13δ The thousandth difference of the 13C content of air CO2
θ Correction parameter
RS Rice straw
WS Wheat straw
V The growth function model of the plant
pMC(t) The atmospheric 14C activity of every year
14Cair The 14C activity of air CO2
fcb
air The carbon-based fraction of air CO2 in flue gas

14Cpre_i
The prediction value of the 14C activity of different types of
biomass fuel

ffuel_i The carbon-based percentage of the biomass fuel
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14Cori The original 14C activity of the fuel
14CO2_year The atmospheric background 14CO2 value after 2019
Eratio The error in the measured blending ratio
Ebiomass The uncertainty of the prediction value of the 14C activity of biomass
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