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Abstract: With the large-scale development of distributed energy on the demand side, the trend of
“supply exceeding demand” has gradually become prominent, and regional peer-to-peer (P2P) energy
trading has become an important measure to improve the local consumption of distributed energy.
However, most existing studies usually assume that prosumers behave entirely rationally with the
goal of maximum benefit, which has been proved to deviate from the observed actual behaviors.
Aiming at the optimal energy of prosumers participating in the P2P market, a prospect theory-
based two-stage stochastic optimization model considering the bounded rationality was proposed to
accurately simulate the decision-making behavior. Then, a benefit maximization model for the energy
trading service provider (ETSP) was constructed considering the power flow constraint to ensure
the safe operation of the system. Finally, an improved R-ADMM algorithm considering timeout was
proposed to solve the above model and improve the convergence speed. The effectiveness of the
proposed model and algorithm was verified via simulation.

Keywords: prosumer; prospect theory; random optimization; P2P energy trading

1. Introduction

With the substantial proliferation of intelligent control and demand-side response
technology, the types and scales of distributed flexible resources, such as electric vehicles,
energy storage systems (ESS), and temperature control loads have increased rapidly, and
more traditional power consumers have turned into prosumers [1]. As a new entity on the
demand side, prosumers have the source-load dual properties, who can participate in the
regional energy transaction market more flexibly, and assist the grid to achieve peak cutting,
local consumption, and carbon emissions reduction [2,3]. Therefore, how to maximize the
benefits of prosumers in the regional energy market under the premise of ensuring the
safety constraints is one of the challenges at present.

In order to promote regional power balance, the Grid-Wise Architecture Council
(GWAC) began to develop and practice the transactive energy (TE) mechanism to carry out
decentralized resource management for cluster prosumers [4]. In TE market, prosumers
can trade energy with other prosumers directly through peer-to-peer (P2P) energy trading,
which can reach the full resource flexibility, and improve the consumption ratio of local
renewable energy [5,6]. The HELICE co-simulation framework and simulation model for
transactive energy systems (SIMTES) have been proposed to demonstrate the applicability
of P2P [7,8].

The existing P2P energy trading architecture can be divided into completely P2P
distributed trading and centralized P2P trading with the energy trading service provider
(ETSP) [9]. Completely distributed P2P energy trading architecture is usually based on the
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blockchain, but the high construction and maintenance cost make it difficult to implement
on a large scale [10]. Furthermore, the power flow constraints are usually ignored [11]
or considered in the prosumers’ optimization model [12]. Compared with completely
P2P trading, the resource integration ability of EPST can greatly reduce the calculation
and maintenance pressure of the grid market by clustering the local prosumers, so as to
support the access of massive prosumers to the regional P2P market [13]. However, the
existing studies consider the EPST as a virtual platform only for transaction matching,
which directly manages the trading activities and the devices of prosumers. The centralized
P2P trading struggles to protect prosumers’ privacy. On the one hand, prosumers should
have the right to make independent decisions, and the ETSP can act as a commercial entity
and increase revenue by managing its self-building energy system. On the other hand,
the global information is difficult to obtain for prosumers, which makes it unsuitable for
practical application and may cause the voltage to exceed the limit, and affect the safe
operation of the grid.

For the construction of the prosumers’ model, the uncertainties of distributed pho-
tovoltaic (PV) output and prosumers’ consumption behavior bring challenges to P2P
transaction optimization. In recent research, the uncertainty processing methods mainly
include stochastic optimization and robust optimization. By considering the worst scenar-
ios, robust optimization is adopted to deal with the uncertainties of grid price, renewable
energy generation, and load consumption, which focuses on optimizing the objective goal
and improving stability [14,15]. To reduce the conservation, distributionally robust op-
timization was proposed by merging a series of potential uncertainty distributions into
a fuzzy set, which has been proved to significantly reduce the conservativeness of the
results [16]. In [17], a conditional-distributionally robust optimization was proposed to con-
sider the forecast error. However, the results still have a certain degree of conservation, and
cannot accurately simulate the influence of uncertain factors. Stochastic optimization theory
was adopted in [18–20], in which the representative scenarios were selected based on the
probability distribution of parameter uncertainty for optimal decision-making, with wide
application in the uncertainty processing of source-load. However, decision-makers are
assumed to be in a completely rational state in the above uncertainty processing methods,
which fail to consider the risk preference of decision-makers. The psychological expectation
and subjective risk preference of decision-makers are the important factors affecting the
decision result. Though a risk-loss model that introduced risk weights to quantify the
risk cost was constructed in [21,22], it still suffered from a lack of consideration of the
tendencies and could not reflect the different subjective preferences of decision-makers
under different objective probability events, which is also referred to as bounded rational
behavior. The decision-makers’ subjective bounded rationality is an important research
branch in psychology, which represents the irrational behavior caused by the psychological
activities in different scenes. Therefore, the actual choices are excluded from the objective
decisions. Considering this idea, Kahneman proposed the prospect theory (PT) to reveal
the irrational psychological factors affecting the selection behavior from the psychological
characteristics and behavioral characteristics. This indicated the characteristics of loss
avoidance and risk preference, which refers to the fact that low-probability events will
be overestimated and high-probability events will be underestimated [23]. Based on the
theory, the decision weight model was proposed to quantify the irrational psychological
factors affecting behavioral decision-making and to describe different risk preference facing
gains and losses, which verified that the proposed model is more consistent with actual
behavior. In addition, as a nonlinear model, how to deal with the nonlinearity of the PT is a
difficult problem to be solved in the application.

In terms of solving algorithms, it is mainly divided into centralized and distributed
algorithms. Traditional centralized optimization scheduling has defects such as massive
communication data, weak privacy, dimension disaster, and so on. Furthermore, with
the increase in entities, it also brings challenges to the computing and maintenance ca-
pabilities of centralized platforms [24]. In terms of distributed algorithms represented
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by deep reinforced learning, the energy optimal model is generally formulated as a par-
tially observable Markov decision process [25], and then the multicluster deep reinforced
learning algorithm with decentralized training structure is proposed to coordinate the
management of large-scale P2P energy trading [26]. However, the aforementioned rein-
forcement learning algorithm requires large interaction and trial between the agent and the
environment in order to collect feedback signals to learn, which makes its generalization
ability weak and limits its application in costly real scenarios. Therefore, the alternating
direction method of multiplier (ADMM) technique has gradually become widely applied
for solving models [27,28]. In [29], the ADMM algorithm was designed to manage heating,
ventilation, and air-conditioning units to protect privacy. To avoid the nonconvexity caused
by binary variables, the noncomplementary charging/discharging mechanism was adopted
in ADMM to linearize the model [30]. However, the existing research assumed that the
communication environment is ideal among prosumers. If the calculation of a single agent
failure or the communication delay is large, the single iteration will be stopped, and the
iterative process of the whole algorithm will be blocked, resulting in a long convergence
time [31,32]. Therefore, how to guarantee the reliable convergence of the algorithm in the
nonideal communication is also an urgent problem to be solved.

To sum up, although the research about P2P energy trading has developed rapidly,
there are still the following challenges: (1) the security constraints of global trends are
ignored; (2) lack of consideration of the bounded rationality of prosumers, which cannot
accurately simulate the actual behavior; (3) the stagnant or slow convergence due to the
iteration delay timeout. To solve the above problems, the main contributions of this paper
can be summarized as follows:

(1) A P2P energy trading architecture considering the ETSP with self-building energy
system was proposed, and the model of ETSP was constructed considering global
power flow constraints to maximize the benefit and ensure the voltage safety.

(2) Based on prospect theory, a two-stage stochastic optimization model of prosumers
considering the source-load uncertainty was constructed under bounded rationality,
so as to describe the risk decision behavior more accurately.

(3) An improved R-ADMM algorithm considering iteration delay was proposed to im-
prove the convergence speed, and the effectiveness was verified via simulation.

2. P2P Energy Trading Architecture

The P2P energy trading architecture in the local prosumers’ community is shown in
Figure 1. Each prosumer consists of PV, ESS, rigid and flexible load, and an energy man-
agement system (EMS). Based on information and communication technology, prosumers
can obtain the self-energy information to solve the optimal energy dispatching strategy. As
the only energy service provider in the community, ETSP is responsible for the centralized
coordination of regional P2P market transactions and settlements, while improving the
grid operation safety and economic benefits by regulating its self-building resources. It is
worth mentioning that the prosumers can only trade with other prosumers and the ETSP.

By sharing purchasing and selling power and price, the prosumers and the ETSP
iteratively solve the optimal scheduling strategies satisfying the constraint conditions, until
the result meets the convergence condition.

Table 1 shows the comparison of characteristics and performance evaluation indicators
among the completely P2P distributed trading architecture, the centralized P2P trading
architecture with ETSP and the proposed architecture. Due to the fact that the energy opti-
mizations of the prosumer cannot be directly controlled by ETSP, the proposed framework
cannot maximize the global benefit, but its performance is still the best overall.
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Table 1. Analysis of three architecture of P2P energy trading.

Features Completely
Free to Trade

High Market
Efficiency

Preserve
Privacy Power Security Benefit

Maximization

Completely P2P
distributed

trading
architecture

Negotiate
without the

involvement of
a third party.

√
×

√
× ×

Centralized P2P
trading

architecture
with ETSP

ETSP directly
manages the

trading
activities and
the devices.

×
√

×
√ √

Proposed
architecture

ETSP
coordinates the

trading
activities inside
the community.

√ √ √ √
×

3. Energy Optimization Model of Prosumers Considering Bounded Rationality
3.1. Prospect Theory

PT is a risk decision theory proposed by Kehneman on the basis of expected utility the-
ory, which is used to describe the decision-making process of decision-makers in response
to risks and uncertain conditions. Through a series of experimental observations, prospect
theory claims that decision-making behavior is the result under bounded rationality of
decision-makers, and the decision result depends on the gap between the result and the
expectation rather than the result itself. When making decisions, individuals usually over-
estimate small probability events and underestimate large probability events. Therefore,
prospect theory transforms the objective probability of events into a subjective weight to
describe the individual bounded rationality behavior under psychological influence [33].
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In reference [34], the subjective can be divided into value function and weight function
introducing the prospect theory:

Vω,i =

{
(∆Cω,i)

αi , ∆Cω,i ≥ 0
−λi(−∆Cω,i)

βi , ∆Cω,i < 0
(1)

TDVFω,i = Vω,iδi(1 − (1 − θi)ri)
1/(1−θi) (2)

∆Cω,i = Cω,i − Ci (3)

where, TDVFω,i is the value function introducing risk preference based on the traditional
value function, ∆Cω,i is the difference between the actual benefit Cω,i and the expected
benefit Ci of the prosumer i in the scenario ω, αi is the risk preference coefficient, βi is the
risk avoidance coefficient, λi is the loss avoidance coefficient representing the individual’s
aversion to loss, which need to be satisfied βi < 0, αi ≤ 1, λi ≥ 1. δi is the deviation
coefficient, θi is the double curvature coefficient, and ri is the proportion coefficient.

Its decision weight function is shown as follows:

πω,i = exp(−(ln ρω)
ξi , 0 ≤ ξi ≤ 1 (4)

where πω,i is the subjective decision weight, ρω is the true objective probability of the
gain/loss event, ξi is the decision weight function coefficient.

Therefore, the utility function based on prospect theory is as follows:

Ri =
Nω

∑
ω=1

Ni

∑
i=1

πω,iTDVFω,i (5)

3.2. Two-Stage Stochastic Optimization Model Based on PT of Prosumers

In the actual scenario, the distributed PV output has randomness, fluctuation, and
intermittency. The energy consumption changes frequently and fluctuates greatly over a
long time scale. The deterministic model does not take these uncertainties into account in
the optimization of the total cost of the system, which results in a large deviation from the
actual results. Therefore, a two-stage stochastic optimization model was constructed to
realize the uncertainty optimization.

The multiscenario method was adopted to deal with the uncertainty of PV output
and energy consumption, and the uncertainty factors in the model were transformed into
multiple deterministic scenarios by simulating the possible scenarios. Firstly, the Monte
Carlo sampling method was applied to generate a large number of scenarios to simulate the
possible running states of random variables in periods. Then considering the long calcula-
tion time when solving all scenarios, this section adopted the fast forward selection method
to reduce the scenes, and constructed the typical scenes and corresponding probabilities to
characterize the characteristics of random scenes and reduce the calculation burden.

In the traditional stochastic optimization, the estimated probability of each scenario
is usually solved by equal probability distribution or improved fast previous generation
elimination technique [19]. However, it is difficult to accurately describe the bounded
rationality of prosumers, which will result in the deviations in the simulation of their
decision behaviors. Therefore, this section introduces the prospect theory on the basis of
the traditional stochastic optimization model, and converted the objective probability into
the subjective decision weight function of prosumers. Based on the Nω typical scenarios
through scene reduction in the traditional stochastic optimization model, the PT was
adopted to calculate the subjective decision weight πω,i and the value function TDVFω,i in
each day-in scenario, then the optimal day-ahead schedule decision was obtained under
the bounded rationality when the day-in prospect reached the maximum.

The energy management optimization model considering uncertainty includes two
stages: day-ahead cost CDA

i and day-in prospect URT
i , aiming to minimize day-ahead
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energy management cost and maximize day-in prospect, as shown in Equations (6)–(13). It
is worth noting that the day-in prospect model is a nonlinear model, and its linearization
transformation process is appended in the Appendix A.

minCi = CDA
i − URT

i (6)

CDA
i =

T

∑
t=1

∆t(CET
i,t + CSF

i,t + CL
i,t + CBY

i,t ) (7)

CET
i,t = sE

t · Pb,E
i,t − si

t · Ps,E
i,t +

Ni

∑
j=1,j ̸=i

(sj
t · Pb,ij

i,t − si
t · Ps,ij

i,t ) (8)

CSF
i,t = cpv · Ppv

i,t + cess · (Pch
i,t + Pdch

i,t ) (9)

CL
i,t = cL · (PR

i,t + PF
i,t − Ppre

i,t )
2

(10)

CBY
i,t = c+ess(Pch+

i,t + Pdch+
i,t ) + c−ess(Pch−

i,t + Pdch−
i,t ) + c+drPF+

i,t + c−drPF−
i,t (11)

URT
i =

Nω

∑
ω=1

πω,iTDVFω,i

=

{
(∆Uω,i)

αi δi(1 − (1 − θi)ri)
1/(1−θi), ∆Uω,i ≥ 0

−λi(−∆Uω,i)
βi δi(1 − (1 − θi)ri)

1/(1−θi), ∆Uω,i < 0

(12)


Uω,i = −

T
∑

t=1
(cr,ess(∆Pch

ω,i,t + ∆Pdch
ω,i,t) + cr,L∆PF

ω,i,t + cr,pl(∆PBE
ω,i,t + ∆PSE

ω,i,t))

Uω,i = −
T
∑
t
(cr,ess(∆Pch

i,t + ∆Pdch
i,t ) + cr,L∆PF

i,t + cr,pl(∆PBE
ω,i,t + ∆PSE

ω,i,t))

∆Uω,i = Uω,i − Uω,i

(13)

where, Uω,i is the day-in expected income, Uω,i is the day-in reference income, and ∆Uω,i
is the difference between the day-in expected income and reference income. ∆t is the time
interval. CET

i,t , CSF
i,t , and CL

i,t are the energy transaction costs, operation and maintenance

costs, and comfort loss costs of the prosumer i. Pb,E
i,t and Ps,E

i,t are the purchasing and selling

power by prosumer i from ETSP, respectively. Pb,ij
i,t and Ps,ij

i,t are the purchasing and selling

power of prosumer i from prosumer j respectively. sE,i
t is the selling price of the ETSP to

the prosumer i, and si
t is the selling price of the prosumer i to others. Ppv

i,t refers to the PV
output of prosumer i during the period t, Pch

i,t and Pdch
i,t are the charging and discharging

power of ESS respectively. PF
i,t is the flexible load, PR

i,t is the rigid load, and Ppre
i,t is the

predicted power consumption. Pch+
i,t , Pch−

i,t , Pdch+
i,t , Pdch−

i,t are respectively the upstream
reserve and downstream reserve for charging and discharging of ESS, PF+

i,t and PF−
i,t are

the upstream reserve and downstream reserve for adjusting the flexible load. c+ess, c−ess,
c+dr and c−dr are the corresponding unit reserve costs respectively. ∆Pch

ω,i,t, ∆Pdch
ω,i,t, ∆PF

ω,i,t,
∆PBE

ω,i,t, ∆PSE
ω,i,t are the adjustment power of charge and discharge of ESS, flexible load

and power purchased/sold to ETSP in the day-in scheduling in scenario ω. ∆Pch
i,t , ∆Pdch

i,t ,

∆PF
i,t, ∆PBE

ω,i,t, ∆PSE
ω,i,t are the corresponding expected adjustment amount solved based on

historical data, where the positive values represent upward adjustment and negative values
downward adjustment. cpv, cess, cL are the adjustment cost coefficients of PV, ESS, flexible
load respectively. cr,ess, cr,L, cr,pl are the day-in unit adjustment costs of ESS, flexible load
and purchased power respectively.

3.3. Day-Ahead Constraints

(1) Power demand constraints
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Di ≤
T

∑
t=1

∆t · (PR
i,t + PF

i,t − PF+
i,t + PF−

i,t ) ≤ Di (14)

di,t ≤ (PR
i,t + PF

i,t − PF+
i,t + PF−

i,t ) ≤ di,t (15)

Di and Di are the minimum and maximum of the total power after adjustment within
the period, di,t and di,t are the minimum and maximum of the power after adjustment
within a time slot.

(2) ESS constraints

Assuming that the ESS is dominated by batteries, the charge and discharge constraints
should be met as follows: 

0 ≤ Pch
i,t − Pch+

i,t + Pch−
i,t ≤ Pch

i

0 ≤ Pdch
i,t + Pdch+

i,t − Pdch−
i,t ≤ Pdch

i
Pch

i,t ·Pdch
i,t = 0

(16)

Ei,t = Ei,t−1 + ηch
i ·Pch

i,t ·∆t − Pdch
i,t ·∆t/ηdch

i (17)

Emin
i ≤ Ei,t ≤ Emax

i (18)

The ESS can only charge or discharge in the same period, Pch
i and Pdch

i are the maxi-
mum charge and discharge power in the period t, respectively. ηch

i and ηdch
i are the charging

and discharging coefficients, respectively, and Ei,t is the energy capacity at time t. Emin
i and

Emax
i are the maximum and minimum of the ESS capacity.

The nonlinear constraint in Formula (16) is transformed into a linear constraint by
the big-M method as follows, µess

i,t represents the charge and discharge state of the energy
storage, which is a binary variable, and M is assumed to be an infinite constant.{

µess
i,t ≤ Pch

i,t ≤ Mµess
i,t

(1 − µess
i,t ) ≤ Pdch

i,t ≤ M(1 − µess
i,t )

(19)

(3) Purchase and sale power constraints

{
0 ≤ Pb,E

i,t ≤ Pb,E
i,t

0 ≤ Ps,E
i,t ≤ Ps,E

i,t
(20)

{
0 ≤ Pb,ij

i,t ≤ Pb,ij
i,t , j = 1, 2, . . . , Ni, j ̸= i

0 ≤ Ps,ij
i,t ≤ Ps,ij

i,t , j = 1, 2, . . . , Ni, j ̸= i
(21)

where Pb,E
i,t and Ps,E

i,t are the maximum purchasing and selling power of prosumer i from

ETSP, Pb,ij
i,t and Ps,ij

i,t are the maximum purchasing and selling power by prosumer i from
prosumer j.

Considering that prosumer i can only participate in the market as a buyer or seller in
the same period of time, the following constraints must also be met:

[Pb,E
i,t , Pb,i1

i,t , . . . , Pb,iN
i,t ]

T
· [Ps,E

i,t , Ps,i1
i,t , . . . , Ps,iN

i,t ] = 0 (22)

(4) Power balance constraints
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Following the principle of conservation of energy, prosumers should meet the follow-
ing power balance constraints:

PR
i,t + PF

i,t + Pch
i,t + Ps,E

i,t +
N

∑
j=1,j ̸=i

Ps,ij
i,t = Ppv

i,t + Pdch
i,t + Pb,E

i,t +
N

∑
j=1,j ̸=i

Pb,ij
i,t (23)

3.4. Day-In Constraints

In day-in scheduling, prosumers adjust the ESS, load and purchasing and selling
power according to the actual PV output and energy demand. The specific constraints are
as follows:

∆PF
ω,i,t + PF

i,t + PR∗
i,t + ∆Pch

ω,i,t + Pch
i,t + ∆PSE

ω,i,t + Ps,E
i,t +

N
∑

j=1,j ̸=i
Ps,ij

i,t =

Ppv∗
i,t + ∆Pdch

ω,i,t + Pdch
i,t + ∆PBE

ω,i,t + Pb,E
i,t +

N
∑

j=1,j ̸=i
Pb,ij

i,t

(24)

{
−Mµess

i,t ≤ ∆Pch
ω,i,t ≤ Mµess

i,t
−Pch+

i,t ≤ ∆Pch
ω,i,t ≤ Pch−

i,t
(25)

{
−M(1 − µess

i,t ) ≤ ∆Pdch
ω,i,t ≤ M(1 − µess

i,t )

−Pdch−
i,t ≤ ∆Pdch

ω,i,t ≤ Pdch+
i,t

(26)

{
−MµBS

i,t ≤ ∆PSE
ω,i,t ≤ MµBS

i,t

0 ≤ Ps,E
i,t + ∆PSE

ω,i,t ≤ Ps,E
i,t

(27)

{
−M(1 − µBS

i,t ) ≤ ∆PBE
ω,i,t ≤ M(1 − µBS

i,t )

0 ≤ PBE
i,t + ∆PBE

ω,i,t ≤ Pb,E
i,t

(28)

 Di ≤
T
∑

t=1
∆t · (PF

i,t + PR∗
i,t + ∆PF

ω,i,t) ≤ Di

−PF+
i,t ≤ ∆PF

ω,i,t ≤ PF−
i,t

(29)

where, Equation (24) refers to the day-in real-time power balance constraint, Equations (25)
and (26) refer to the charge and discharge constraints of ESS (the charge and discharge state
of the two stages should be consistent), and Equations (27) and (28) refer to the purchasing
and selling power constraints (the purchasing/selling role of the prosumer in the two
stages should be consistent). Equation (29) is the load adjustment constraint. PR∗

i,t and
Ppv∗

i,t refer to the actual rigid load demand and PV output, and µBS
i,t refers to the role of

purchasing/selling role of prosumer i in the day-ahead, where 0 represents the selling and
1 represents the purchasing.

4. Benefit Maximization Model of ETSP Considering Power Flow Constraints

Assuming that ETSP builds its own controllable distributed generation and ESS, it can
purchase and sell power with the grid, and also trade power with other prosumers. The ob-
jective function is to minimize the daily operating cost including the energy transaction cost
and the operating cost of the self-building energy system, as shown in Equations (30)–(33).

minCE =
T

∑
t=1

∆t(CET
E,t + CMG

E,t + CSF
E,t) (30)

CET
E,t =

Ni

∑
i=1

si
t·Ps,E

i,t − sE
t ·Pb,E

i,t (31)

CMG
E,t = bg

t ·P
gb
E,t − sg

t ·P
gs
E,t (32)



Energies 2024, 17, 1724 9 of 22

CSF
E,t = cgt·Pgt

E,t + cess·(Pch
E,t + Pdch

E,t ) (33)

where, sg
t and bg

t are selling and purchasing price of the gird, Pgb
E,t and Pgs

E,t are the pur-

chasing and selling power of the ETSP from the grid respectively. Pgt
E,t is the generation

power of the self-built controllable distributed generation, Pch
E,t and Pdch

E,t are the charge
and discharge power of ESS, cgt is the power generation cost coefficient of controllable
distributed generation.

(1) ESS constraints Refer to the ESS constraints of prosumers.
(2) Purchase and sale power constraints ETSP can only participate in the grid market as a

buyer or seller at the same time. 
0 ≤ Pgb

E,t ≤ Pgb
E,t

0 ≤ Pgs
E,t ≤ Pgs

E,t

Pgb
E,t·P

gs
E,t = 0

(34)

Pgt
E,t and Pgt

E,t are the maximum purchasing and selling power of EPST from the grid.
It is worth noting that the nonlinear constraint in Equation (34) can be linearized via the
big-M method, which has been shown in Equation (20) and not be further described here.

(3) Controllable distributed generation constraints

Micro-gas turbine is taken as the main controllable distributed generation, and its
power response speed is faster than that of hour-level scheduling. Therefore, its climb rate
constraint can be ignored, but the output power constraint should be satisfied:

Pgt
E,t ≤ Pgt

E,t ≤ Pgt
E,t (35)

Pgt
E,t and Pgt

E,t are the minimum and maximum output of the distributed generation.

(4) Power flow constraint

Using the power flow constraint linearization method proposed in [35], the linearized
power flow function between node voltage and injected power can be obtained:[

Ut
re

Ut
im

]
=

[
Yre −Yim

−Yim −Yre

]−1[ Pt

Qt

]
=

[
R X
X −R

][
Pt

Qt

]
(36)

where, Yre = Re(Y) and Yre = Im(Y) are the real and imaginary parts of the node admit-
tance matrix respectively, Pt and Qt are the active and reactive power vectors injected
by the node respectively; R and X are the real and imaginary parts of the modified node
impedance matrix respectively.

Therefore, the node voltage amplitude and phase angle can be approximated as
|U|= Ure, θ = Uim .

To ensure the safe operation of the distribution network and avoid line overload, the
following voltage constraints and line capacity constraints should be met:

U
_
≤ Ut

re = RPt + XQt ≤
¯
U (37)

I
_
≤ It = LAUt

re = LA(RPt + XQt) ≤
¯
I (38)

where, A is the node branch association matrix of dimension m × n. m and n are the
number of branches and the number of nodes respectively. L is an M-order diagonal matrix
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composed of absolute value of branch admittance.
¯
U and U

_
are the upper and lower limits

of the branch voltage. I
_

and
¯
I are the upper and lower limits of the branch current.

(5) Power balance constraints

Pgt
E,t + Pdch

E,t + Pgs
E,t +

Ni

∑
i=1

Ps,E
i,t + = Pch

E,t + Pgb
E,t +

Ni

∑
i=1

Ps,E
i,t (39)

5. Solution Algorithm
5.1. Relaxed ADMM (R-ADMM)

In view of the above optimization problems, this section first describes them as global
optimization problems:

min CETSP(xE, vE) + ∑
i∈N

CP,i(xP,i, vP,i)

s.t. GP,i(xP,i, vP,i) ≤ 0, HP,i(xP,i, vP,i) = 0
GETSP(xE, vE) ≤ 0, HETSP(xE, vE) = 0
vP,i − vE,i = 0

(40)

where, xP,i and xE are the independent decision variables of prosumer i and ETSP in their
respective optimization problems respectively, vP,i and vE are the coupled variables, vE,i is
the coupled variables of ETSP corresponding to prosumer i, and the corresponding coupled
variables of each subject should be equal. G(·) and H(·) represent the above inequality
constraints and equality constraints.

Based on the standard ADMM algorithm, the above original problems were decom-
posed into multiple subproblems that can be solved independently within each subject
to ensure the data privacy. To further improve the algorithm convergence, an improved
R-ADMM based on Peaceman-Rachford (P-R) splitting method was introduced [31], and
its optimization subproblem can be transformed into the following form:

v̂P,i,k+1 = argminCP,i(xP,i, vP,i,k) + (zP,i,k)
TvP,i,k +

ρ

2

∥∥vP,i,k
∥∥2

2 (41)

v̂E,i,k+1 = argminCE,i(xP,i, vE,i,k) + (zE,i,k)
TvE,i,k +

ρ

2

∥∥vE,i,k
∥∥2

2 (42)

where v̂P,i,k+1 and v̂E,i,k+1 are the coupling variable corresponding to the prosumer i and
ETSP. ρ is the quadratic penalty coefficient, zP,i,k and zE,i,k are the Lagrange multiplier,
which are updated according to Equation (43):{

zP,i,k+1 = (α − 1)zP,i,k + αqE→P
i,k+1

zE,i,k+1 = (α − 1)zE,i,k + αqP→E
i,k+1

(43)

where α is the relaxation factor, and when its value is 0.5, R-ADMM and standard ADMM
are equivalent. qE→P

i,k+1 represents the boundary variable passed by ETSP to prosumer i, and
qP→E

i,k+1 represents the boundary variable passed by prosumer i to ETSP. The qE→P
i,k and qP→E

i,k
is calculated as follows: {

qE→P
i,k+1 = zE,i,k+1 − 2ρv̂E,i,k+1

qP→E
i,k+1 = zP,i,k+1 − 2ρv̂P,i,k+1

(44)

When the error between the coupled variables is less than the allowed value ε as
shown in the (45), the result can be considered to have reached convergence:∣∣∣∣∣∣v̂P,i,k+1 − v̂E,i,k+1

∣∣∣|22 ≤ ε (45)

According to [31,32], the convergence of R-ADMM can be guaranteed.
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5.2. Improved R-ADMM Algorithm Considering Iteration Timeout

In the above iteration process, R-ADMM still performs the calculation in serial mode,
which means that ETSP needs to receive the updated boundary variables from each pro-
sumer to start the next iteration. However, if the calculation timeout or communication
timeout occurs in prosumer i, ETSP cannot receive the updated boundary variable of this
iteration in a short time, and then cannot update the Lagrange multiplier, which will result
in the algorithm stagnation and affect the convergence speed. To solve this problem, an
improved R-ADMM algorithm considering iteration delay was proposed in this section.
The transfer factor was introduced to determine whether the boundary variable was suc-
cessfully passed, and momentum extrapolation prediction was proposed to correct the
boundary variable that fails to be transmitted, so as to deal with the iteration timeout and
accelerate the algorithm convergence speed.

This section first defines the binary variable oP,i,k as transfer factors, and determined
whether the boundary variables of prosumer i failed to transmit in the kth iteration by
judging whether the iteration time reached the tolerance time tTHR:{

oP,i,k = 1 if tP,i,k > tTHR
oP,i,k = 0 if tP,i,k ≤ tTHR

(46)

tP,i,k is the total time of calculation time and communication delay of the kth iteration
of prosumer i.

The variable correction mechanism is shown as follows.

(1) If oP,i,k is 0 which means that prosumer i successfully transmits the boundary variables
to ETSP within the tolerance time in the kth iteration, and then ETSP updates normally
according to Equation (44);

(2) If oP,i,k is 1 which means that prosumer i fails to transmit the boundary variables to
ETSP within the tolerance time in the kth iteration. At this time, ETSP cannot update
the multiplier zE,i,k without receiving the boundary variables qP→E

i,k+1 and keeps the
result of the last iteration. Similarly, when iteration timeout occurs on ETSP, prosumer
i cannot receive the boundary information qE→P

i,k+1 from ETSP, and cannot further update
the corresponding Lagrange multiplier zP,i,k. At this time, the momentum extrap-
olation prediction correction mechanism was introduced to predict the boundary
information in this iteration, and then the predicted value is brought into Equation
(47) to correct and update the Lagrange multiplier to accelerate the convergence speed.
The momentum extrapolation prediction correction mechanism is shown as follows:{

mP→E
i,k = κMmP→E

i,k−1 + κE(q̃P→E
i,k − q̃P→E

i,k−1)

q̃P→E
i,k+1 = q̃P→E

i,k + mP→E
i,k

(47)

where, mP→E
i,k is the momentum term, (q̃P→E

i,k − q̃P→E
i,k−1) is the linear extrapolation term,

κM and κE are the corresponding extrapolation coefficients.

Similarly, when iteration timeout occurs on ETSP, prosumers also use the above
mechanism to forecast and update the Lagrange multiplier.

6. Discussion
6.1. Simulation Setup

In order to verify the effectiveness of the proposed algorithm, this paper adopted
standard IEEE33 nodes for simulation. The system was equipped with five prosumers. The
PV output, load data and ESS parameters were derived from [11,36]. The 200 scenarios of
PV output and load were generated, and five typical scenarios were formed through scene
reduction, which are shown in Appendix B. The day-ahead selling price to the grid was
0.4 RMB/kWh, and the day-ahead purchasing price from the grid is shown in Table 2. The
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day-in purchasing and selling price to the grid was 1.5 RMB/kWh and 0.2 RMB/kWh [12].
The behavioral parameters of each prosumer were derived from [34].

Table 2. Day-ahead purchasing price from the grid.

Period Price (RMB/kWh)

10:00–15:00, 18:00–21:00 1.322
7:00–10:00, 15:00–18:00, 21:00–23:00 0.832

23:00–7:00 0.369

The relaxation factor α was set to be 0.8, the quadratic penalty factor ρ was set to 0.002,
and the convergence threshold ε was 0.1. In addition, the commercial optimization solver
CPLEX12.9 was used to solve the model on the MATLAB 2020a simulation platform.

6.2. Comparison of System Security Performance in Different Schemes

In order to verify the effect of power flow constraints on the security performance, this
section compared the system voltage change under the proposed model considering the
power flow constraints and the model without considering the power flow constraints [11].
The results are shown in Figure 2. The safe range of system voltage was set as [0.93,1.07],
and the results in Figure 2 were the lowest per unit voltage in the system at each time. As
can be seen from the Figure 2, there were voltage exceedances from 9:00 to 10:00 and 17:00
to 23:00 under the model without considering power flow constraints, which was due to
the high load and low PV output at these periods. Under the model in this paper, ETSP can
guide the load reduction and effectively ensure that the voltage at all times is within the
safe range by optimizing the purchasing and selling power with prosumers considering
power flow constraints.
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6.3. Operating Characteristic Analysis
6.3.1. External Characteristic Analysis

This section analyzes the purchasing and selling power characteristics presented by
the system under P2P transactions. Figure 3 shows the purchasing and selling power of
the system from the main grid under the strategy with P2P transactions and the strategy
without P2P transactions. Table 3 shows the incomes of ETSP in different cases. It is worth
mentioning that in the nonP2P trading case, indirect P2P trading guided by centralized
matching of ETSP was not considered. Therefore, in the nonP2P trading case, the system
needed to purchase and sell power to the main grid separately.
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Table 3. Income of ETSP in different cases.

Cases Income/RMB

The strategy within P2P energy market 736.46
The strategy without P2P energy market 482.13

As can be seen from the Figure 3, during the peak hours of PV output from 11:00
to 16:00, P2P transactions within the community were given priority among prosumers,
which improved the consumption rate of local PV, so that the power sold by the system
to the main grid under the strategy in this paper was significantly lower than that of the
case without P2P transactions. In the peak hours of 18:00 to 21:00, the purchasing price was
higher and ETSP guided the prosumers to reduce the load. Between the hours of 0:00 to
07:00, the purchasing price was lower and the power consumption was relatively higher in
order to meet the overall load demand constraints. Overall, P2P transactions effectively
reduced the system’s dependence on the purchasing and selling power with the main grid.
Accordingly, ETSP can obtain higher returns by optimizing the scheduling of their own
energy system to store energy at lower prices and sell energy at higher prices.

6.3.2. Operation Cost Comparison

In order to verify the effectiveness of the strategy proposed in this paper, this section
compares the proposed strategy with the traditional stochastic optimization method [19]
in terms of power consumption costs, and the results are shown in Table 4. It is worth
mentioning that the day-in cost calculated in the traditional stochastic optimization strategy
was used as the day-in reference cost, so the day-in prospect value in the traditional
stochastic optimization was zero. In addition, this section adopted the 200 scenarios
randomly generated as the actual value to verify, and calculated its weighted average to
obtain the actual day-in cost.
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Table 4. Cost comparison of prosumers under different strategies.

Prosumer 1 Prosumer 2 Prosumer 3 Prosumer 4 Prosumer 5

The proposed
strategy

Day-ahead cost/RMB 852.89 969.17 1758.95 618.97 620.65

Day-in prospect 0.805 2.655 2.961 0.865 0.746

Actual day-in cost/RMB 56.61 53.82 63.74 36.69 68.36

Total cost/RMB 909.51 1022.99 1842.69 655.67 689.01

Traditional
random

optimization

Day-ahead cost/RMB 846.64 943.49 1724.85 612.99 608.23

Day-in prospect 0 0 0 0 0

Actual day-in cos/RMB 77.53 99.93 128.72 59.89 86.99

Total cost/RMB 924.24 1043.43 1853.57 672.88 695.22

In Table 4, due to the fact that the day-in prospect value of the prosumers was in-
troduced under the strategy of this paper, the probability value of the scenario with low
probability was overestimated, and the sensitive value of loss was higher than that of profit.
Considering that the probability value of adverse scenario was generally small, the weight
of adverse scenario under this proposed strategy was increased, resulting in an increase
in day-ahead reserve capacity and day-ahead cost. However, the actual day-in cost was
significantly reduced compared with traditional stochastic optimization, and the day-in
comprehensive prospect was improved, which meant that it was more in line with the
psychological characteristics and more accurate at describing the behavior of prosumers.
Overall, because the cost coefficients of day-ahead scheduling were lower than that of
day-in scheduling, the total cost was lower than that of traditional stochastic optimization.

6.3.3. Operation Cost Comparison

The decision weight coefficient ξi determines the psychological evaluation of the
difference probability value of prosumers in different scenarios. Figure 4 shows the change
of the subjective probability with the true (objective) probability of the event occurring
when ξi fluctuates in range of the [0.5,1]. As can be seen from the Figure 4, this function will
overestimate the probability value of small probability events and reduce the probability
value of large probability events. The smaller the coefficient, the stronger the subjectivity
of decision makers, showing a state of limited rationality.
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Taking Prosumer 1 as an example, Figures 5 and 6 show the day-ahead cost, day-in
prospect and day-in expected costs when ξi fluctuates in range of the [0.5,1]. The objective
probability of each scenario was [0.0653,0.51, 0.0714,0.1429,0.2104], in which Scenario 1 was
the worst scenario, and the net load powers of Scenarios 1, 3, 4, and 5 were higher than the
predicted power, and the net load power of Scenario 2 was lower than the predicted power.
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As can be seen from Figure 4, when the objective probability is greater than 0.4, the
prosumer will underestimate the true probability of the event, meaning that its subjective
probability will be lower than the objective probability. Therefore, when ξi is reduced, the
subjective probability of Scenario 2 will gradually decrease, the day-ahead downstream
standby capacity will decrease, and its day-in expected cost will gradually increase; this was
the worst scenario with a small probability. When the probability of Scenario 1 gradually
increases, the up-front spare capacity will also gradually increase. Therefore, the day-in
comprehensive prospect will gradually increase, and the day-in expected cost will gradually
decrease. Considering that the upward unit reserve cost is higher than the downward unit
reserve cost, its day-ahead cost will gradually increase.
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6.4. Convergence Analysis

In this paper, the tolerance time of the improved R-ADMM algorithm was set to 500 ms.
Figure 7 shows the comparison of algorithm convergence process under the proposed
algorithm, R-ADMM algorithm without correction mechanism, and the standard ADMM
algorithm. Due to the fact that the update of calculated variables after each iteration through
relaxation factor can be controlled to prevent the divergence of iteration process caused by
excessive fluctuations in the result, convergence speed can be improved. It can be seen from
the Figure 7 that the number of iterations of R-ADMM after the introduction of relaxation
factor was significantly lower than that of standard ADMM. In addition, when the agent
has an iteration timeout, the agent can still use the predicted boundary information to
update the Lagrange multiplier, so the R-ADMM with correction mechanism proposed in
this paper has a more accurate information iteration process than the R-ADMM without
the correction mechanism. Therefore, the number of iterations was reduced by 11 times,
and the total iteration time was reduced by 6.19 s. The stagnation of the convergence
process caused by missing boundary variables was avoided, and the convergence speed
was accelerated.
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Different values of α were set to analyze the effect on evolution of convergence errors.
As shown in the Figure 8, the iteration times of the improved R-ADMM algorithm were
all smaller than that of the standard ADMM algorithm. When α was larger than 0.5, the
number of iterations decreased significantly. With the increase of α, the number of iterations
gradually decreased. However, when α was 0.9, the number of iterations increased slightly.
Therefore, α was suggested to be selected within [0.7,0.9] and the convergence performance
can be improved.

Larger-scale systems consisting of 5 to 30 prosumers were simulated to analyze the
scalability of the proposed algorithm. Table 5 shows that the number of iterations and
time cost increased with the increasing number of prosumers in the system. Considering
that there were usually no more than 30 buildings in a general regional market under
the jurisdiction of ETSP [37] and that the simulated maximum consumption time was
acceptable for day-ahead energy optimal, the proposed method can be implementable.

Table 5. No. iterations and time cost with different numbers of prosumers.

5 10 15 20 25 30

No.
iterations 67 71 75 82 83 85

time cost/s 61.45 90.11 102.17 129.69 155.22 189.12
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7. Conclusions

A P2P transaction optimization operation strategy of prosumers considering bounded
rationality was constructed and the following conclusions were obtained through simu-
lated examples:

(1) Considering the global power flow safety constraints on the ETSP side, a benefit
maximization model was constructed to effectively ensure the safety and stability of
the system voltage and avoid voltage overruns.

(2) By introducing prospect theory to convert objective probability into subjective prob-
ability of prosumers under bounded rationality, a two-stage energy management
stochastic optimization model for prosumers considering P2P transaction and bounded
rationality was constructed, which can effectively reduce the comprehensive energy
consumption cost of prosumers, improve the comprehensive prospect, and more accu-
rately describe the decision-making behavior of prosumers under bounded rationality.

(3) Introducing a momentum extrapolation correction mechanism, the proposed im-
proved R-ADMM algorithm can avoid a long convergence time that is too long caused
by iteration timeout and improve convergence speed effectively.

It should be mentioned that the algorithm parameter settings were adjusted via
simulation experience, and the energy efficiency coefficient and the false data declared
by market entities was ignored. Therefore, future work will focus on the parameter
adaptive adjustment and benefit maximization under incomplete information to improve
the efficiency of energy consumption and the reliability of market transactions.
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Appendix A

As the day-in prospect model (12) was a nonlinear programming, the piecewise
linearization method was adopted to transform it into a linear model.

First, the piecewise nonlinear function can be converted to a single function:

TDVFω,i = uP
ω,i · (∆Uω,i)

αi δi(1 − (1 − θi)ri)
1/(1−θi)

+uN
ω,i · (−λi(−∆Uω,i)

βi δi(1 − (1 − θi)ri)
1/(1−θi))

(A1)


−M(1 − uP

ω,i) ≤ ∆Uω,i ≤ uP
ω,i M

−MuN
ω,i ≤ ∆Uω,i ≤ M(1 − uN

ω,i)

uP
ω,i + uN

ω,i ≤ 1
(A2)

where M is a positive big number, and the uP
ω,i and uP

ω,i are the binary variables.

Then, substitute the (∆Cω,i)
αi and the (−∆Cω,i)

βi by
NL
∑

L=1
FP

l,i φ
P
l,ω,i and

NL
∑

L=1
FN

l,i φN
l,ω,i

respectively, and a new form of (A1) can be obtained as follows:

TDVFω,i = uP
ω,i · (

NL
∑

L=1
FP

l,i φ
P
l,ω,i)δi(1 − (1 − θi)ri)

1/(1−θi)

+uN
ω,i · (−λi(

NL
∑

L=1
FN

l,i φN
l,ω,i)δi(1 − (1 − θi)ri)

1/(1−θi))

(A3)

−uN
ω,i M ≤ ∆Cω,i −

NL

∑
L=1

φP
l,ω,i ≤ M

(
1 − uP

ω,i

)
(A4)

−uP
ω,i M ≤ ∆Cω,i −

NL

∑
L=1

φN
l,ω,i ≤ M

(
1 − uN

ω,i

)
(A5)

0 ≤
NL

∑
L=1

FP
l,i φ

P
l,ω,i ≤ MuP

ω,i (A6)

0 ≤
NL

∑
L=1

FN
l,i φN

l,ω,i ≤ MuN
ω,i (A7)

φP_min
l ≤ φP

l,ω,i ≤ φP_max
l (A8)

φN_min
l ≤ φN

l,ω,i ≤ φN_max
l (A9)

where NL is the number of segments, FP
l,i and FP

l,i are the slope and equivalent spacing of

(∆Cω,i)
αi respectively, FN

l,i and φN
l,ω,i are the slope and equivalent spacing of (−∆Cω,i)

βi

respectively.
Since (A3) is still a nonlinear function, it is further transformed by piecewise lineariza-

tion, and the following linear model can be obtained:

TDVFω,i = ξP
ω,i · δi(1 − (1 − θi)ri)

1/(1−θi)

+ξN
ω,i · (−λiδi(1 − (1 − θi)ri)

1/(1−θi))
(A10)

NL

∑
L=1

FP
l,i φ

P
l,ω,i − (1 − uP

ω,i)M ≤ ξP
ω,i ≤ uP

ω,i M (A11)
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0 ≤ ξP
ω,i ≤

NL

∑
L=1

FP
l,i φ

P
l,ω,i (A12)

NL

∑
L=1

FN
l,i φN

l,ω,i − (1 − uN
ω,i)M ≤ ξN

ω,i ≤ uN
ω,i M (A13)

0 ≤ ξN
ω,i ≤

NL

∑
L=1

FN
l,i φN

l,ω,i (A14)
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