
Citation: Zhang, S.; Zhu, C.; Guo, X.

Wind-Speed Multi-Step Forecasting

Based on Variational Mode

Decomposition, Temporal

Convolutional Network, and

Transformer Model. Energies 2024, 17,

1996. https://doi.org/10.3390/

en17091996

Academic Editor: Andrzej Bielecki

Received: 18 February 2024

Revised: 16 April 2024

Accepted: 20 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Wind-Speed Multi-Step Forecasting Based on Variational Mode
Decomposition, Temporal Convolutional Network,
and Transformer Model
Shengcai Zhang 1,2,*, Changsheng Zhu 1 and Xiuting Guo 1

1 School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China;
zhucs_2008@163.com (C.Z.); gxt124@lut.edu.cn (X.G.)

2 School of Cyber Security, Gansu University of Political Science and Law, Lanzhou 730070, China
* Correspondence: zsc6731@gsupl.edu.cn

Abstract: Reliable and accurate wind-speed forecasts significantly impact the efficiency of wind
power utilization and the safety of power systems. In addressing the performance enhancement of
transformer models in short-term wind-speed forecasting, a multi-step prediction model based on
variational mode decomposition (VMD), temporal convolutional network (TCN), and a transformer
is proposed. Initially, the Dung Beetle Optimizer (DBO) is utilized to optimize VMD for decomposing
non-stationary wind-speed series data. Subsequently, the TCN is used to extract features from the
input sequences. Finally, the processed data are fed into the transformer model for prediction. The
effectiveness of this model is validated by comparison with six other prediction models across three
datasets, demonstrating its superior accuracy in short-term wind-speed forecasting. Experimental
findings from three distinct datasets reveal that the developed model achieves an average improve-
ment of 52.1% for R2. To the best of our knowledge, this places our model at the leading edge of
wind-speed prediction for 8 h and 12 h forecasts, demonstrating MSEs of 1.003 and 0.895, MAEs of
0.754 and 0.665, and RMSEs of 1.001 and 0.946, respectively. Therefore, this research offers significant
contributions through a new framework and demonstrates the utility of the transformer in effectively
predicting short-term wind speed.

Keywords: variational mode decomposition; temporal convolutional network; transformer; multi-step
forecasting

1. Introduction

Wind power is a crucial component of renewable energy sources, representing one of
the most viable alternatives to traditional fossil fuels thanks to its eco-friendly properties.
This can contribute to decreasing reliance on fossil fuels and mitigating environmental
pollution [1]. The Global Wind Energy Council has documented a significant rise in
worldwide wind energy capacity, reaching 906 Gigawatt (GW), which represents an annual
increase of 9%. The year 2023 was expected to be a milestone, with projections indicating
that it would be the inaugural year to witness the addition of more than 100 GW of new
capacity across the globe. Their estimates also predict a remarkable expansion of 1221 GW
in new capacity from 2023 to 2030 [2]. Accurate predictions of wind speed are essential for
the effective management of wind energy generation [3]. Generally, precise forecasts of
wind speed can enhance the efficiency of wind resource utilization and reduce the effects
of wind energy variability on the stability of the electrical grid, facilitating cost-effective
and efficient wind farm operations [4]. Therefore, the importance of accurate wind-speed
forecasting is growing in terms of reducing the costs and risks linked to power supply
systems [5].

Numerous scholars have endeavored to craft models that yield precise deterministic
forecasts of wind speeds. These endeavors have categorized models into four distinct
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groups: physical, statistical, artificial intelligence (AI)-based, and hybrid models [6,7].
Among these, numerical weather prediction models, such as the weather research and
forecasting model [8], are recognized as the most prominent physical models. They pre-
dict wind speeds using intricate mathematical equations that factor in meteorological
variables like humidity and temperature [9], proving particularly effective for medium-
to-long-range forecasts of wind speed [10]. On the other hand, statistical models, such as
auto-regressive moving average [11], auto-regressive integrated moving average [12], and
vector auto-regression [13], differ from physical models by relying solely on historical data
of wind speeds for predictions. These models are adept at capturing the linear variability
of wind speeds and excel in forecasting over short-term periods [14]. AI-based models
primarily tackle the nonlinear dynamics of wind speed, incorporating simple neural net-
works (for instance, the back-propagation neural network [15], Elman neural network [16],
and multilayer perceptron [17]), along with support vector machines [18] and extreme
learning machines [19]. Studies indicate that while deep learning offers suboptimal in-
terpretability, it yields commendable predictive outcomes [20]. Presently, a plethora of
deep learning methods have been employed for wind-speed forecasting, such as deep
belief networks [21], convolutional neural networks (CNNs) [22], long short-term memory
networks (LSTM) [23], gated recurrent units (GRUs) [24], and temporal convolutional
networks (TCNs) [25]. TCN-based approaches [26] utilize convolutional kernels to detect
temporal changes by moving across the time dimension. Zhang et al. [27] proposed a
novel integrated model, blending VMD, the Sparrow Search Algorithm, and bidirectional
GRU, that leverages TCNs. It has been observed in various studies that deep learning
models often outshine both classical machine learning and statistical models in terms of
nonlinear predictive capabilities and feature extraction prowess [28]. The consensus among
many scholars is that no single model can fully encapsulate the intricate variations in wind
speed, leading to the creation of diverse hybrid models [8]. Zhang et al. [29] developed a
hybrid model that merges noise-reduction techniques, optimization strategies, statistical
approaches, and deep learning. Neshat et al. [30] introduced a novel hybrid model with a
deep learning-based evolutionary approach, featuring a bidirectional LSTM, an efficient
hierarchical evolutionary decomposition technique, and an enhanced generalized normal
distribution optimization method.

The transformer model has achieved remarkable success in fields such as computer
vision and natural language processing, and it is pivotal in bridging the gaps between
diverse research domains. In the realm of time series forecasting, transformer-based models
have gained prominence due to their multi-head self-attention (MHSA) mechanism. Both
the transformer and its adaptations have been proposed for time sequence forecasting
tasks [31]. The transformer model, renowned for its effectiveness in the realm of wind-
speed prediction, has become a prominent tool in this area. For instance, Wu et al. [32]
introduced a novel EEMD-Transformer-based hybrid model for predicting wind speeds.
Zhou et al. [33] presented the informer, a model designed for long sequence time fore-
casts, characterized by a ProbSparse self-attention mechanism for optimal time complexity
and memory efficiency. Yang et al. [34] developed a causal inference-enhanced informer
methodology employing an advanced variant of the informer model, specifically adapted
for long-term time series analysis. Bommidi et al. [35] developed a composite approach that
harnesses the predictive strength of the transformer model alongside the analytical prowess
of ICEEMDAN to improve wind-speed prediction accuracy. Huang et al. [36] present a new
hybrid forecasting model for short-term power load that effectively decomposes power
load data into subsequences of varying complexities; employs BPNN for less complex sub-
sequences and transformers for more intricate ones; and amalgamates the forecasts to form
a unified prediction. Wang et al. [37] utilized the transformer as a core component to devise
an innovative convolutional transformer-based truncated Gaussian density framework,
offering both precise wind-speed predictions and reliable probabilistic forecasts. Zeng
et al. [38] introduced the DLinear model, which explores the impacts of various design
elements of long-sequence time forecast models on their capability to extract temporal
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relationships. Nie et al. [39] present a novel transformer-based framework for multivariate
time series forecasts and self-supervised representation learning. This framework, termed
the channel-independent Patch Time Series Transformer (PatchTST), markedly improves
long-term forecasting precision.

Within the hybrid modeling framework, original wind-speed data are segmented into
subseries with distinct frequencies and analyzed individually using specialized models, and
their forecasts are amalgamated to produce the final prediction outcome [40]. For instance,
Li et al. [41] employed the VMD technique to segregate wind-speed data into intrinsic
mode functions (IMFs) of varying frequencies, with each IMF being analyzed through a
bidirectional LSTM model. Similarly, Wu et al. [42] utilized VMD to segment wind speed
and integrated these segments with multiple meteorological variables to construct a deep-
learning model with interpretability. Geng et al. [43] propose a novel prediction framework
to enhance short-term power load forecasting accuracy, utilizing a particle swarm opti-
mization (PSO)-enhanced VMD in conjunction with a TCN incorporating an attention
mechanism. Zhang et al. [44] proposed a hybrid deep learning model for wind-speed
forecasting that combines CNN, bidirectional LSTM, an enhanced sine cosine algorithm,
and EDM based on time-varying filtering to improve prediction accuracy. Moreover, Altan
et al. [45] presented a predictive model that combines ICEEMDAN decomposition and
LSTM, employing grey wolf optimization to fine-tune the weighted coefficients of each
IMF for enhanced forecasting precision.

The literature review highlights several existing gaps in the field of wind-speed
prediction. Wind-speed prediction studies based on transformers are relatively scarce
compared to those based on other deep learning models. This highlights the necessity
for a further in-depth exploration of the potential of transformer-based models within
the wind-speed prediction domain. In the realm of wind-speed prediction models based
on transformers, the majority are designed for long-term forecasting. There is a notable
scarcity of models for medium-term, short-term, and ultra-short-term predictions. This
indicates a pressing need for the development of transformer-based models that can
effectively address medium-term, short-term, and ultra-short-term wind-speed forecasting.
Additionally, there is a scarcity of transformer-based wind-speed prediction models that
integrate data decomposition algorithms and other models, indicating a need for further
exploration of the potential of hybrid forecasting models based on transformers. In response
to the aforementioned challenges and needs, this paper introduces a hybrid wind-speed
prediction model named DBO-VMD-TCN-Transformer, which integrates Dung Beetle
Optimizer (DBO) algorithm-enhanced VMD, TCN, and transformer technologies. The
contributions of the study are as follows:

• The model utilizes the DBO algorithm to autonomously determine the most effective
decomposition parameters for VMD. This approach significantly reduces signal loss
during the decomposition phase and enhances the overall performance of VMD.

• A hybrid forecasting model that combines TCN with transformers is introduced. TCN
is employed to extract original wind-speed features, which are then fed into the
transformer for multi-step short-term wind-speed prediction.

• The DBO-VMD-TCN-Transformer model is compared with TCN, support vector re-
gression (SVR), transformer, informer, PatchTST, Dlinear, VMD-TCN-Informer, and
VMD-TCN-PatchTST models. Experimental results on three distinct datasets demon-
strate that the developed model outperforms others in all four key metrics of evaluation
(MAE, MSE, RMSE, and R2).

2. Methods and Materials
2.1. Flow Chart of the Proposed Model

A novel composite forecasting approach is presented, illustrated in Figure 1, which
integrates the advantages of DBO-enhanced VMD, TCN, and transformer technologies,
concisely referred to as the DBO-VMD-TCN-Transformer. The approach is delineated
across three phases: The initial phase involves partitioning the gathered wind-speed
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data into training, validation, and test groups. Utilizing the DBO algorithm, the optimal
parameters for VMD are determined automatically, leading to the segmentation of wind-
speed data into various IMFs. In the second phase, the decomposed data are fed into
the TCN model to extract features from the high-resolution wind-speed data. These
features are subsequently used for multi-step, short-term prediction through a transformer
model. The TCN-Transformer architecture is devised to elucidate the complex relationships
between historical inputs and forecasted outcomes. The final phase is dedicated to the
exposition and analysis of empirical results obtained from three distinct datasets, assessing
the framework’s effectiveness and stability via four principal performance metrics (MSE,
MAE, RMSE, and R2) in conjunction with the Diebold Mariano (DM) test.
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Figure 1. Flowchart of the developed model.

2.2. Variational Mode Decomposition

VMD is a contemporary technique in signal processing that has been increasingly
adopted for its effectiveness. It excels in pinpointing the optimal central frequencies and
minimizing bandwidth for each mode during analysis, thereby effectively isolating intrinsic
mode functions and segmenting the frequency domain [46]. Unlike empirical mode de-
composition and wavelet analysis, VMD offers enhanced signal reconstruction capabilities
and superior noise immunity. The algorithm decomposes a signal into K distinct frequency
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bands and stable sub-signals, each characterized by unique oscillatory components with
varying frequencies and amplitudes. This approach, optimized through a variational
method, seeks to balance the total estimated bandwidths against the minimization of band-
width sums for each mode, thus achieving an optimal decomposition. The formal definition
of VMD in signal decomposing is given by Equation (1).

min
{uk},{ωk}

{
K
∑

k=1
∥∂t

[(
δ(t) + j

πt

)
· uk(t)

]
e−jωkt∥

2

2

}
s.t.

K
∑

k=1
uk = S

(1)

In the formulation, the component of mode kth is indicated as uk, and the central fre-
quency for this component is denoted by {ωk}. The representation for the Dirac distribution
is given as δ(t).

To tackle the original constrained variational formula, the approach integrates a
penalty coefficient α along with a Lagrange multiplier λ. This integration effectively shifts
the problem from a constrained framework to an unconstrained setting. As a result of this
process, a revised Lagrange formula, referred to as expression (2), is derived.

L[{uk(t)}, {ωk}, λ(t)] = α ∑
k=1

∥∂t

[(
δ(t) + j

πt

)
· uk(t)

]
e−jωkt∥

2

2

+∥S(t)−
K
∑

k=1
uk(t)∥

2

2
+

〈
λ(t), S(t)−

K
∑

k=1
uk(t)

〉 (2)

For attaining the ideal outcome, the initial values for the parameters λ̂, ω2, u1, and n
are set, with n being initially fixed at 0. Following this setup, a repetitive process begins in
which n is progressively increased with each pass. Throughout every step of this process,
the parameters λ̂, ω2 and u1 undergo adjustments based on the latest computations.

ûn+1
k (ω) =

f̂ (ω)− ∑i ̸=k ûi(ω) + λ̂(ω) / 2

1 + 2α(ω − ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2∫ ∞

0 |ûk(ω)|2
(4)

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

)
(5)

2.3. Dung Beetle Optimization

The algorithm was introduced by Xue and Shen in 2023 [47]. The foundational
Dung Beetle algorithm updates the positions of the population by mimicking four natural
behaviors observed in dung beetles: rolling, spawning, foraging, and stealing.

During the rolling process, dung beetles engage in the behavior of shaping dung into
spherical forms and propelling them forward swiftly to minimize competition from fellow
beetles. The beetles determine their movement direction by using environmental light,
aiming to propel the dung ball in the straightest line achievable. Equation (6) delineates the
method for recalibrating the position of the dung beetle engaged in rolling:

xi(t + 1) = xi(t) + α · k · xi(t − 1) + b · ∆x

∆x = |xi(t)− Xw|
(6)

where t symbolizes the iteration count currently in progress, and xi(t) represents the dung
beetle’s location after t iterations. The text initially sets α to indicate the beetle’s adherence
to or deviation from its set path, where a value of α is randomly assigned as 1 for no change
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in direction and −1 for a shift in direction. k ∈ (0, 0.2] is defined as the imperfection factor
with a value of 0.1, and b is a constant within [0, 1], with a value of 0.3 specified in the
implementation. Xw is identified as the least favorable global value. ∆x mimics the effect
of sunlight, where a higher ∆x suggests a greater distance from the light source.

Naturally, in the absence of light or on uneven terrain, dung beetles lack the ability to
determine their movement direction. Under such conditions, they ascend the dung ball and
perform a dance—a behavior that aids in deciding the direction for subsequent movement.
The mathematical expression for updating the dung beetle’s position based on this dance is
outlined in Equation (7).

xi(t + 1) = xi(t) + tan(θ)|xi(t)− xi(t − 1)| (7)

θ ⊆ [0, π]. The position is not updated when θ = 0, π/2 or π.
In the spawning process, dung beetles choose secure locations for egg-laying. Mirror-

ing this behavior, a strategy for selecting boundaries to represent these areas was introduced,
as outlined below:

Lb∗ = max(X∗ × (1 − R), Lb)

Ub∗ = min(X∗ × (1 + R), Ub)
(8)

where Lb∗ and Ub∗ signify the lower and upper limits, respectively, of the area designated
for spawning. X∗ is recognized as the current local optimal site, R = 1− t/Tmax, and Tmax
symbolizes the maximum iteration count. When a spawning dung beetle identifies the most
favorable area for spawning, it proceeds to spawn within that zone. The spawning area is
subject to continuous variation, ensuring the ongoing search for the region containing the
current optimal solution while avoiding entrapment in local optima. The modification in
the position of a spawning dung beetle is formalized in Equation (9):

Xi(t + 1) = X∗ + b1 × (Xi(t)− Lb∗) + b2 × (Xi(t)− Ub∗) (9)

Here, b1 and b2 are random values with a magnitude of 1×Dim and Dim, which refers
to the dimensionality of the optimization challenge, represents the problem’s dimension.

Within the foraging process, dung beetles engaging in foraging behavior similarly
prioritize the selection of a secure location, akin to their approach in egg-laying. The precise
definition of this area is provided through Equation (10).

Lbb = max
(

Xb × (1 − R), Lb
)

Ubb = min
(

Xb × (1 + R), Ub
) (10)

In this context, Xb signifies the globally optimal position, whereas Lbb and Ubb are
indicative of the lower and upper thresholds of the prime foraging zone. Lb and Ub, on
the other hand, delineate the lower and upper limits relevant to problem resolution. Each
act of foraging by a dung beetle translates into a revision of its position, with the update
process for a foraging dung beetle’s location detailed in Equation (11):

xi(t + 1) = xi(t) + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)− Ubb

)
(11)

Here, C1 represents a normally distributed random numeral, and C2 is a vector within
[0, 1] of size 1× Dim.

During the stealing process, certain dung beetles are known to pilfer dung balls from
their counterparts. The globally optimal position Xb is designated as the site of these
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competed-for dung balls. The process of theft is characterized by the positional update of
the steal dung beetle, with the specific update mechanism detailed in Equation (12):

xi(t + 1) = Xb + S · g ·
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (12)

Here, S is a fixed value set at 0.5 in the study, g quantifies the randomness factor, and
Dim elucidates the dimensionality of the problem at hand.

2.4. Temporal Convolutional Network

Derived from the foundational architecture of CNN, TCNs represent an evolutionary
development that incorporates one-dimensional convolutional layers structured causally
with extended lengths for both inputs and outputs. This design allows for the simultaneous
processing of historical and spatial information. Moreover, the inherent capability of CNNs
to execute parallel operations contributes to a significant reduction in processing time.
When juxtaposed with long short-term memory networks (LSTM), TCNs display a more
straightforward and coherent structure, enhanced training and convergence efficiency, and
the capacity to learn historical data akin to recurrent neural networks (RNNs) without
inadvertently revealing future information. Additionally, TCNs offer superior stability
in overcoming challenges associated with gradients exploding or vanishing and demand
lower memory usage, positioning them as a more practical option for specific analytical
tasks.

The architecture of the network is elaborately depicted in Figure 2, which illustrates
that the TCN [48] primarily consists of three key components: causal convolution, dilated
convolution, and residual connections. The design principle behind causal convolution is to
ensure that the model’s predictions are based solely on past and present inputs, rather than
future inputs, aligning with the temporal sequence’s natural causality. As demonstrated in
the left portion of Figure 2, causal convolutions are structured such that the information
for a given time point t incorporates data from preceding time points, thereby embedding
a temporal hierarchy within the model layers. The effectiveness of causal convolution in
feature extraction is constrained by the dimensions of its kernel, leading to the need for
multiple linearly stacked layers to apprehend extensive dependencies. To address this
limitation, TCNs employ an expanded convolution strategy, known as dilated convolution.
Dilated convolutions, by design, require padding on either side of the input layer (left or
right, depending on the convolution direction) commonly achieved through zero-padding.
This approach allows for a broader receptive field without increasing the number of layers,
thereby efficiently capturing wider temporal relationships without raising computational
complexity or the number of parameters. The formal definition of dilated convolution is
given by Equation (13):

F(s) = (x∗ f )(s) =
k−1

∑
i=0

f (i) · xs−d · i (13)

where * denotes the convolution operation, f represents the convolution kernel, d represents
the dilation factor, k signifies the filter size, and s indicates the sequence element for the
dilated convolution. Typically, the dilation factor d experiences an exponential increase
in correlation with the network’s increasing depth. Augmenting both the dilation factor
d and the convolution kernel’s dimension k results in an expanded receptive field for the
TCN. Unlike standard convolutions, dilated convolutions sample the input at intervals,
effectively expanding the receptive field with a controlled sampling rate determined by the
dilation factor d.
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As the number of layers in the network increases, it becomes essential to tackle chal-
lenges such as the vanishing gradient issue, necessitating the adoption of residual connec-
tions. Residual connections, particularly those utilizing 1 × 1 convolution blocks, facilitate
the cross-layer transmission of information, ensuring consistency between the inputs and
outputs. The mathematical representation of these connections is presented below:

o = Activation(F(x) + x) (14)

In this equation, x denotes the input, F(x) is the convolutional layer’s output, and
Activation( ) signifies the ReLU activation function.

Displayed in the right section of Figure 2, the residual module encompasses a sequence
starting with dilation causal convolution followed by weight normalization, application
of ReLU for activation, and incorporation of a Dropout layer to prevent overfitting. This
configuration is iterated across four stages, resulting in an eight-layer structure. Throughout
this process, residual connections utilizing 1 × 1 convolution blocks are employed to
maintain consistent output dimensions.

2.5. Transformer

Transformers have achieved remarkable success in realms such as Natural Language
Processing and image recognition, overcoming the limitations inherent in RNN and CNN-
based forecasting models. CNNs often require many layers to achieve a significant receptive
field, while RNNs rely on long time sequences for predictions. The self-attention mechanism
of transformers addresses these issues by enabling direct access to sequence elements, thus
facilitating a deeper exploration of the complex correlations within individual feature data.
Moreover, their capacity for parallel processing significantly reduces training durations,
allowing models to be trained on larger datasets compared to LSTM networks, enhancing
their efficiency and applicability.

Figure 3 illustrates the intricate structure of the transformer network. The transformer
architecture comprises two key elements: an encoder and a decoder [49]. The encoder is
tasked with transforming the input into a rich, high-dimensional representation that encap-
sulates contextual nuances, whereas the decoder is dedicated to feature reconstruction [50].
Figure 3 delineates the comprehensive blueprint of the transformer model. Initial steps
involve input embedding and position encoding before the data proceed to the encoder
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and decoder layers. Input embedding amalgamates various features into a unified repre-
sentation, and position encoding ensures the retention of temporal attributes associated
with each data point. The relevant mathematical formulation is provided as follows:

P(2i)
t = sin(wit), 2i ≤ d (15)

P(2i+1)
t = cos(wit), 2i + 1 ≤ d (16)

where wi =
1

100002i′d ; t denotes the position index. The MHSA mechanism permits the model
to concurrently compute linear transformations through various attention mechanisms,
subsequently amalgamating diverse attentions to acquire a relatively more comprehensive
feature information, thereby enhancing the efficacy of the self-attention layer. The MHSA
mechanism emerges as a pivotal feature of the transformer, facilitating parallel processing
of input data, a capability that sets it apart from sequential time sequence models like
LSTM and TCN. Figure 3 provides a visual representation of the transformer’s architecture.
Within the MHSA framework, the input vector X is converted into h distinct sets of query,
key, and value matrices. The three distinct matrices known as Q (Query), K (Key), and V
(Value) can be generated. The corresponding equations are depicted as follows:

Qh = XWQ
h

Kh = XWK
h

Vh = XWV
h

(17)

where Qh denotes the query matrix, Kh symbolizes the key matrix, and Vh represents
the value matrix, with WQ

h , WK
h and WV

h being the adjustable parameters for the linear
transformations. The MHSA divides the input into several independent feature spaces,
facilitating the model’s ability to learn a broader spectrum of feature information [51]. The
process continues with the application of scaled dot-product attention to generate a series
of output vectors:

Oh = Attention(Qh, Kh, Vh) = softmax

(
QhKT

h√
dK

)
Vh (18)

Here, Oh is the result of the scaled dot-product attention mechanism, with
√

dK
acting as the scaling factor for the attention weights. The outputs, Oh, are subsequently
concatenated and subjected to a linear projection to yield the final output.

MultiHeadSel f Attention (Q, K, V) = Concatenate(O0, O1, . . . , Oh)WO (19)

where WO represents the learnable parameter of the MHSA mechanism, which is critical
for encoding and aggregation info at each point for sequence.
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3. Experiments and Discussion
3.1. Evaluation Indicators and Experimental Environment

Four frequently utilized indicators are employed to assess the efficacy of the experi-
mental models: mean square error (MSE), mean absolute error (MAE), root-mean-square
error (RMSE), and the R-squared (R2) score. The equations for these metrics are detailed
as follows, where m represents the aggregate count of samples, ŷi denotes the forecasted
values, yi corresponds to the observed values, and y is the average of yi.

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (20)

MAE =
1
m

m

∑
i=1

|(yi − ŷi)| (21)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (22)

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − y)2 (23)

The study’s experiments were performed using a system running on Windows 10 OS,
utilizing the PyTorch framework alongside Python 3.9. The evaluations were conducted
on hardware featuring an Intel Core CPU T7700, equipped with 32 GB of RAM and an
NVIDIA Tesla M10 GPU. To ensure the fairness of the experiments, efforts were made
to keep the parameters consistent across all models. The forecast periods considered are
12, 24, and 48, and the look-back periods are set at 24, 48, and 96. Batch size and epochs
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were standardized at 128 and 100, respectively, with Early Stop (patience = 3) and Dropout
(dropout rate = 0.15) mechanisms implemented to counteract overfitting.

3.2. Datasets Description

To assess the performance of the proposed model, three unique datasets of wind
speed, each from different geographical locations and with varied resolutions, were se-
lected. The initial dataset originates from the National Renewable Energy Laboratory Wind
Technology Center and is available to the public. The tower is located at 39◦54′38.34′′ N
and 105◦14′5.28′′ W, with its base at an elevation of 1855 m above mean sea level. The data
measurement height is 80 m, with a value resolution of 1 min. In this paper, 44,640 records
from December 2020 are utilized, denoted as Dataset A. The second dataset originates from
a wind farm in Wuwei City, Gansu Province, featuring a data measurement height of 70 m
and a resolution of 10 min. This study utilizes 26,214 records from April to September
2019, referred to as Dataset B. The third dataset is sourced from a wind farm in Jiuquan
City, Gansu Province, maintaining the same measurement height of 70 m but with a res-
olution of 15 min. It includes 58,368 records from January to December 2018, denoted
as Dataset C. The forecast intervals are defined as 12, 24, and 48 steps, corresponding to
actual prediction durations of 12, 24, and 48 minutes for Dataset A; 2, 4, and 8 hours for
Dataset B; and 3, 6, and 12 hours for Dataset C, respectively. Each dataset was divided into
three segments: 70% allocated for training, 10% for validation, and the remaining 20% for
testing purposes. Figure 4 displays the fluctuation curves for data, while Table 1 shows a
comprehensive overview of the datasets’ statistical characteristics, showcasing the unique
statistical features of each dataset. Outliers were removed using the commonly employed
quartile method, and missing values were addressed through cubic spline interpolation.
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Table 1. The statistical information.

Dataset Resolution Record Min Max Mean Std

Dataset A 1 min 44,640 0.27 24.73 4.23 4.04
Dataset B 10 min 26,214 0 24.93 4.76 3.49
Dataset C 15 min 58,368 0 28.44 5.98 3.58
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3.3. Experiment I

For the assessment of the developed model’s performance in terms of both accuracy
and stability, we evaluated the suggested model against several benchmarks, including
DBO-VMD-TCN, DBO-VMD-SVR, DBO-VMD-DLinear, DBO-VMD-PatchTST, DBO-VMD-
Informer, and DBO-VMD-Transformer. The comparative analysis of errors across these
models in three different datasets is detailed in Tables 2–4, where the optimal outcomes
are emphatically denoted in bold. Furthermore, Figures 5–7 display forecast curves and
columnar stacked charts, respectively, highlighting the forecasting capabilities of the six
models over the three datasets.
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Table 2. The performance for Dataset A.

Step (Time) Model MSE MAE RMSE R2

12 (12 m)

DBO-VMD-TCN 5.549 1.898 2.356 0.457
DBO-VMD-SVR 0.845 0.553 0.919 0.937

DBO-VMD-DLinear 1.414 0.796 1.189 0.862
DBO-VMD-PatchTST 1.113 0.681 1.055 0.891
DBO-VMD-Informer 0.354 0.403 0.595 0.965

DBO-VMD-Transformer 0.353 0.379 0.594 0.965
DBO-VMD-TCN-Transformer 0.160 0.269 0.400 0.984

24 (24 m)

DBO-VMD-TCN 5.715 1.966 2.391 0.441
DBO-VMD-SVR 1.355 0.726 1.164 0.896

DBO-VMD-DLinear 2.042 0.977 1.429 0.800
DBO-VMD-PatchTST 1.686 0.848 1.298 0.835
DBO-VMD-Informer 0.595 0.502 0.772 0.942

DBO-VMD-Transformer 0.552 0.473 0.743 0.946
DBO-VMD-TCN-Transformer 0.429 0.415 0.655 0.958

48 (48 m)

DBO-VMD-TCN 5.830 2.009 2.414 0.429
DBO-VMD-SVR 2.224 0.973 1.496 0.825

DBO-VMD-DLinear 2.683 1.138 1.638 0.737
DBO-VMD-PatchTST 2.577 1.080 1.605 0.748
DBO-VMD-Informer 0.801 0.592 0.895 0.922

DBO-VMD-Transformer 0.741 0.559 0.861 0.927
DBO-VMD-TCN-Transformer 0.630 0.523 0.794 0.938

Note: Values in bold indicate the best value.

Table 3. The performance for Dataset B.

Step (Time) Model MSE MAE RMSE R2

12 (2 h)

DBO-VMD-TCN 4.629 1.559 2.151 0.571
DBO-VMD-SVR 2.747 1.183 1.657 0.779

DBO-VMD-DLinear 4.090 1.522 2.022 0.621
DBO-VMD-PatchTST 3.241 1.295 1.800 0.700
DBO-VMD-Informer 0.566 0.564 0.752 0.948

DBO-VMD-Transformer 0.511 0.535 0.715 0.953
DBO-VMD-TCN-Transformer 0.331 0.436 0.576 0.969

24 (4 h)

DBO-VMD-TCN 4.815 1.637 2.194 0.554
DBO-VMD-SVR 4.558 1.549 2.135 0.612

DBO-VMD-DLinear 5.768 1.825 2.402 0.466
DBO-VMD-PatchTST 5.316 1.675 2.306 0.508
DBO-VMD-Informer 1.109 0.791 1.053 0.897

DBO-VMD-Transformer 0.993 0.732 0.997 0.908
DBO-VMD-TCN-Transformer 0.723 0.640 0.850 0.933

48 (8 h)

DBO-VMD-TCN 4.782 1.677 2.187 0.558
DBO-VMD-SVR 6.794 1.941 2.606 0.385

DBO-VMD-DLinear 7.729 2.071 2.780 0.286
DBO-VMD-PatchTST 7.317 2.083 2.705 0.324
DBO-VMD-Informer 1.882 1.032 1.372 0.826

DBO-VMD-Transformer 1.415 0.898 1.189 0.869
DBO-VMD-TCN-Transformer 1.003 0.754 1.001 0.907

Note: Values in bold indicate the best value.
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Table 4. The performance for Dataset C.

Step (Time) Model MSE MAE RMSE R2

12 (3 h)

DBO-VMD-TCN 2.362 1.023 1.537 0.795
DBO-VMD-SVR 3.809 1.364 1.951 0.714

DBO-VMD-DLinear 4.249 1.472 2.061 0.632
DBO-VMD-PatchTST 4.152 1.434 2.038 0.640
DBO-VMD-Informer 0.516 0.519 0.718 0.955

DBO-VMD-Transformer 0.390 0.451 0.625 0.966
DBO-VMD-TCN-Transformer 0.214 0.342 0.463 0.981

24 (6 h)

DBO-VMD-TCN 3.355 1.226 1.832 0.709
DBO-VMD-SVR 6.001 1.724 2.449 0.522

DBO-VMD-DLinear 6.255 1.787 2.501 0.458
DBO-VMD-PatchTST 6.182 1.780 2.486 0.465
DBO-VMD-Informer 1.038 0.735 1.019 0.910

DBO-VMD-Transformer 0.735 0.619 0.857 0.936
DBO-VMD-TCN-Transformer 0.458 0.497 0.677 0.960

48 (12 h)

DBO-VMD-TCN 3.129 1.280 1.769 0.729
DBO-VMD-SVR 8.591 2.078 2.931 0.261

DBO-VMD-DLinear 8.943 2.164 2.990 0.225
DBO-VMD-PatchTST 8.296 2.073 2.880 0.281
DBO-VMD-Informer 1.784 0.969 1.336 0.845

DBO-VMD-Transformer 1.166 0.777 1.080 0.899
DBO-VMD-TCN-Transformer 0.895 0.665 0.946 0.922

Note: Values in bold indicate the best value.

The findings from Tables 2–4 reveal that the DBO-VMD-TCN-Transformer model
outperforms other forecasting models in terms of prediction accuracy. The new hybrid
model introduced in this study, which builds upon the TCN and transformer framework,
demonstrates improved performance across various error metrics. Notably, this model
demonstrates significant improvements in MAE, MSE, RMSE, and R2, especially in the
context of multi-step forecasting, when compared to the other model. For instance, in the
48-step prediction using the basic model, the TCN-Transformer exhibited the highest R2, at
0.938, 0.907, and 0.922 for Datasets A, B, and C, respectively. In contrast, the R2 values for
the TCN networks in Datasets A, B, and C were 0.429, 0.558, and 0.729, respectively. In the
48-step forecasting using the SVR model, the TCN-Transformer exhibited the lowest MAE
values for Datasets A, B, and C, recording 0.523, 0.754, and 0.665, respectively. In contrast,
the MAE values for the SVR model were 0.973, 1.941, and 2.078 for Datasets A, B, and C,
respectively.

The multi-step forecast curves, illustrated in Figures 5–7, demonstrate that the model
developed in this research outperforms alternative models in forecasting efficacy. By
integrating the transformer model with the TCN, the approach achieves a superior fit to the
predictive curve. The columnar stacked graphs in Figure 8 display the marked advantage
of the combined forecasting model over other models in terms of overall performance.
In Figure 8, the legends omit the common prefix part ‘DBO-VMD-’ of the models. This
advantage is evident across four key metrics: MSE, MAE, RMSE, and R2, each showing
a trend of notable improvement. For example, during a 24-step prediction for Dataset B,
the DBO-VMD-TCN model recorded MSE, MAE, and RMSE values of 4.815, 1.637, and
2.194, respectively. By contrast, the DBO-VMD-TCN-Transformer model dramatically
improved upon these figures, posting values of 0.723, 0.640, and 0.850, respectively. This
corresponds to performance enhancements of 85.0%, 60.9%, and 61.3% for these metrics,
respectively. In the case of a 48-step forecast for Dataset C, the DBO-VMD-TCN model’s
figures were 3.129, 1.280, and 1.769, while our model displayed superior figures of 0.895,
0.665, and 0.946, representing improvements of 71.4%, 48.0%, and 46.5%, respectively.
Consequently, the hybrid approach introduced in this study achieves the most effective
outcomes, leveraging the transformer’s robust forecasting capabilities alongside TCN’s
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enhanced feature extraction prowess. This combination effectively uncovers underlying
correlations within extensive time series data, markedly elevating the hybrid model’s
forecasting precision.
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3.4. Experiment II

The predictive capabilities of the transformer, PatchTST, and informer were com-
pared and analyzed under the same data decomposition method combined with the TCN.
Tables 5–7 provide a detailed comparative analysis of the error metrics for these models
across three distinct datasets, with the optimal values highlighted in bold. Furthermore,
Figure 9 illustrates the 3D histograms, emphasizing the prediction abilities of the three
models on the three datasets.

Table 5. The performance of three models for Dataset A.

Step (Time) Model MSE MAE RMSE R2

12 (12 m)
DBO-VMD-TCN-PatchTST 1.107 0.680 1.052 0.892
DBO-VMD-TCN-Informer 0.178 0.275 0.422 0.983

DBO-VMD-TCN-Transformer 0.160 0.269 0.400 0.984

24 (24 m)
DBO-VMD-TCN-PatchTST 1.679 0.863 1.296 0.836
DBO-VMD-TCN-Informer 0.536 0.476 0.732 0.948

DBO-VMD-TCN-Transformer 0.429 0.415 0.655 0.958

48 (48 m)
DBO-VMD-TCN-PatchTST 2.576 1.080 1.605 0.748
DBO-VMD-TCN-Informer 0.741 0.583 0.861 0.927

DBO-VMD-TCN-Transformer 0.630 0.523 0.794 0.938
Note: Values in bold indicate the best value.

Table 6. The performance of three models for Dataset B.

Step (Time) Model MSE MAE RMSE R2

12 (2 h)
DBO-VMD-TCN-PatchTST 3.240 1.297 1.800 0.700
DBO-VMD-TCN-Informer 0.410 0.488 0.640 0.962

DBO-VMD-TCN-Transformer 0.331 0.436 0.576 0.969

24 (4 h)
DBO-VMD-TCN-PatchTST 5.271 1.671 2.296 0.512
DBO-VMD-TCN-Informer 0.723 0.645 0.850 0.933

DBO-VMD-TCN-Transformer 0.716 0.644 0.846 0.934

48 (8 h)
DBO-VMD-TCN-PatchTST 7.807 2.091 2.794 0.279
DBO-VMD-TCN-Informer 1.308 0.861 1.144 0.879

DBO-VMD-TCN-Transformer 1.003 0.754 1.001 0.907
Note: Values in bold indicate the best value.
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Table 7. The performance of three models for Dataset C.

Step (Time) Model MSE MAE RMSE R2

12 (3 h)
DBO-VMD-TCN-PatchTST 4.133 1.431 2.033 0.642
DBO-VMD-TCN-Informer 0.234 0.356 0.484 0.980

DBO-VMD-TCN-Transformer 0.214 0.342 0.463 0.981

24 (6 h)
DBO-VMD-TCN-PatchTST 6.281 1.793 2.506 0.456
DBO-VMD-TCN-Informer 0.483 0.509 0.695 0.958

DBO-VMD-TCN-Transformer 0.458 0.497 0.677 0.960

48 (12 h)
DBO-VMD-TCN-PatchTST 8.865 2.164 2.977 0.231
DBO-VMD-TCN-Informer 1.065 0.739 1.032 0.908

DBO-VMD-TCN-Transformer 0.895 0.665 0.946 0.922
Note: Values in bold indicate the best value.
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As shown in Tables 5–7, the transformer model outperforms the informer and PatchTST
models in multi-step prediction across distinct datasets. Regarding the MSE, MAE, and
RMSE indicators, where lower values are preferable, the transformer model shows a
marked decrease in these values when compared to the PatchTST and informer models.
This is corroborated by the outcomes of multi-step forecasting shown in Tables 5–7. For
instance, during a 48-step prediction in Dataset B, the MAE values recorded were 2.091,
0.861, and 0.754, respectively. These findings highlight a notably better performance in
the transformer model while indicating a somewhat inferior result in the informer model.
Therefore, the transformer model reveals a considerable capacity for enhancement. This not
only boosts the overall accuracy of the model but also guarantees a more precise reflection
of the actual figures.

From the 3D histograms in Figure 9, it is evident that the transformer model yields
superior outcomes compared to the PatchTST and informer models across Datasets A, B,
and C. In the figure, the legends omit the common prefix part ‘DBO-VMD-TCN’ of the
models. For instance, in a 24-step prediction for three datasets, the transformer model
shows a notable enhancement over the PatchTST model, with average increases of 36.8%
in R2 metrics. The transformer model demonstrated significant improvements over the
PatchTST model, with similar trends observed in Datasets A, B, and C. Moreover, during
the 48-step prediction phase for three datasets, the transformer model registers an average
enhancement of 15.1% across three metrics over informer, with average increases of 22.3%,
12.3%, and 10.6% in MSE, MAE, RMSE, respectively.

3.5. Experiment III

To assess the effectiveness of the DBO-VMD method in decomposing wind-speed
series data, comparisons were made with scenarios without VMD, with VMD, and with
VMD optimized by PSO. For the optimized VMD, the penalty factor was chosen within
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the range of [500, 3000], and the value of K was set between 3 and 10, inclusive of integers
only. For the non-optimized VMD, the K value was empirically set to 7. Both DBO and
PSO optimization algorithms were configured with two variables, ten individuals, and
a maximum of thirty iterations. Subsequently, DBO was utilized to optimize the VMD
parameters. Figure 10 illustrates that the optimal number of IMFs was determined to be 8.
The time domain of the modal components obtained through DBO-VMD decomposition is
shown in the left portion of Figure 10. It is evident from the right portion of Figure 10 that
each mode is distinct in the frequency distribution of the modal components, effectively
preventing the issue of mode mixing.
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Table 8’s analysis shows that employing the VMD method results in substantial
performance improvements across four metrics compared to without VMD. For instance,
in a 24-step forecast, the MSE, MAE, RMSE, and R2 values for the VMD method were
0.789, 0.637, 0.888, and 0.932, respectively. In contrast, the values for these metrics without
using the VMD method were significantly less favorable. These findings demonstrate
that VMD is an effective data decomposition model for enhancing predictive accuracy. A
comprehensive analysis of Table 8 reveals that the DBO-VMD-TCN-Transformer model
achieved outstanding evaluation metrics in three types of multi-step forecasts. Through
comparative assessments, the forecasting outcomes based on the DBO-VMD and PSO-VMD
hybrid models demonstrated an improvement of 34.8%, 21.2%, 19.3%, and 4.7% across
the metrics of MSE, MAE, RMSE, and R2, respectively. These critical indicators highlight
the superior performance of the combined model employing DBO for optimizing VMD
parameters over the model using PSO optimization for VMD.

Figure 11 presents radar charts that compare the performance indicators for VMD
both with and without the decomposition methods, alongside the application of different
optimization algorithms. In the legend, ‘Transformer’ is abbreviated as ‘Tr’. The Key
indicators of MSE, MAE, and RMSE are recorded with preferable outcomes indicated by
lower scores. It is evident from the chart that the DBO-VMD-TCN-Transformer model
secures minimal values across these performance measures. Regarding the 1-R2 metric,
which when nearer to 0 denotes greater precision, the WSO-VMD-TCN-Transformer model
is shown to be the closest to this optimal benchmark. This finding highlights the efficacy of
the DBO-VMD approach in enhancing the accuracy and fit of wind-speed predictions.



Energies 2024, 17, 1996 18 of 22

Table 8. The performance of different optimization algorithms.

Step (Time) Model MSE MAE RMSE R2

12 (3 h)

TCN-Transformer 3.858 1.395 1.964 0.666
VMD-TCN-Transformer 0.608 0.555 0.780 0.947

PSO-VMD-TCN-Transformer 0.466 0.491 0.683 0.960
DBO-VMD-TCN-Transformer 0.214 0.342 0.463 0.981

24 (6 h)

TCN-Transformer 5.895 1.737 2.428 0.489
VMD-TCN-Transformer 0.789 0.637 0.888 0.932

PSO-VMD-TCN-Transformer 0.735 0.619 0.857 0.936
DBO-VMD-TCN-Transformer 0.458 0.497 0.677 0.960

48 (12 h)

TCN-Transformer 8.224 2.076 2.868 0.287
VMD-TCN-Transformer 1.797 0.969 1.340 0.844

PSO-VMD-TCN-Transformer 1.373 0.844 1.172 0.881
DBO-VMD-TCN-Transformer 0.895 0.665 0.946 0.922

Note: Values in bold indicate the best value.
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3.6. Diebold Mariano Test

The DM test is comparable to conducting a t-test, focusing on comparing the average
losses produced by two distinct predictive models to determine if they are statistically
identical. When dealing with time series data that show autocorrelation, the DM test
adeptly adjusts its estimation of the standard deviation for the difference in losses, taking
autocorrelation into account. This capability renders the DM test especially effective for
evaluating forecasting models tailored to time series data. The foundational premise, or the
null hypothesis (H0), posited by the test is the absence of any significant discrepancy in the
predictive accuracies of the two models being compared. Nonetheless, as detailed in Table 9,
differences in the predictive accuracies of the models are observed at the 5% significance
level. Table 9 demonstrates that H0 is rejected for every comparison model, suggesting a
distinct difference in the predictive capabilities of the DBO-VMD-TCN-Transformer model
compared to its counterparts. The data in Table 9, which shows all p-values below 0.05 and
all DM values as negative, support the conclusion that the combined prediction model
introduced in this research significantly outperforms the benchmark models in terms of
forecasting accuracy.
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Table 9. The DM test results.

Dataset
Step 12 24 48

Model DM P DM P DM P

Dataset A

DBO-VMD-TCN −29.75 1.01 × 10−193 −42.23 0 −61.45 0
DBO-VMD-SVR −15.56 7.23 × 10−46 −18.52 3.16 × 10−85 −28.96 1.83 × 10−223

DBO-VMD-DLinear −14.90 3.54 × 10−50 −23.31 5.53 × 10−120 −35.48 2.45 × 10−275

DBO-VMD-PatchTST −14.04 9.11 × 10−45 −19.31 5.11 × 10−83 −31.64 2.08 × 10−219

DBO-VMD-Informer −17.71 4.24 × 10−70 −18.14 1.67 × 10−73 −21.08 1.26 × 10−98

DBO-VMD-Transformer −14.59 3.52 × 10−48 −15.06 3.13 × 10−51 −15.38 2.23 × 10−53

Dataset B

DBO-VMD-TCN −21.09 1.99 × 10−98 −30.77 4.41 × 10−207 −45.42 0
DBO-VMD-SVR −17.06 2.73 × 10−65 −22.17 5.26 × 10−95 −35.36 2.68 × 10−257

DBO-VMD-DLinear −16.84 1.77 × 10−63 −23.06 2.07 × 10−117 −36.77 4.12 × 10−295

DBO-VMD-PatchTST −16.85 1.45 × 10−63 −21.01 7.77 × 10−98 −33.85 1.51 × 10−250

DBO-VMD-Informer −19.16 1.39 × 10−81 −22.70 8.34 × 10−114 −40.42 0
DBO-VMD-Transformer −17.55 9.05 × 10−69 −13.05 6.90 × 10−39 −33.02 1.45 × 10−238

Dataset C

DBO-VMD-TCN −17.51 1.63 × 10−68 −39.64 0 −56.04 0
DBO-VMD-SVR −19.86 5.37 × 10−93 −27.46 8.37 × 10−206 −48.17 0

DBO-VMD-DLinear −20.97 1.86 × 10−97 −29.82 5.33 × 10−195 −46.81 0
DBO-VMD-PatchTST −20.74 2.12 × 10−95 −31.67 1.51 × 10−219 −47.06 0
DBO-VMD-Informer −19.30 6.80 × 10−83 −28.23 5.23 × 10−175 −49.06 0

DBO-VMD-Transformer −17.90 1.45 × 10−71 −22.00 3.72 × 10−107 −34.68 3.41 × 10−263

3.7. Discussion

Previous research results indicate that, compared to other models, the proposed model
exhibits significant advantages across three datasets and various step lengths. This is
attributed to its reliance on a hybrid model capable of handling high-resolution wind-speed
fluctuation information. The superiority of the DBO-VMD-TCN-Transformer model can be
summarized as follows:

VMD Preprocessing: As demonstrated by the experiments in Section 3.5, there is
a noticeable difference in the forecasting results with and without VMD preprocessing.
Optimization through DBO further enhances the effectiveness of VMD preprocessing. VMD
preprocessing improves the non-stationarity of the original wind speeds. therefore, all
experimental comparisons in this paper are based on VMD-preprocessed data.

TCN Module: As observed in Section 3.3, standalone TCN predictions perform the
worst. However, hybrid models that combine TCNs with transformer-like structures
outperform those without TCN integration. The TCN module excels in extracting temporal
features from high-resolution wind speeds, thereby enhancing the performance of the
hybrid forecasting models.

Transformer Module: As demonstrated in Section 3.4, hybrid models equipped with
transformer modules yield better forecasting results than non-transformer hybrid models.
Furthermore, transformer-based hybrid models surpass those integrating informer and
PatchTST models. The transformer module effectively captures complex dependencies
between input data and forecast outputs, achieving optimal predictive performance.

4. Conclusions

Addressing the need for enhanced accuracy in wind-speed forecasting and the scarcity
of research on wind-speed short-term prediction utilizing the transformer architecture, this
study introduces a hybrid wind-speed prediction model that integrates the transformer
model, VMD, and TCNs. This innovative model aims to leverage the strengths of each
component to enhance accuracy and efficiency in predicting wind speeds across various
time horizons. By integrating the transformer’s ability to handle complex dependencies
with the accuracy of VMD for wind-speed decomposing and the efficiency of TCNs for
temporal analysis, this proposed model seeks to fill the gaps in current short-term wind-
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speed forecasting methodologies and extend the application of transformer-based models
to a wider range of forecasting scenarios. The efficacy of the introduced model was
validated and assessed using three real-world datasets. Experiments conducted with
these datasets revealed that (1) compared to six benchmark models, the proposed model
exhibits superior performance, showing an average improvement of 54.2% in MSE, MAE,
and RMSE performance, and a 52.1% increase in R2 performance. (2) The transformer
model demonstrates enhanced capabilities in short-term forecasting compared to the
PatchTST and informer models. On average, its performance in the MSE, MAE, and RMSE
metrics improved by 40.2%, while the R2 score increased by 20.8%. (3) The DBO-VMD
strategy has proven effective in enhancing the accuracy and consistency of wind-speed
forecasting results. Compared to models without VMD, the DBO-VMD-TCN-Transformer
hybrid model shows an average performance improvement of 78.5% in MSE, MAE, and
RMSE metrics, and a 50.0% increase in the R2 score. (4) The DM test indicates that the
model exhibits statistically significant improvements over other baseline models at the 5%
significance level.

Challenges include the incomplete optimization of hyperparameters and a deficit in
error evaluation. Future research will delve into comprehensive studies on transformer-
based hybrid models, the automation of hyperparameter optimization, and detailed error
correction, with the aim of enhancing the precision of wind-speed predictions.
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