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Abstract: Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery 

technology because it consumes low energy, and is very environmentally-friendly.  

The dispersion of solvents into heavy oil and bitumen is a crucial transport property 

governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to 

effectively predict the amount and time scale of oil recovery as well to optimize the field 

operations. In this work, a novel technique is developed to experimentally determine the 

concentration-dependent dispersion coefficient of a solvent in Vapex process. The 

principles of variational calculus are utilized in conjunction with a mass transfer model of 

the experimental Vapex process. A computational algorithm is developed to optimally 

compute solvent dispersion as a function of its concentration in heavy oil. The developed 

technique is applied to Vapex utilizing propane as a solvent. The results show that 

dispersion of propane is a unimodal function of its concentration in bitumen. 

Keywords: concentration-dependent dispersion; Vapex; propane; heavy oil and bitumen; 

variational calculus; mathematical modeling 

 

1. Introduction 

The enormous heavy oil and bitumen deposits in the World are estimated to be approximately  

6 trillion barrels [1]. Canada and Venezuela have the major parts of these resources. These huge 

reserves are so attractive that many attempts have been made to invent numerous schemes to recover 
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these heavy oil and bitumen resources. In Canada, steam-based methods are often employed to 

improve heavy oil recovery by reducing the viscosity of in-situ heavy oil. However, these methods are 

ineffective and uneconomical for reservoirs with thin pay zones, underlying bottom water, overlying 

gas caps, low rock conductivities, and high water saturations [2]. On the other hand, solvent based 

methods provide a better alternative for heavy oil recovery that can eliminate several problems 

associated with steam based methods such as water and energy requirements, emissions of greenhouse 

gases and wastewater generation [3]. Vapex is one of the most promising heavy oil solvent based 

recovery methods [4].  

In Vapex, vaporized solvents at pressures close to dew point are injected into a heavy oil reservoir 

through an upper horizontal well to reduce the viscosity of the native heavy oil. The diluted oil flows 

to the lower horizontal well under the action of gravity. The transport mechanism involved in Vapex is 

dispersion, i.e. the combination of molecular diffusion of solvent into the heavy oil, and its convection 

under the action of gravity aided by viscosity reduction, concentration gradient, and capillary action. 

Live oil mobility and its convection are also influenced by the action of gravity and surface  

renewal [3]. Investigators had to use dispersion coefficients that are up to four orders of magnitudes 

higher than the diffusion coefficients in order to predict the actual production rates [5–8]. Solvent 

dispersion is the reason for the high oil production rates in porous media. The movement of solvent in 

a porous medium is facilitated by convection, and the mass transfer is higher than that due to diffusion 

alone [9]. 

Oil production in Vapex depends on the viscosity of live oil, i.e. the liquid phase consisting of 

solvent and heavy oil. This viscosity influences the movement of the live oil in the reservoir. The 

solvent concentration within the heavy oil depends on the thermodynamic properties of the solvent, 

operating conditions, and solvent dispersion in the heavy oil. According to Upreti et al. [4] accurate 

concentration-dependent dispersion data for solvent-heavy oil and bitumen systems are necessary  

to determine: 

1. The amount and flow rate of solvent required to mobilize the heavy oil. 

2. The extent of heavy oil and bitumen reserves that would undergo viscosity reduction. 

3. The time required to mobilize the heavy oil and bitumen for drainage under gravity. 

4. The production rate of live oil. 

A few studies exist on the determination of dispersion of various solvents used in Vapex. Boustani 

and Maini [10] have shown a strong concentration dependence of dispersion, as observed in the case of 

molecular diffusion by Upreti and Mehrotra [11,12]. Kapadia et al. [7] developed and simulated a 

mathematical model with a linear concentration-dependent dispersion to determine gas dispersion 

during the vapor extraction of Cold Lake bitumen from a rectangular block of homogeneous porous 

medium using butane. The dispersion coefficient was found to be four orders of magnitude higher than 

reported molecular diffusion. Using a linear dispersion model, El-Haj et al. [8] conducted Vapex 

experiments, which were simulated by a mathematical model to determine the dispersion coefficient of 

butane gas into Athabasca bitumen. The dispersion coefficient obtained was two to three orders of 

magnitude higher than molecular diffusivity reported earlier. 

The above findings coupled with the paucity of dispersion data in the literature make it imperative 

to determine the concentration-dependent dispersion for various solvents in heavy oil and bitumen. For 

this purpose, we have developed a new technique which is based on variational calculus. The salient 
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feature of this technique is that it does not impose any functional form on dispersion as a function of 

concentration, but allows its realistic determination. 

2. Experimental Setup 

Figure 1 shows the schematic diagram of the experimental setup used. The setup comprises of a 

cylindrical pressure vessel of 55 cm height and 15 cm internal diameter inside a temperature-controlled 

water bath.  

Figure 1. Schematic diagram of the experimental setup. 
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The vessel holds the physical model of Vapex. The physical model comprises a cylindrical wire 

mesh filled with glass beads saturated with heavy oil. The physical model is suspended from a load 

cell, and kept in contact with the solvent vapor at constant pressure. The load cell records the mass of 

the physical model with time. The mass decreases in an experiment as live oil drains away from the 

model due to solvent absorption. The drained oil is directed to a calibrated 25 cm
3
 collection tube. The 

tube is connected to a viscosity measurement unit to measure the online live oil viscosity.  

The viscosity measurement unit comprises a 50 cm long stainless steel capillary tube of 0.1016 cm 

internal diameter equipped with a differential pressure transducer. The capillary tube is connected to a 

stainless steel flash tank of 300 cm
3
 capacity. The flash tank is wrapped with an electrical heating tape. 

The volume of propane separated from the live oil inside the flash tank is measured by a gas 

measurement unit. It is composed of two cylinders of respective capacities 2,600 cm
3
 and 2,900 cm

3
. A 
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needle thermocouple and two resistance temperature detectors respectively measure the temperature of 

the packed medium, propane gas, and the flash separation tank. A data acquisition system records the 

system properties online. 

2.1. Experimental Procedure 

A sample of heavy oil (from Imperial oil; of 200,000 mPa∙s viscosity, and 1,001 kg/m
3
 density at  

22 °C) was heated to 60 °C. Glass beads of known permeability were gradually added to the heated 

heavy oil ensuring proper mixing without trapping air bubbles. The saturated mixture of the heavy oil 

and glass beads was packed into a cylindrical wire mesh of 25 cm height, and 6 cm diameter. During 

this operation, the mesh lay inside an ice bath to prevent the bitumen from oozing out. The cylindrical 

packed medium, i.e., the physical model of Vapex, of heavy oil saturated with glass beads was 

weighed, and left at room temperature for one day to reach thermal equilibrium prior to an experiment.  

Before starting an experiment, the vessel was pressurized with air and left for 24 hrs to test any 

leaks. The physical model was suspended from the load cell inside the pressure vessel. Research grade 

propane of purity 99.99% was used. The vessel was flushed with propane of about twice its volume 

and vacuumed to 15  mmHg. Propane was injected into the vessel at constant pressure. The injection 

pressure was controlled through the pressure regulator installed on the supply propane cylinder. The 

water bath temperature was kept 1–2 °C higher than the dew point temperature of propane. The 

experiment was carried out for 5 hrs. 

Propane upon being injected diffused into the physical model from its exposed outer surface. The 

heavy oil became less viscous and began to drain and produce as live oil. The load cell recorded the 

decrease in the mass of the physical model every minute as the oil production continued. The live oil 

was collected for the measurement of viscosity and flow rate. When about 15 cm
3
 of live oil was 

collected, the oil was drained through a capillary tube into the flash tank. The propane liberated from 

the live oil in the flash tank was directed to the gas-measurement unit filled initially with water. The 

displaced volume of water determined the propane volume. The propane-free oil residual in the flash 

tank was weighed. The amount of live oil produced with time was recorded.  

Table 1 provides the experimental parameters and operating conditions.  

Table 1. Experimental parameters and operating conditions. 

Parameter Value 

permeability( ), Darcy 204 

porosity ( ) 0.38 

temperature,ºC 21 

pressure, MPa 0.689 

3. Theoretical Development 

The technique developed in this work relies on the mass transfer model of vapor extraction of heavy 

oil using a solvent. The model has an undetermined concentration-dependent dispersion function. 
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Incorporating this function in the mass transfer model, the calculated mass of oil produced should be 

equal to its experimental value obtained from the experiments.  

3.1. Mass Transfer Model 

A mathematical model is developed here to describe the mass transfer process based on the vapor 

extraction experiments. The assumptions involved are as follows: 

1. Vapex is carried out at constant temperature and pressure. 

2. Solvent dispersion is along the radial direction only. 

3. The velocity of the live oil along the vertical direction is governed by Darcy law in a  

porous medium.  

4. The porous medium has uniform porosity and permeability. 

5. There are no chemical reactions. 

6. Any volume change results and corresponds to drainage of the live oil. 

7. The heavy oil is non-volatile. 

The unsteady state mass balance for solvent propane over a differential element of the medium (see 

Figure 2) is given by 

         f f

d

d
      

 
     

z z z r r r
V A A J S J S

t
 (1)  

where zrrV  2 is the volume of the element, rrA  2  is the area transverse to the live oil 

velocity  in the vertical direction, and z2  rS   is the area transverse to the dispersive flux 
fJ  in 

the radial direction.  

Figure 2. Differential element of the physical model. 
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In Equation(1), the diffusive flux along the vertical direction is assumed insignificant in comparison 

with the convective flux.  

Assuming constant live oil density; the radial flux can be written as 

f

d

d
J D

r


   (2)  
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where D  is the undetermined concentration-dependent dispersion coefficient of propane in the porous 

medium. Taking the limits of r and z  to zero, the above equations yield the following mass  

transfer model: 
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 (3) 

where ),,( zrt  is the mass fraction of solvent in bitumen, which is a function of time, radius and 

height of the porous medium. The velocity of the live oil along the vertical direction is the Darcy 

velocity given by 






gKK r  (4)  

where 
rK  is relative permeability of the medium, K  is its permeability,   is the density of live oil, g  

is gravity, and   is the live oil viscosity.  

Experimental live oil viscosity and propane solubility data were best fitted to obtain the live oil 

viscosity concentration-dependent model. The empirical correlation for the propane-heavy oil system 

during the process at the operating temperature and pressure is 
2

0

   with a high value of 0.982 

for the r
2
-coefficient of determination.  

The live oil drainage with time reduces the height of the bitumen, ),( rtZ , in the packed medium. 

The change in the height with time at any radial location is given by 

 , , 0
Z

t r
t




 


 (5)  

where  0,,rt  is Darcy velocity at the bottom of the model at a given r .  

Initially there is no gas inside the packing and no production of the live oil. The initial height of the 

bitumen sample is 0Z . The packing surface has the solvent gas concentration equal to its interface 

saturation concentration under prevailing temperature and pressure. Thus, the initial conditions at 

0t  are as follows: 

0

0

int

0, 0 and 0
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,
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z Z r R

z z Z

r R
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

   
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 (6)  

At all times, the entire exposed circumference and the bottom face of the cylinder is saturated with 

gas. The solvent–heavy oil interface at the top moves down and the height of the bitumen, )(rZ , 

decreases with time due to live oil drainage. Thus, we have a moving boundary problem which is 

described by Equation (5).  

The heavy oil at the moving interface is saturated with gas at all times. Consequently, the boundary 

conditions are 

    int0,,,,)](,,[   rtzRttZrt  (7)  
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Because of symmetry 

0  at 0r
r


 


 (8)  

at all times. 

3.2. The Mathematical Objective 

It is desired to find the optimal dispersion function, )(D , such that the difference between the 

model-calculated and experimental cumulative live oil produced is minimum. Mathematically, the 

objective functional can be written as 

  

T
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0

2

ec d)()(  (9)  

where I  is the objective functional that needs to be minimized using the control 

function   zrtDD ,, ; )(e tm is the experimental cumulative mass of the live oil produced at any 

time t , and )(c tm is the model cumulative predicted mass of the live oil produced at any time t  . The 

calculated mass )(c tm is given by 
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Now, Equation (9) can be written as 
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subject to Equation (3), which in turn can be written as 
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and subject to Equation (5), which can be written as 

0),(2 
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
rtFf

t

Z
 (14)  

where 

2

2 )]0,,([)0,,( rtrtf    (15)  

Equation (12) and Equation (14) are the constraints for Equation (9), and D is the control function. 

Equation (12) and Equation (14) are highly non-linear partial differential equations. Therefore, two 
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undetermined adjoint variables ( , , )t r z  and ( , )t r  are introduced into Equation (9) to yield the 

following unconstrained objective functional: 

0 0 0 0 0

( , , ) ( , , )d d d ( , ) ( , )d d

T R Z T R

J I t r z G t r z z r t t r F t r r t         (16)  

Substituting for ),,( zrtG  and ),( rtF in the above equation yields 
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The minimization of J  is now equivalent to the minimization of I . The variational derivative of J  

with respect to the optimization variable D  will provide the conditions necessary for the minimum  

of J . 

3.3. Determination of Necessary Conditions 

In this section, we derive the necessary conditions for the minimum of J . Consider the variation of 

J as follows 
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Substitution of Equations (19), (20), and (21) into Equation (18) yields 
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Integration by parts of the second integral of the above equation yields 
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The first integral on the right hand side in Equation (23) is eliminated based on the nature of the 

process as follows: Because the solvent mass fraction is known at 0t , its variation is ruled out, i.e., 
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The final mass fraction of solvent in bitumen is not specified. Thus, the variation due to the mass 

fraction is eliminated if its multiplicative term is forced to zero, i.e. 
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Integration by parts of the fourth integral of Equation (22) yields 
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Since the solvent mass fraction in bitumen is specified for all r and t , the variation  , , 0.t r Z    

Hence 
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z z z0 0 0 0 0 0 0 0

d d d ( , ,0) d d d

T R Z T R T R Z
f f f

z r t t r z r t
z

      
  

        
        

         
         (28)  

Integration by parts of the fifth integral of Equation (22) yields 

T Z

1 1 1
r

r r r0 0 0 0 0 00

d d d d d d

RT R Z R
f f f

z r t r z t
r

     
  

         
        

          
       (29)  

Since the solvent mass fraction in bitumen,  zRt ,, , is known for all z and t , the variation is zero. 

The mass fraction of solvent in bitumen,  zt ,0, , is not specified. Variation due to  zt ,0,  is 

eliminated if its multiplicative term is forced to zero, i.e. 

 ,0, 0t z   (30)  

The above equation leads to 
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1 1
r

r r0 0 0 0 0 0

d d d d d d

T R Z T Z R
f f

z r t z r t
r

   
 

    
    

     
       (31)  

 

Integration by parts of the sixth integral of Equation (22) yields 

1
rr

rr0 0 0

d d d

T R Z
f

z r t 


 
  

 
    

2

1 1 1
r 2

rr rr rr0 0 00 0

        d d d

RRT Z R
f f f

r z t
r r

     
  

                     
              

    

(32)  

Application of Equation (30) eliminates the second term on right hand side of Equation (32). To 

eliminate the first term on right hand side of Equation (32), the multiplicative term is forced to  

zero, i.e. 

 , , 0t R z   (33)  

The above conditions reduce Equation (32) to 

2

1 1
rr 2

rr rr0 0 0 0 0 0

d d d d d d

T R Z T Z R
f f

z r t z r t
r

   
 

    
     

     
       (34)  

Integration by parts of the eight integral of Equation (22) yields 

  0

0 0 0 0

( )
d d d dr

T R R T

TZ
r t Z Z t

t t

 
  

   
       

     (35)  

The first integral on right hand side in Equation (35) is eliminated as follows. The initial height of 

bitumen,  rZ ,0 , is known, then the variation of  rZ ,0 is ruled out, i.e. 

  0,0 rZ  (36)  

The final height of bitumen,  rTZ , , is not specified. Variation due to the final height is eliminated 

if its multiplicative term is forced to zero, i.e. 

 , 0T r   (37)  

Substitution of Equation (36) and Equation (37) in Equation (35) results in 

0 0 0 0

( )
d d d d

T R R T
Z

r t Z r t
t t

 
 

  
  

  
     (38)  

The last integral of Equation (22) yields 

2
2

0 0 0 0

d d ( , ,0)d d
( , ,0)

T R T R
f

f r t t r r t
t r

  


 
    

 
     (39)  

Finally, substitution of Equations (26), (28), (31), (34), (38) and (39) into Equation (22) results in 
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 c e

0 0

4 ( ) ( ) d d

T R

J r m t m t Z r t
t


  

 
     
    

2

1 1 1 1

2

z r rr0 0 0

        d d d

T R Z
f f f f

z r t
t z r r


    

   
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     

    
 

 

1

0 0 0

        d d d

T R Z
f

D z r t
D

 
  

   
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  
 

(40)  

  

At the minimum, J given by Equation (40) should be zero. That is only possible when the 

variational derivative of J  with respect to D  is 

1 0
fJ

D D



  
 

 (41)  

subject to the following adjoint equations: 

2

1 1 1 1

2

z r rr

f f f f

t z r r


   

   

            
          

              
 (42)  

 

 c e4 ( ) ( )m t m t r
t





  


 (43)  

 

1 2

0z 0

0
zz

f f
 

  

   
       

 (44)  

Thus, Equation (41) is the necessary condition for the minimization of J  when the continuity 

equation, as well as the adjoint equations [Equations (42)–(44)] are satisfied. 

3.4. Adjoint Equations 

Using Equations (13), (15), (42) and (44) we obtain 

2 2

2 2

3 D D
D

t z r r r r

     



        
        

        
 (45)  

 

23 [ ( , ,0)]
2 [ ( , ,0)]

t r
t r

 
 




   (46)  

The boundary conditions for Equation (45) are 
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( , , ) 0T r z   (47)  

 

( ,0, ) ( , , ) 0t z t R z    (48)  

The boundary condition for Equation (43) is 

( , ) 0T r   (49)  

4. Computational Algorithm 

Since Equations (12), (14), (43) and (45) are nonlinear partial differential equations, an analytical 

solution is not possible. Therefore, the problem is solved numerically. Based on the necessary 

conditions for the minimum of J , the following computational algorithm is applied to minimize J , 

and determine the concentration-dependent solvent dispersion function:  

1. Initialize dispersion function.  

2. Simultaneously integrate the continuity equation [Equation (12)] and Equation (14), subject to 

the initial and boundary conditions, to obtain the values of  zrt ,,  and  rtZ , for each node.  

3. Calculate the objective function given by Equation (9). 

4. Simultaneously integrate Equation (43) and Equation (45) backward, subject to the final 

boundary conditions, using stored values of   and Z to get the values of  , ,t r z  and  ,t r  

for each grid point. 

5. Improve  D using the gradient correction given by Equation (41).  

6. Go to Step 2 until the improvement in J  is negligible. 

4.1. Implementation  

The gradient correction for  D  was calculated as follows:  

 
2

D 2
( , , )

J
J t r z

D r r r

  
 

  
   
  

 (50)  

In addition, the gradient correction 
DJ  was scaled to the magnitude of current dispersion values  

as follows: 

 
 D2

DS

D

;  1,2,..,
J k

J k D k n
J

   (51)  

where 2  is a small adjustable parameter,  kJ DS
 is the scaled gradient correction at a specified gas 

mass fraction of the dispersion function, and n is the number of specified gas mass fractions of the 

dispersion function. Using the scaled gradient correction, the iterative improvement in the value of 

 D was given by 

iiii JDD ,DS1   (52)  

where i  is the optimal step length along the search direction in the i th iteration. The dispersion was 

considered to be discrete function,  D , at specified gas mass fractions between zero and the 
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maximum concentration of the solvent in bitumen.  D  was initialized to a uniform value as high as 

possible without causing )(c tm to intersect )(e tm . Equations (12), (14), (43), and (45) were finite-

differenced along r  and z  directions. The resulting set of ordinary differential equations written for 

corresponding grid points are given in Appendix A. The details of the variational derivative of J  with 

respect to D  are provided in Appendix B. 

With an accuracy of 610 in the time domain, the equations were numerically integrated using semi-

implicit Bader-Deuflhard algorithm, and adaptive step size control [13]. Analytical Jacobian of 

Equations (12), (14), (43), and (45) was employed in the calculations. To fix the number of grid points 

along the r  and z  directions, 
rN and

zN , the equations were integrated with increasing the number of 

grid points until the changes in the solution became negligible. The gradient correction in  D  was 

applied to the dispersion using Broyden-Fletcher-Goldfarb-Shanno algorithm [14,15].  

Programmed in C++ language, the developed algorithm was implemented on Itanium 2/ Intel 

Itanium processor (1.5 GHz, 15.9 GB of RAM) with Intel C++ compiler. The algorithm took about 

20 h to converge. During the computations, cubic splines were used to interpolate  D as well as its 

first and second derivatives with respect to  ; )(c tm and )(e tm ;  t  and  tZ ; and the variational 

derivative 
DJ  at each specified solvent mass fraction.  

5. Results and Discussion 

The above computational algorithm was applied to the experimental vapor extraction of heavy oil 

by propane. The experimental data of live oil production were used in the simulation of the developed 

model to determine the concentration-dependent dispersion function of propane in heavy oil. Table 2 

lists the various parameters used in the simulation of the mathematical model. 

Table 2. Model parameters. 

Parameter Value 

  0.38 

rK  1 

K , m
2
 1010013.2   

R , m 0.03 

0Z , m 0.25 

0 , kg/m·s 31.158 10  

 , kg/m³ 830 

 

The objective function [Equation (9)] was obtained by solving Equations (A-1) to (A-26) with 

various values of 
int  in the range of 0.70–0.9 and the initial uniform dispersion function  D  in the 

range of 7 510 2.5 10   m
2
/s. In order to obtain the optimal value for propane mass fraction at the 

interface to solve equations, the minimum resultant objective functions were plotted against 
int

 
as 
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shown in Figure 3. The optimal propane interface mass fraction 
int  was found to be 0.76. The above 

value of 
int was used to determine the dispersion of propane as a function of its concentration in 

heavy oil. The results are presented in Figures 4–6.  

With 
int 0.76  , the application of the algorithm resulted in an iterative reduction of the objective 

function accompanied by a corresponding improvement in  D . The objective function decreased 

monotonically to the minimum as shown in Figure 4. The final optimal function  D  was obtained in 

29 iterations after which no further improvement was observed. The initial and final  D  are plotted 

Figure 5. It shows that the final, optimally determined  D  rises to a maximum value, and then drops 

toward the end. The maximum value of propane dispersion is 510048.4  m
2
/s at the propane mass 

fraction of 0.336. This result is for the propane–heavy oil system at 21–22 °C and 0.689 MPa. Figure 6 

compares the experimental live oil production to the calculated one with the optimally determined 

propane dispersion. It is observed that the experimental and calculated live oil productions agree very 

well. The calculated production follows experimental production very closely during the operation 

time of about 60 minutes.  

Figure 3. Solvent interface mass fraction versus objective function. 

 

The concentration dependence of dispersion coefficient is expected since the phenomenon of 

diffusivity embodied in dispersion is strongly affected by solvent concentration. The maximum in the 

concentration-dependent dispersion function could be explained as follows. Initially when higher 

concentration gradients are present in the heavy oil, the diffusion of solvent molecules is higher. It 

subsides later on with a gradual reduction in the concentration gradients as more and more solvent 

molecules penetrate the medium. When that happens, the diffusion of solvent molecules is restricted 

by their own abundance, thus decreasing the overall dispersion. Thus, at some intermediate stage, the 

diffusion coefficient is at its maximum. It has to be noted that we did not specify, or constrain the form 

of concentration-dependent dispersion function, but enabled its natural and realistic determination. In 

comparison to the molecular diffusion coefficient of propane in heavy oil [16–18], the average 

dispersion coefficient obtained in this work is up to four orders of magnitude higher, and underscores 

the strong effect of gravity-induced convection in Vapex.  
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Figure 4. Objective function versus iteration. 

 

Figure 5. Dispersion coefficient of propane in heavy oil at 21 °C and 0.689 MPa 

(diamond: the final, optimal dispersion coefficient, square: initial guess)  

 

 

The above outcome has a direct bearing on the optimal operations of Vapex implementations. For 

example, to maximize solvent uptake by the reservoir and oil production as a consequence, solvent 

injection rates should be such that the average solvent mass fraction in the reservoir (at 21–22 °C and 

0.689 MPa) is close to the optimal solvent mass fraction (0.336) corresponding to the peak value of 

dispersion ( 510048.4  m
2
/s; about twice the average value of dispersion). Hence, in addition to 

enabling more accurate reservoir simulations, the concentration-dependent dispersion function provide 

insights into optimizing Vapex operations as well. 
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Figure 6. Experimental and calculated mass of live oil produced with time (diamond: 

experimental mass, line: calculated mass). 

 

6. Conclusions 

A new technique was developed for the determination of concentration-dependent solvent 

dispersion in heavy oil. This technique was used to determine the dispersion coefficient of propane in 

heavy oil. The necessary conditions were derived for the match of the experimental cumulative oil 

produced with cumulative oil produced calculated from a Vapex mass transfer model. A computational 

algorithm was implemented to optimally compute dispersion coefficient as a function of the solvent 

mass fraction in heavy oil. The dispersion coefficient of propane in heavy oil was found to be a 

unimodal function of its mass fraction in heavy oil. The framework of optimal control, and the 

computational algorithm developed in this work could be applied to determine the  

concentration-dependent dispersion of other solvents used in the recovery of heavy oil and bitumen. 

Dispersion data will enable engineers to optimize oil production by operating Vapex close to the 

optimal solvent concentration corresponding to peak solvent dispersion. 
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Nomenclature 

A  area, m
2
 

D  dispersion coefficient of solvent in medium, m²/s 

g  gravity, m/s² 
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I  objective functional defined by Equation (9) 

J  augmented objective functional defined by Equation (11) 

fJ  dispersive flux of solvent in the medium along the radial direction, kg/m
2
·s 

K  permeability of the medium, m
2 

rK  relative permeability of the medium 

cm  calculated mass of the produced live oil, kg 

em  experimental mass of the produced live oil, kg 

r  distance along the radial direction, m 

R  radius of cylindrical medium, m 

S  surface area, m
2
 

t  time, s 

V  volume of a finite element in the medium, m
3 

v  Darcy velocity, m/s 

z  distance along the vertical direction, m 

Z  bitumen height in the medium at a given r  and t , m 

0Z  initial height, cm 

Greek Symbols 

  porosity of the medium 

  adjoint variable defined by Equation (43) 

  adjoint variable defined by Equation (45) 

  viscosity of the live oil, kg/m.s 

0  viscosity coefficient of the live oil, kg/m·s 

  density of the live oil, kg/m³ 

  mass fraction of solvent in bitumen 

int mass fraction of solvent at the solvent–heavy oil interface 

Appendix A 

Here we present the ordinary differential equations obtained after finite-differencing the 

mathematical model [Equations (3) and (5)], and the adjoint equations [Equations (45) and (43)]. 

A.1. The Mathematical Model 

For intermediate grid points, i.e., for    r z0 1  and  1i N j N      






















































i

jiji

ji

jiji

jijijijiji

i

ji

z

gKK

r

D

rrr
D

dt

d

2

cos
3

2

2

2

1

1,1,2

,

0

r

2

,1,1

2

,1,,1,1,1,












 (A-1)  

For axial grid points, i.e., 
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a. for  z0 and 0 1i j N   
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b. for 0 and  0i j   
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c. for  z0 and  1i j N    
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For the right most grid points, i.e., 

a. for 
r( 1) and  0i N j    
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 (A-5)  

b. for 
r z( 1) and 0 < ( 1)i N j N     
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c. for 
r z( 1) and  ( 1)i N j N     
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For the lower most intermediate grid points, i.e. for r0 ( 1) and  0i N j     
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For the upper most intermediate grid points, i.e., for 
r z0 ( 1) and  ( 1)i N j N      
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The change in height rfor 0 ( 1)i N  
 is given by 
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A.2. The Adjoint Equations 

For intermediate grid points, i.e., for    r z0 1  and  1i N j N      
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For axial grid points, i.e.,  z0 and 0 1i j N     
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For the right most grid points, i.e., 

a. for 
r( 1) and  0i N j    
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b. for 
r z( 1) and 0< ( 1)i N j N     
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c. for 
r z( 1) and  ( 1)i N j N     
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For the lower most intermediate grid points, i.e., for r0 ( 1) and  0i N j     
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For the upper most intermediate grid points, i.e., for 
r z0 ( 1) and  ( 1)i N j N      
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The equations for the second adjoint variable are 

1 c e r4 [ ( ) ( )],   0 ( 1)i
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Appendix B 

Here we present the variational derivative of dispersion. For intermediate grid points, i.e., for 
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For axial grid points, i.e.,  z0 and 0 1i j N     
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For the right most grid points, i.e. 

a. for 
r( 1) and  0i N j    
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b. for 
r z( 1) and 0< ( 1)i N j N     
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c. for 
r z( 1) and  ( 1)i N j N     
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For the lower most intermediate grid points, i.e., for r0 ( 1) and  0i N j     
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For the upper most intermediate grid points, i.e., for r z0 ( 1) and  ( 1)i N j N      
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