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Abstract: Understanding of energy consumption patterns is extremely important for 

optimization of resources and application of green trends. Traditionally, analyses were 

performed for large environments like regions and nations. However, with the advent of 

Smart Grids, the study of the behavior of smaller environments has become a necessity to 

allow a deeper micromanagement of the energy grid. This paper presents a data processing 

system to analyze energy consumption patterns in industrial parks, based on the cascade 

application of a Self-Organizing Map (SOM) and the clustering k-means algorithm. The 

system is validated with real load data from an industrial park in Spain. The validation 

results show that the system adequately finds different behavior patterns which are 

meaningful, and is capable of doing so without supervision, and without any prior 

knowledge about the data.  
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1. Introduction 

Electricity is an indispensable resource for global and national economies. In order to optimize its 

usage, both for environmental reasons and to keep prices competitive, utilities are constantly trying to 

adjust energy production to the actual demand. Typically, this adaptation has been performed at high, 

aggregated levels (nation or region-wide), but recently, the development of Smart Grids has opened the 

door for disaggregated control and optimization of energy production in smaller environments, such as 

cities or industrial parks. These localized environments can normally be considered microgrids (groups 

of energy producers and consumers, connected together, which can operate with a certain degree of 

independence) [1], which present advantages such as precise monitoring of low-level network 

elements (even homes, thanks to Smart Meters) and precise control of small generation and storage 

elements (such as small wind turbines or solar panels); hence a more precise matching of generation 

and demand is possible in real time, and transportation losses are reduced because generators are  

near consumers.  

However, while global demand was relatively easy to predict and understand thanks to the 

aggregation of large numbers of elements across regions, forecast in disaggregated microgrids is much 

more difficult, because the relative contribution of each element’s behaviour to the aggregate picture is 

much more important and consequently, variations are much larger. 

As mentioned, industrial parks, which can be considered microgrids from the energy network point 

of view, are very important actors in the energy market of a country. It is necessary that aggregators 

control and manage these spaces, trying at the same time to optimize their energy consumption and the 

energy rewards offered. Several tools are available to perform this optimization, such as Demand 

Response (DR), which means accommodating some of the demand (by means of reward reductions or 

direct control of smart loads with relaxed time restrictions) to the most suitable time schedule of the 

generators (for instance shifting demand from consumption peaks to valleys to obtain a flatter curve 

with a lower maximum power peak, or to accommodate some operations during periods of high wind 

to size wind turbines). 

The importance of power management in industrial parks has been widely demonstrated in the 

literature, as for instance in [2–6]. Park [7] presents the simulation of the operation in an industrial 

plant with distributed metering. Zareipoor et al. [8] present a scenario of industrial plant operation 

based on prices, for which the management and control of the industrial parks is essential. Laboratory 

modeling, monitoring and control of a microgrid, extrapolated to industrial parks, is shown in [9]. 

DR and other optimization methods are not possible without a detailed knowledge of the behavior 

of the industrial park. In an industrial park different types of industries with very different electricity 

consumption habits normally coexist, so traditional forecasting and data analysis methods, suitable 

only for aggregated demand in big regions, are no longer applicable. This work presents a data analysis 

method for clustering daily load curves in industrial park environments, classifying days in different 

groups with recognizable load patterns and meaningful characteristics. This method is based on pattern 

recognition through a Self-Organizing Map (SOM) for classification of load curves, and then forming 

clusters via a k-means algorithm. 

A SOM is a specific Artificial Neural Network (ANN) architecture designed to cluster data that has 

been used in the past for different purposes related with energy data analysis, such as classification of 
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aggregated consumption data [10] at a regional scale, or to perform Short Term Load Forecasting 

(STLF) [11]. Marín et al. [12] applied SOM for load curve classification of a large area of central 

Spain; Mori and Itagaki [13] show a reconstruction of the groups obtained by Radial Basis Function 

Network (RBFN), after using SOM for data classification. SOMs have also been used to forecast 

electricity demand in Brazil [14], and China [15]. However, all this works deal with aggregated demand 

in big environments (such as regions and nations) and are not directly applicable to microgrid-size 

scenarios such as industrial parks. 

Therefore, the aim of this paper is to present a data analysis system to cluster load curves in 

industrial parks based on SOM ANN, and validate it using real world data. Some initiatives roughly 

based on the same approach have been already reported in the literature, but with different purposes. 

For instance, [16,17] present load pattern analysis tools to cluster different types of clients. The main 

difference with the work presented here is that, while those studies were made to discriminate and 

group load curves generated by different entities, this work deals with discriminating different 

consumption patterns of a single entity which appear under different conditions in time. 

After this introduction, the architecture of the system is presented in Section 2. Sections 3 and 4 

present the real world case study for validation and the results of the application of the system, 

respectively. Finally, Section 5 summarizes the conclusions of this work. 

2. System Architecture  

As mentioned in the introduction, the objective of the system presented along this work is to cluster 

the daily load curves of an industrial park in different meaningful groups. This will allow the 

classification of days in different groups, each of them presenting a distinct load curve pattern and a set 

of meaningful features. The system is comprised by a SOM to classify the load curves, followed by a 

clustering with the k-means algorithm. The architecture of the System is depicted in Figure 1. It 

comprises the following modules: 

1. Historical Data: the database storing the consumption data by quarter-hours, including calendar 

information for each sample such as day, month, year, workability and day of the week. 

2. Data Pre-Processing: to clean the database (removing erroneous samples or interpolating, 

when possible, missing data) and accommodate the format to the input of the following 

examples (e.g., aggregating quarter-hour samples in hourly values).  

3. Outlier Detection: An implementation of the Principal Component Analysis (PCA) method to 

identify and remove erroneous data (produced for instance due to monitoring hardware 

malfunctions), discriminating them from proper data which shows abnormal values (such as a 

bank holiday, which normally presents an abnormal load curve). 

4. SOM + CLUSTERING: represents the combined application of SOM and k-means. 

5. Graphic Output: its main task is to send the information of the results given by the previous 

stage, to be displayed graphically. 
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Figure 1. System Architecture. 

 

2.1. Self-Organizing Map 

First described by Kohonen, SOMs are an ANN architecture designed for unsupervised classification 

of data into clusters [18–20]. The neurons are arranged in two-layer architecture. The first is the 

sensory or input layer, consisting of m neurons (as many neurons as input variables), whose role is to 

distribute information from the input space to the second layer. The second layer forms a map of 

features conforming a grid of nx × ny neurons operating in parallel. Input neurons are label with the 

index k (1 ≤ k ≤ m), and nx × ny neurons in the map with a pair of indices I ≡ (i,j) (1 ≤ I ≤ nx, 1 ≤ j ≤ ny), 

which determines its spatial location. Each input neuron (k) is connected to all neurons (i,j) on the map 

by a synaptic weight wij. The representation of this architecture is shown in Figure 2. 

Figure 2. SOM architecture. 
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The SOM presents a competitive learning approach: when the input vector [x(t)] is presented to the 

network, the similarity between this vector and each neuron’s synaptic weight (wij) is computed. The 

neuron whose weight vector is most similar to the input is considered the winner. Then, the synaptic 

weight of the is modified to be closer to x(t), so when confronted with similar inputs in the future, the 

neuron will response will be even stronger. This process is repeated for all input vectors so that the 

different reference vectors harmonize with specific domains of the input variables, known as Voronoi 

domains [21]. 

2.2. Clustering 

Clustering means partitioning a data set into a set of C clusters Qi, I = 1,…,C; the word normally 

implies that this partitioning is unsupervised, i.e., done without any prior knowledge about the data 
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structure, such as number of groups, their definition, or any sample members of the clusters. A widely 

adopted definition of optimal clustering is a partitioning that minimizes distances within and 

maximizes distances between clusters.  

The k-means algorithm (detailed at [22]) is one of the simplest and most widely used unsupervised 

learning algorithms that solves the clustering problem. The procedure follows a simple and easy way 

to classify a given data set through a certain number of clusters fixed a priori. The main idea is to 

define k centroids, one for each cluster. Next step is to take each point belonging to a given data set 

and associate it to the nearest centroid. When no point is pending, the first step is completed and an 

early grouping is done. At this point, it is necessary to re-calculate k new centroids as barycentres of 

the clusters resulting from the previous step. After having these k new centroids, a new iteration of the 

assignation of data set points to the nearest new centroid has to be performed. The k centroids change 

their location step by step until they no longer move meaningfully.  

2.3. Combination of Algorithms 

Vesanto et al. [23] show that clustering of the SOM renders better results than clustering the data 

directly. The primary benefit of the two-level approach (SOM + Clustering) is the reduction of the 

computational cost: even with a relatively small number of samples, many clustering algorithms 

(especially hierarchical ones) become excessively resource intensive. For this reason, it is convenient 

to cluster a set of prototypes rather than proceed directly with the raw data. Another benefit is noise 

reduction: after SOM, the prototypes are local averages of the data and, therefore, less sensitive to 

random variations than the original data. 

3. Case of Study 

3.1. Research Data and Test Scenario 

In order to validate the previously described approach, a dataset provided by Iberdrola, a Spanish 

utility was used. This dataset includes information from 1 January 2008 to 31 December 2010, from 

the “Las Casas” industrial park located in Soria (Castilla y León, Spain). The data fields provided are: 

day number, day of the week, month, year, workability and the load curves (24 values) for each day. 

The range of consumption varies from 0.3 to 7 MW, definitely much lower than values typically 

observed in a large, integrated environment (nation, region, big city). Therefore, they could easily 

model a typical disaggregated zone or microgrid.  

As seen in Figure 3, the load curves of the industrial park do not present an easily recognizable 

pattern as opposed to a big, integrated environment, such the entire city of Soria, mainly due to their 

disaggregated nature: an industrial park is composed by a smaller number of agents, belonging to 

different types of industries, which behave differently in terms of energy consumption.  
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Figure 3. Load curves of (a) industrial park “Las Casas”; (b) entire city of Soria. Green 

curves represent working days and red curves represent not-working days (Sundays  

and holidays). 

(a) (b) 

3.2. Configuration of Self-Organizing Map 

There are two different ways to accomplish SOM initialization: 

 Random: for each component xi, the values are distributed uniformly in the range of 

[min(xi),max(xi)]. 

 Linear: eigenvalues and eigenvectors of the training data are calculated and then the map started 

along the largest eigenvectors of mdim, where mdim is the dimension of the network map. 

The linear initialization method is employed because it improves the training time. After 

performing several trials with different sizes, the dimensions of the SOM are fixed as a 4 × 4 matrix of 

hexagonal neurons, following a heuristic approach similar to [10,24,25]. This size allows a good data 

dispersion, capable of discriminating important factors for this study, such as seasonality, workability 

or day of the week.  

The neighbourhood function employed is Gaussian. For optimization of the configuration parameters 

of the SOM a script has been used to test the performance of the different combinations; after a 

hundred iterations with each combination, the optimal configuration is selected. The chosen SOM 

parameters are: linear reference vector initialization; batch training algorithm; map size is 4 × 4 

(neurons); neighbourhood function is gaussian; inputs of network are 27.  

The input variables given to the SOM for each input vector are the following: 

 Month (January = 1, February = 2…, November = 11, December = 12). 

 Day of the week (Sunday = 0, Monday = 1,…, Friday = 5, Saturday = 6). 

 Workability: holiday 1 and working day 2. 

 24 values of hourly electricity consumption, representing the daily load curve. 
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3.3. Configuration of k-Means Algorithm 

The k-means algorithm requires the user to define the parameter k, the number of clusters to build, 

before its application. When there is no a-priori knowledge about the data, choosing the right value for 

parameter k is sometimes difficult. There are many methods documented for estimating the optimal 

number of clusters; in this work, different tests will be carried out with different values of the k 

parameter, and then each partition provided evaluated using the Davies-Boulding validity index [26], 

according to which the best clustering minimizes Equation (1): 


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


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where C is the number of clusters; Sc the intra-cluster distance; and dce the inter-clusters distance. For 

each value of k between 2 and 8, the k-means algorithm has been executed five times and the mean 

validity index calculated. 

4. Results  

Along this section, the results of the application of the proposed architecture to the validation data 

are presented.  

4.1. Classification with Self-Organizing Map 

The SOM employed uses a 4 × 4 neuron architecture. The figures in this section (Figures 5–7) 

represent the links among the neurons as well, so a 7 × 7 grid is presented in which each neuron cell is 

connected to other neuron cell by a link cell. For instance, in the top row, there are four neurons linked 

by three links, and the second row is populated only with the eight links binding the neurons in the first 

and third rows. The coloured hexagons represent the input patters that have been classified under each 

neuron: the bigger the coloured hexagon, the larger the number of patters assigned to that neuron. 

After processing the data with the SOM, the resulting output clusters are presented in the following 

figures and analyzed according four different criteria for simplicity of interpretation and understanding: 

1. First, the clusters are shown in Figure 4 separated according the workability of the days. The 

left part of the image shows how non-working days were clustered, and the right part presents 

how working days were clustered. 

2. Figure 5 shows how the days of the different months were clustered. It is easy to see that 

January, February and March activate similar neurons; April, May, June and July also form a 

group of similar activations, as September, October and November do; August and December 

are both of them isolated. This makes sense, as seasons are roughly outlined, together with 

summer holidays (August) and Christmas (December). Electricity demand is seasonally 

dependent, as shown by Hernández et al. [27]. 

3. Figure 6 presents how the different days of the week were clustered, resulting in four different 

patterns of activation: Mondays have their own activation pattern; Tuesday, Wednesday, 

Thursday and Friday have similar activation patterns; Saturdays and Sundays have again their 

own differentiated activation patterns.  
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4. Finally, Figure 7 presents a combined analysis of clusters by day of the week and workability. 

All holidays are clustered around neurons similar to those of Sunday, except Wednesdays  

and Thursdays.  

Figure 4. Activation map for workability: (a) non-working days; (b) working days. 

(a) (b) 

Figure 5. Activation map for months. 
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Figure 6. Activation map for weekdays. 

 

Figure 7. Activation map for workability and weekdays. 
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4.2. Clustering with k-Means 

The results of the different evaluations of the clusters given by k-means show that the optimal 

number of clusters is five. Figure 8 presents all the curves belonging to each of the five clusters. It is 

easy to see the high similarity between curves of the same cluster, and the appreciable difference when 

compared with those of the other clusters. 

Figure 8. Load curves for the five clusters, red curves are from holidays, and green days 

are working days. 

 

4.3. Decision Algorithm 

Following the above results, Table 1 and Figure 9 present an analysis of the accumulated daily 

consumption per cluster. 

Figure 9. (a) Average aggregate load ± standard deviation (the y-axis shows values of power 

consumption in W and the x-axis 24 hours per day); (b) box plot (the y-axis presents values 

of power consumption in W across the five clusters in the x-axis); (c) box plot legend. 

(a) (b)  (c) 
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Figure 10 shows a decision algorithm designed to control when the systems need to be retrained due 

to changes in the load curve behaviour. Basically, retraining is triggered when the aggregated demand for a 

day is outside the margins of the aggregate demand of the cluster inside it has been grouped. 

Figure 10. Decision Algorithm. 
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Table 1. Analysis of results per cluster. 

Number of cluster Day of the week Month Workability Average consumption (kW) 

Cluster 1 
Saturday 

Indifferent 
Working Day 

4000 < Consumption 
Saturday Holiday 

Cluster 2 Indifferent Indifferent Working Day 4000 

Cluster 3 

Tuesday 

Not August Working Day 4000 < Consumption < 6000 
Wednesday 

Thursday 

Friday 

Cluster 4 

Monday Indifferent 

Working Day 1500 < Consumption < 4500 

Tuesday 

August 
Wednesday 

Thursday 

Friday 

Cluster 5 

Monday 

Indifferent Holiday Consumption < 4000 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 

Sunday 

Saturday Indifferent Working Day Consumption < 4000 

5. Conclusions and Future Works 

The data analysis system presented in this work has been tested and validated using real world data. 

In the results, the daily consumption behaviour of a real industrial park has been analyzed by clustering 

the different days according to their load curves, and meaningful behaviour patterns have been 

properly identified by the system in a completely unsupervised fashion. This shows that the system is 

actually capable of providing very useful information about the consumption patterns in disaggregated, 

small scale energy environments. As discussed, the system described represents an important step over 

the current state of the art in identification of patterns in demand curves, which was rich in applications 

over large areas (such as regions or nations), but not in microgrid-sized environments. These 

environments are not only a different application scenario from the typical case, but also a more 

difficult one due to the increased variability in the demand curve caused by a smaller aggregation with 

less atomic entities contributing to the curve to be studied.  
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