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Abstract: Battery model identification is very important for reliable battery management 

as well as for battery system design process. The common problem in identifying battery 

models is how to determine the most appropriate mathematical model structure and 

parameterized coefficients based on the measured terminal voltage and current. This paper 

proposes a novel semiparametric approach using the wavelet-based partially linear battery 

model (PLBM) and a recursive penalized wavelet estimator for online battery model 

identification. Three main contributions are presented. First, the semiparametric PLBM is 

proposed to simulate the battery dynamics. Compared with conventional electrical models 

of a battery, the proposed PLBM is equipped with a semiparametric partially linear 

structure, which includes a parametric part (involving the linear equivalent circuit 

parameters) and a nonparametric part [involving the open-circuit voltage (OCV)]. Thus, 

even with little prior knowledge about the OCV, the PLBM can be identified using a 

semiparametric identification framework. Second, we model the nonparametric part of the 

PLBM using the truncated wavelet multiresolution analysis (MRA) expansion, which leads 

to a parsimonious model structure that is highly desirable for model identification; using 

this model, the PLBM could be represented in a linear-in-parameter manner. Finally, to 

exploit the sparsity of the wavelet MRA representation and allow for online 

implementation, a penalized wavelet estimator that uses a modified online cyclic 

coordinate descent algorithm is proposed to identify the PLBM in a recursive fashion. The 

simulation and experimental results demonstrate that the proposed PLBM with the 

corresponding identification algorithm can accurately simulate the dynamic behavior of a 

lithium-ion battery in the Federal Urban Driving Schedule tests. 
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Nomenclature: 

Cp polarization capacitance 

cj,m scaling coefficient of wavelet MRA expansion 

dj,m wavelet coefficient of wavelet MRA expansion 

f any finite energy signal 

gi Haar wavelet basis function  

h battery state of charge   

ib battery outflow current  

j scale level of wavelet MRA expansion  

j0 the coarsest scale of wavelet MRA expansion  

jmax the finest scale of wavelet MRA expansion  

J the truncation scale of truncated wavelet MRA expansion  

k discrete time  

N length of input/output  

Rp polarization resistance  

Rs ohmic internal resistance  

t continuous time  

Tc sampling period  

u nonparametric component of PLBM  

vb battery terminal voltage  

vc polarization voltage  

voc open circuit voltage  

x observed value of battery terminal voltage  

y observed value of battery outflow current  

Greek Symbols 

ε zero-mean white noise  

ηi the ith wavelet expansion coefficient of the nonparametric component of PLBM 

θi the ith parameter of the parametric component of PLBM  

λ penalty factor  

ϕ wavelet scaling function  

ψ wavelet mother function  

Acronyms 

CCD cyclic coordinate descent 

MRA multiresolution analysis 

OCV open circuit voltage 

PLBM partially linear battery model 

RLS recursive least square 
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SoC state of charge 

SoH state of health 

 

1. Introduction 

Currently, lithium-ion batteries play a significant role in the energy storage devices used in electric 

vehicles (EVs) because of their high energy density, low self-discharge rate, lack of a memory effect, 

high operating voltage, and long life cycle. The primary concerns in the design of EVs are how to 

maintain optimum battery performance and extend the battery’s expected life. To achieve these goals, 

the battery must have a well-designed battery management system (BMS). The BMS must track the 

dynamic behaviors of the battery for reliable and efficient operation, which requires battery models 

that can accurately determine battery behavior under various operating conditions. Another important 

task for the battery model is to provide precise battery data for simulation of an EV energy system. 

Due to the complex chemical and physical processes that occur in batteries, developing an accurate 

battery model is challenging. Researchers worldwide have developed a wide variety of battery models 

for different purposes. Almost all the existing battery models can be classified into the following two 

types: (1) parametric models, e.g., electrochemical models [1,2] and electrical models [3–6]; and  

(2) nonparametric models, e.g., artificial neural network (ANN) models [7–9] and abstract 

mathematical models [10]. Parametric battery models have been developed in terms of the equivalent 

electric-circuit parameters (for electrical models) or electrochemical parameters (for electrochemical 

models). These parameters have clear physical meaning and can be used to investigate the working 

status of batteries. For example, electrical model parameters, such as the open-circuit voltage (OCV) 

and equivalent internal resistance, can provide useful information that can be used to estimate the state 

of charge (SoC) and state of health (SoH) based on the battery’s intrinsic characteristics [11]. Battery 

parameters typically rely on many factors, such as the SoC, SoH, internal structure, service time, and 

operating conditions. Some of these factors are difficult or almost impossible to measure, which may 

lead to misspecification of the models and cause severe modeling biases. In contrast, the 

nonparametric modeling approach is useful for exploring hidden structures and reducing modeling 

biases. For example, ANN-based nonparametric battery models were developed in [7] and [9]; in these 

reports, variables that are hard to measure were replaced by the weights of the neurons. However, the 

nonparametric battery models lack direct physical interpretation, which limits their fields of application. 

To overcome the above-mentioned disadvantages, this paper presents a semiparametric battery 

model based on the Thevenin equivalent circuit model, which is a compromise between the 

nonparametric and parametric battery models. Since the introductory work of Engle in 1986 [12], the 

semiparametric model has been widely studied and applied in many fields, such as applied  

statistics [13], signal processing [14,22], and dynamic system modeling [23–25]. However, to our 

knowledge, this model has not yet been investigated for use in battery modeling. The proposed 

semiparametric battery model consists of two major components: a linear parametric component that 

involves the equivalent circuit parameters (such as ohmic internal resistance, polarization resistance, 

and polarization capacitance) and a nonparametric component that involves the OCV (because 
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accurate modeling of OCV is a difficult task). In the literature, the semiparametric model described by 

such a form is also termed the “partially linear model” because of its relationship to the standard linear  

model [14]. Compared with the standard linear model, the partially linear model could be more 

adaptive when it is believed that the response variable has a linear relationship with some covariates 

but a nonlinear or unknown relationship with others. The proposed semiparametric battery model, hereafter 

referred to as the partially linear battery model (PLBM), features the flexibility of the nonparametric 

component while maintaining the direct physical interpretation of the parametric component. 

Because the battery parameters cannot be measured directly during the run time, electrical models 

are often estimated through model-based optimization techniques, such as the use of recursive least 

square (RLS) estimators [5,15], sliding-mode observers [16], the adaptive control approach [17], the 

subspace identification method [18,19], and the extended Kalman filter [20,21]. For the PLBM, an 

efficient estimation procedure must be developed for both the linear parameters and nonparametric 

component. Several semiparametric estimators [14,22–25] based on basis function expansion methods 

have been proposed to identify the partially linear model. The current study is concerned with 

modeling the nonparametric component in the PLBM using the wavelet multiresolution analysis 

(MRA) expansion due to the wavelet’s good time—frequency localization property. Another 

advantage of the modeling method is that the nonparametric component can be parsimoniously 

represented by large timescale wavelet basis functions (or a truncated wavelet MRA expansion) 

because of the slowly varying behavior of the OCV. Furthermore, the wavelet MRA expansion 

typically leads to a sparse representation of the original signal [26], such as the OCV; this sparsity can 

be exploited to improve the estimation performance by employing an l1-norm penalized wavelet 

estimator. However, most existing penalized wavelet estimators of the partially linear model are 

processed in batch form using iterative algorithms [14,23,27], which are not suitable for online 

implementation purposes. Recent advances in sparse linear model identification have shown that the 

cyclic coordinate descent (CCD) algorithm provides an efficient means of solving the penalized least 

squares (LS) problem [28,29] and can be implemented online in a recursive fashion [30,31]. This feature 

motivates us to extend this algorithm to the wavelet-based partially linear model and develop a recursive 

penalized wavelet estimator based on a modified online CCD algorithm. The performance of the 

proposed semiparametric identification approach for lithium-ion batteries is finally investigated by 

performing simulations and experiments. 

2. Modeling of the Lithium-Ion Battery 

The modeling of a battery is aimed at investigating the working status of the battery and finding a 

suitable mathematical expression that can accurately describe its input-to-output dynamics. Accurate 

electrical battery modeling is difficult to achieve because the electrochemical process is complex and a 

variety of operating conditions are used. Therefore, many complex electrical modeling methods have 

been developed to compensate for the modeling errors and uncertainties but at the costs of high 

computational burden, system complexity, and resource requirements. In this section, we present a 

simple, flexible, and comprehensive semiparametric battery model based on straightforward circuit 

analysis of the Thevenin equivalent circuit model. 
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2.1. Battery Equivalent Circuit Equations  

In general, the electrical model is described by an equivalent circuit based on a combination of 

basic elements, such as voltage sources, resistors, and capacitors, to approximate the electrochemical 

processes and input-to-output dynamics of the battery. By combining the basic elements in different 

ways, the electrical models can be further divided into four classes [3]: the Rint model, radio control 

model, Thevenin equivalent circuit model, and Partnership for a New Generation of Vehicles model. 

Among these models, the Thevenin equivalent circuit model is widely employed to model the  

lithium-ion battery because it has a simple model structure and can capture the battery’s dynamic 

response well within an acceptable error [17,21]. Therefore, we select this model as the basic element 

of our proposed model. 

The equivalent circuit model is shown in Figure 1 and consists of three parts: (1) the equivalent 

ohmic internal resistor Rs; (2) the resistor-capacitor (RC) parallel network Cp // Rp (where Rp is the 

equivalent polarization resistance and Cp is the equivalent polarization capacitance), which is used to 

simulate transient responses of the battery during charging–discharging transients; and (3) the OCV 

voc(h(t)), which is a nonlinear function of SoC h(t). The equivalent circuit model considers the current 

as the model control input and the terminal voltage as the measured output.  

Figure 1. Equivalent circuit model of the lithium-ion battery. 

 

Theoretically, the equivalent circuit parameters Rs, Rp, and Cp in this model are functions of the 

temperature and SoC. In fact, because the variations in the SoC and temperature with respect to time 

are both very small, these parameters can be assumed as quasi-stationary, i.e., time invariant over a 

short observation time window. Further, for real-time application, parameter identification can only be 

performed over a finite time sliding window or exponentially decaying time window of the most recent 

measurement. Thus, within some error tolerance, these parameters can be assumed as constant during 

the identification. In other words, online identification can capture these parameters faster than the 

temperature or SoC variations.  

The analysis of the equivalent circuit shown in Figure 1 is straightforward. Using Kirchhoff’s law, 

the dynamics of the circuit can be expressed as follows: 

( ) ( )( ) ( ) ( )b oc s b cv t v h t R i t v t= − −  (1)
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( ) ( ) ( )d 1 1

d
c

c b
p p p

v t
v t i t

t C R C
= − +  (2)

where vb(t) and ib(t) are the terminal voltage and current, respectively; and vc(t) is the voltage across 

the RC network, which cannot be measured directly.  

2.2. PLBM 

The OCV of a battery is a nonlinear function of its SoC. Theoretically, if the nonlinear relationship 

OCV–SoC is obtained prior to the identification procedure, then the model parameters can be directly 

identified using the LS estimators. Traditionally, this relationship is experimentally established in the 

offline mode by measuring the OCV at each SoC set point and assuming that it remains the same 

during the lifetime of the battery. However, in practice, this relationship is not exactly the same for 

every battery, even if these batteries are part of the same production batch. Moreover, this relationship 

depends on the number of charge–discharge cycles of the batteries. Therefore, for any online 

identification algorithms, the a priori OCV–SoC data may lead to an inaccurate identification result. 

Thus, we should treat voc(h(t)) as an unknown function that belongs to some functional space, which 

must be identified online, as well as the other model parameters. In this case, voc(h(t)) can be simply 

represented as voc(t). 

As can be seen from Equations (1) and (2), the equivalent circuit equations involve the OCV voc(t) 

and the polarization voltage vc(t), both of which are unknown. However, the unknown term vc(t) can be 

removed from these equations based on the following three assumptions [17]: (1) The variation in SoC 

with respect to time is very small because the consumed (or regained) energy is very small compared 

with the total useful capacity; (2) The battery temperature is monitored in real-time and controlled at a 

predetermined level by a well-designed BMS module. Thus, the temperature variation can be ignored 

for normal operating conditions; (3) The usage history of the battery has a long-term effect on battery 

behavior, which can be ignored during on-line identification procedure. These assumptions also have 

been applied in [21]. With the unknown term vc(t) removed, the dynamics of the battery model can be 

approximated as follows: 

( ) ( ) ( ) ( ) ( )d d

d d
p sb b b oc

s b
p p p p p p

R Rv t v t i t v t
R i t

t C R t C R C R

+
= − − − + . (3)

The Laplace transformation of (3) can be expressed as follows: 

( ) ( ) ( )
1 1

p oc
b s b

p p p p

R V s
V s R I s

C R s C R s

 
= − + +  + + 

. (4)

Equation (4) is a mathematical model of a continuous system in the s-domain, which can be mapped 

to its discrete form as follows: 

( ) ( ) ( ) ( ) ( )1 2 31 1b b b bv k v k i k i k u kθ θ θ= − + + − +  (5)

where vb(k) and ib(k) are the samples of vb(t) and ib(t), respectively, at time point tk = kTc and Tc is the 

sampling period. θ1, θ2, and θ3 are defined as: 
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( )1 p p p p cC R C R Tθ = +  

( )2 s p c p p cR R T C R Tθ = − − +  

( )3 p p s p p cC R R C R Tθ = +  

(6)

and u(k) is defined as: 

( ) ( ) ( )11 ocu k v kθ= −  (7)  

by letting voc(k) denote the virtual sample of voc(t) at time point tk = kTc , which is assumed to be an 

unknown function because voc(k) is unknown. 

We should note that vb(k) and ib(k) are acquired only via observation, and during the observation, 

these parameters often suffer additional random disturbance. Let y(k) and x(k) denote the observed 

values of vb(k) and ib(k), respectively. From (5), the discrete observation equation can be obtained  

as follows: 

( ) ( ) ( )T
ky k u k kε= + +φ θ  (8)

where the superscript T denotes the transpose of a vector or matrix, ( ) ( ) ( )[ ]1 , , 1 T
k y k x k x k= − −φ is 

the measurement vector, 1 2 3[ , , ]Tθ θ θ=θ  is the unknown linear parameter vector, and ε(k) is assumed to 

be an additive zero-mean white noise error that contains not only the measurement errors of vb(k) and 

ib(k) but also the interior noise of the battery system. 

The battery model (8) is nonlinear because the OCV exhibits a nonlinear relationship with the 

charging–discharging current. In general, nonlinear system identification and modeling techniques can 

be classified into three categories: parametric, nonparametric, and, more recently, semiparametric 

methods. Parametric methods assume that the model structure based on the physical modeling 

principles is known but that the model parameters are unknown. Parametric methods can provide a 

direct physical interpretation of the system’s behavior. Conversely, nonparametric methods are 

necessary when the physical-based model structure is unknown. Nonparametric methods assume a 

functional relationship between the input and output data. In this case, these methods rely on functional 

approximators, such as the neural network, the kernel function, or abstract mathematical regression 

models. However, these methods focus on the input–output representation ability and neglect some 

important properties of the highly successful parametric modeling, such as the simple model structure 

involved and clear physical meaning. As an attractive alternative, semiparametric methods offer a 

compromise between nonparametric and parametric methods, thus reducing the high risk of model 

misspecification related to the fully parametric methods while simultaneously avoiding some of the 

disadvantages of fully nonparametric methods. From (8), we can see that the battery model is equipped 

with a semiparametric, partially linear structure, i.e., the right-hand side of (8) consists of two major 

components: a linear parametric component φT 
k θ involving the parameter vector θ and a nonparametric 

component u(k) involving the unknown function voc(k). Thus, we can naturally describe the dynamics 

of the battery using the semiparametric partially linear model; this description is useful not only 

because our understanding of the OCV does not provide us with a specific function or a parametric 

model of OCV but also because it provides a better understanding of the model structure and  

the parameters. 
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3. Online Identification of the Wavelet-Based PLBM  

The goal of our study is to estimate both the unknown linear parameter vector θ and the 

nonparametric component u(k) from the input–output data. One attractive approach in addressing this 

problem is to expand the nonparametric component as a linear combination of the parameterized basis 

functions. The problem is then reduced to a linear estimation problem because the output is linear not 

only with the linear components but also with the basis functions. The identification method developed 

in this section is based on the wavelet MRA expansion of the nonparametric component u(k) of  

the PLBM. 

3.1. Wavelet MRA 

To make this paper self-contained and improve its readability, we first provide a brief overview of 

the basic concepts of wavelet MRA theory, which are essential for this paper (the readers are referred 

to [32] and [33] for a detailed treatment of this subject). The wavelet MRA expansion has proven to be 

a powerful tool for parsimoniously representing arbitrary signals because of its inherent property of 

localization in both time and frequency; wavelet representations have been successfully used in 

dynamic system identification and modeling [32–35].  

The essential idea of the wavelet MRA is to decompose a finite energy signal into a subspace, 

which is spanned using the scaling and wavelet basis functions at different resolutions. For any signal 
( ) ( )2f t L R∈ , the MRA expansion with respect to the mother wavelet ψ(t) and scaling function ( )tφ  

can be expressed as [34]: 

( ) ( ) ( )
0 0

0

, 0, , , , , ,j m kj m j m j m
m j j m

f t c t d t j j m Zφ ψ
∞ ∞ ∞

=−∞ = =−∞
= + ∈    (9)

where the scaling basis function ( ) ( )0 0

0

/ 2
, 2 2j j

j m t t mφ φ= −  is the scaled and translated version of ( )tφ ; 

the wavelet basis function ( ) ( )/ 2
, 2 2j j

j m t t mψ φ= −  is the scaled and translated version of ψ(t); 0 ,j mc  

and ,j md  are respectively termed the scaling and wavelet coefficients at scale levels j0; and j; and j0; is 

an arbitrary integer that represents the coarsest resolution level (defined by the user). The wavelet 

MRA representation has localization property in both the time domain (via translations) and the 

frequency domain (via scale). With this property, wavelets can capture global (low frequency) and 

local (high frequency) characteristics of any finite energy signal easily. 

Theoretically, the resolution level (or timescale) can span from −∞  to ∞ . In practice, the observed 

signals are sampled with finite length. Thus, the MRA expansion can be performed only over a finite 
number of resolution levels. Without loss of generality, we assume that ( )f t  is defined over the time 

window [ ]0,T . Let ( )f k  denote the sample of ( )f t  at time point k ct kT= , 1, 2, ,k N=  , where 

/ cN T T=  is the length of the sampled signal and assumed to be a power of two for simplicity. Then, 

the MRA expansion of ( )f k  can be expressed as: 

( ) ( ) ( )
0 max

0 0
0

1

, , , ,

2 1 2 1

0 0

, 1, ,
j j

j m j m k j m j m k

j

m j j m

f k c t d t k Nφ ψ
−− −

= = =
= + =     (10)
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where 0 0j ≥  is the coarsest resolution level (or the largest timescale) and ( )max 2logj N=  is the finest 

resolution level (or the smallest timescale) where the sampled signal is originally represented. 

From the viewpoint of signal representation, the scaling coefficients carry the approximation 

information of the original signal at the coarsest scale j0, and the wavelet coefficients at scale j carry 

the information that is different between two approximations to the original signal at scales j and j − 1. 

When these smaller timescale components at scale j J≥  make little contribution to the original signal, 

the original signal ( )f k  can be approximated by a truncated MRA expansion from scale 0j  up to J as: 

( ) ( ) ( )
0

0 0
0

, , , , max

2 1 2 1

0 0

, , 1, ,
j j

J
j m j m k j m j m k

J

m j j m

f k c t d t J j k Nφ ψ
− −

= = =
= + < =     (11) 

where all of the wavelet coefficients at scale maxJ j j≤ <  are assumed to be zero. The higher the upper 

resolution level J, the more accurate the approximation. The truncated MRA representation can 

describe not only low-frequency fluctuations but also some rapid localized changes. The advantage of 

the truncated MRA expansion is that it provides a parsimonious approximation representation of the 

original signal and is particularly suitable for original signals that do not vary significantly during a 

short time interval. 

3.2. Truncated Wavelet MRA Expansion of the Nonparametric Component 

As mentioned earlier, the OCV of a battery has a complex nonlinear relationship with its SoC. 

Obtaining this relationship in real time is difficult because the dynamics of the battery are actually the 

result of a series of complex electrochemical processes affected by the operating conditions. The 

variation in SoC with respect to time is very small because the consumed (or regained) energy is very 

small compared with the total useful capacity. Thus, as a monotonic function with respect to SoC, the 

OCV is considered to be slowly varying within the battery’s usable capacity region [17]. Based on this 

consideration, we assume that the OCV is the superposition of physical and chemical phenomena that 

occur at larger timescales. In other words, the OCV can be modeled as a signal that belongs to a 

subspace spanned by large-scale wavelets. Moreover, we assume that (1 − θ1), another part involved in 

the nonparametric component, is time invariant during the identification process. Thus, an appropriate 

model for the nonparametric component u(k) in (8) can be provided using a truncated MRA  

expansion as: 

( ) ( ) ( )
0

0 0
0

, , , ,

2 1 2 1

0 0

, 1, ,
j jJ

J u u
j m j m k j m j m k

m j j m

u k c t d t k Nφ ψ
− −

= = =
= + =     (12)

where the truncation parameter J is defined as the finest timescale that characterizes the complexity of 

the OCV. The truncated MRA expansion leads to a parsimonious model structure that is highly 

desirable for identification of the wavelet-based, partially linear model discussed in the next section.  

The MRA expansion of a signal is not unique and depends on the type of wavelet used. In this 

study, we use the Haar wavelet because of its simple structure and good localization properties [32]. 

Furthermore, the Haar scaling and wavelet basis functions are completely supported and provided 

explicitly, and these features enable the operations of the MRA expansion of (12) to be more convenient.  
The Haar scaling function ( )Haar tφ  and mother wavelet ( )Haar tψ  can be described as: 
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( ) 1, 0 1

0,
Haar t

t
otherwise

φ
< ≤

= 


 (13)

and: 

( )
1, 0 1 2

1, 1 2 1

0,

Haar

t

t t

otherwise

ψ
< ≤

= − < ≤



 (14)

For notational convenience, we denote ( )Haar tφ  and ( )Haar tψ  as ( )1g t  and ( )2g t ; that is, ( )1g t  

and ( )2g t  are the scaling and wavelet basis functions at the coarsest scale of zero, respectively. All 

other Haar wavelet basis functions derived from ( )2g t  are denoted as: 

( ) ( )/ 2
22 2 , 2 1j j j

lg t g t m l m= − = + +  (15)

where 0,1, , 2 1jm = −  for each scale 1, 2, ,j J=  . We define ( ) ( ) ( ) ( )[ ]1 2, , , T
Lt g t g t g t= g , 

where 12JL += . For example, Figure 2 shows the Haar basis functions of ( )tg  when 3J = . The 

discrete representation of ( )tg  is defined as: 

1 2, , , , 1, ,
T

k L

k k k
g g g k N

N N N
      = =            

 g  (16)

Figure 2. Haar basis functions. 

 

Using the above notations and from (12), the truncated MRA expansion of u(k) from the initial 

scale j0 = 0 up to J can be compactly expressed as: 

 (17)

0 0.5 1
-1
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)
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)
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-2
0
2

g 3(t
)

0 0.5 1
-2
0
2

g 4(t
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0
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0
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1
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J T
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k
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N
η

=
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where the expansion coefficient vector is defined as  with  as the expansion 

coefficient that corresponds to the associated Haar wavelet basis function .  

3.3. Recursive Penalized Wavelet Estimator for Online PLBM Identification 

By substituting u(k) in (8) with the truncated MRA representation uJ(k), the observation equation 

can be rewritten as: 

( ) ( ) , 1, ,T T T
k k k ky k k k Nε ε= + + = + =z φ θ g η β  (18)

where [ ],T T T
k k k=z φ g  and [ ],T T T=β θ η  are both 3P L= + -dimensional vectors. Comparing (18) with 

(8), it is seen that the semiparametric identification problem has been transformed into a  

linear-in-parameter identification problem, which can be solved by the ordinary LS (or RLS) estimator 

as follows: 

( )( )2

1

ˆ argmin
N

T
k

k

y k
=

= − z
β

β β  (19) 

The wavelet MRA expansion typically leads to a sparse representation of the original signal [26], 

meaning that most of the wavelet coefficients are zero or close to zero, whereas the important features 

of the signal are captured by a small number of large coefficients. However, the ordinary LS and RLS 

estimators cannot account for the underlying sparsity. For the wavelet-based partially linear model 

(18), the sparsity can be exploited to improve the estimation performance by the penalized wavelet 

estimator, similar to that in [14] and [23]: 

( )ˆ argmin NJ=
β

β β  (20) 

where the cost function is: 

( ) ( )( )2

1 5

1

2

N P
T

N k i
k i

J y k λ β
= ≥

= − + zβ β (21) 

where λ  is a given penalty factor; and iβ  is the thi entry of β . In (21), the first summation term 

measures how well the candidate solution fits the observed data in the LS sense, whereas the second 

summation term is a regularizer that considers an l1-norm penalty on the wavelet coefficients.  
λ  controls the relative weight of the two terms, which means that the larger λ  is, the more the wavelet 

coefficients will shrink to zero. The penalty term in (21) penalizes only the wavelet coefficients of the 

nonparametric part of the model and not the scaling coefficients. The penalized wavelet estimator (20) 

can be regarded as an extension of the wavelet shrinkage estimators, which are typically processed in 

batch form by iterative soft-thresholding algorithms [14,22,23]. However, the batch estimators suffer 

from high computational complexity and increased memory requirements as time progresses and are 

thus not appropriate for online implementation. In contrast to batch estimators, their recursive 

counterparts offer computational and memory savings and enable tracking of the slowly time-varying 

system. This feature motivated us to develop a recursive penalized wavelet estimator for  

PLBM identification.  

Now, we consider the recursive solution of (20). Neglecting the constant terms, the cost function 

(21) at the thk  recursive step can be equivalently expressed as follows: 

[ ]1 2, , , T
Lη η η= η lη

( )lg t
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( ) ( ) ( ) ( )

5

1
, 1, ,

2

P
k k k

i
i

J k Nλ β
≥

= − + =R r T Tβ β β β  (22) 

where the matrix ( )kR  and vector ( )kr  can be defined recursively as follows: 

( ) ( )1k k T
k k

−= +R R z z  (23) 

and: 

( ) ( ) ( )1k k
ky k−= +r r z . (24) 

Unfortunately, the cost function (22) is nondifferentiable and is thus not available in closed-form 

minimization. One attractive approach to solve such an optimization problem is to run an online CCD 

algorithm due to its speed and numerical stability [30,31]. The CCD algorithm separately minimizes 
the cost function (22) for each entry of β  and can admit a closed-form solution.  

Let ( ) ( ) ( )
1 2

( ) ˆ ˆ ˆ, , ,ˆ Tk k k
P

k β β ββ =     denote the solution of the CCD algorithm at the thk  recursive step. 

The thp entry of ( )ˆ kβ  is cyclically updated as follows: 

( )( ) ( ) ( ) ( ) ( 1) ( 1)
1 1 1

ˆ ˆ ˆ ˆ ˆargmin , , , , , ,k k k k k k
p p p PJ

β
β β β β β β− −

− +=    (25) 

In the above expression, only the thp entry of β  is currently optimized. We recall that the penalty 

in (22) is applied only on the wavelet coefficients ( 5 : Pβ β ) and not on the scaling coefficient ( 4β ) or 

linear parameters ( 1 3:β β ). Thus, (25) can be rewritten as: 

( ) ( ) ( )

( ) ( ) ( )

2

( )

2

1
argmin , , 1 4

2ˆ
1

argmin , , 5
2

k k
p

k
p

k k
p

R p p w p

R p p w p P

β

β

β β
β

β β λ β

  − ≤ ≤    = 
  − + ≤ ≤   

 (26) 

where ( ) ( ),kR p p  is the ( ,p p )th entry of the matrix ( )kR  , and ( )k
pw  is defined as: 

( ) ( ) ( ) ( ) ( ) ( )
1

( ) ( ) ( 1)

1 1

ˆ ˆ, ,
p P

k k kk k k
p q q

q q p

w r p R p q R p qβ β
−

−

= = +

= − −   (27) 

where ( )( )kr p  is the thp entry of ( )kr . Being a scalar minimization problem, the solution of (26) can 

be easily obtained in closed form as: 

( )

( ) ( )
( )( )

( ) ( )
( )

( )

, 1 4
,

ˆ
sgn

, 5
,

k
p

k

k
p

k
p k

pk

w
p

R p p

w
w p P

R p p

β

λ
+


≤ ≤

= 


− ≤ ≤   


 

(28.a)

 

(28.b) 

where ( )sgn a a a=  and [ ] ( )max ,0a a+ = . Because the Haar wavelet basis functions are compactly 

supported, local data processing can be employed to reduce the computational burden [35], i.e., the 
wavelet coefficients ( )ˆ k

pβ , 5, 6, ..., ,p P=  are updated only when at least one of the incoming inputs 
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falls into the support of the associated wavelet functions. The modified online CCD algorithm for the 

recursive penalized wavelet estimator is summarized as follows: 

1: Initialize ,  and . 

2: For  do 
3:  Update  and vector  using (23) and (24), respectively. 
4: For  do 
5:      Calculate  using (27). 
6:     Update  using (28.a). 
7:    end for 
8: For  do 
9:     If  
10:         Do not update . 
11:      else 
12:        Calculate  using (27). 
13:         Update  according to the thresholding rule (28.b). 
14:      end if 
15:   end for 
16: end for 

After acquiring ( )ˆ kβ , i.e., ( )ˆ kθ  and ( )ˆ kη  (the recursive estimations of θ  and η ), the nonparametric 

component ( )u k  can be approximately calculated via (17) as follows: 

( ) ( ) ( )ˆ , 1, ,J T
ku k u k k N≈ = = kg η  (29) 

Also, according to (6) and (7), the trajectory of the estimated battery equivalent circuit parameters 

and OCV can be determined using ( )u k  and ( )ˆ kθ . 

4. Simulation and Experimental Results  

This section discusses the numerical simulations and experiments performed to verify the accuracy 

and effectiveness of the proposed identification approach in accordance with the Federal Urban 

Driving Schedule (FUDS) test. The FUDS test is a standard driving test used by vehicle designers to 

evaluate performance under urban driving conditions. In all simulations and experiments, the 

nonparametric components of the PLBM are expanded using the truncated Haar wavelet MRA 
expansion with the coarsest resolution level 0 0j =  and finest resolution level 5J = . The original 

input-output data in the observation window [0, ]T  are normalized into the unit interval [0,1]  for 

convenient implementation [33].  

4.1. Simulations 

We first verify the accuracy of the proposed identification method by performing simulation 
studies. For all simulations, the input ( ){ }x k  is acquired from one FUDS testing cycle as model 

excitation, whereas the output ( ){ }y k  is generated according to (5) with an initial value ( )0 0y = . The 

real linear parameters 1 2,θ θ , and 3θ  are generated according to (6) with 50 msR = Ω , 30 mpR = Ω , 

and Cp = 2500 F. To illustrate the robustness of the proposed identification method, ( )y k  is corrupted 

by an additive white Gaussian noise with zero-mean and variance 2σ . The signal-to-noise ratio (SNR) 

( )0ˆ
Pβ = 0 ( )0

P P×=R 0 ( )0
P=r 0

1, 2, ,k N= 
( )kR ( )kr

1, , 4p = 
( )k
pw

( )ˆ k
pβ

5, ,p P= 
( )

3
/ 0

p
g k N

−
=

( )ˆ k
pβ

( )k
pw

( )ˆ k
pβ
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is defined as 21/ σ . The OCV is assumed to be monotonically varying throughout the entire simulation 

process and is modeled as a smooth polynomial for simplicity: 

( ) ( )0.5 1.5 41.5 , / , 1, 2, ,oc k k kv k t t t k N k N= − − + = =   (30) 

The trajectory of the estimated OCV, sR , pR , and pC  are shown individually in Figure 3 in 

comparison with their real values. The time axis is rescaled according to the inverse time mapping 
[0,1] [0, ]T→ . The penalty threshold adopted here is the traditional universal threshold value 

( )2log Nλ σ=  derived from [26] and used in [14] and [23] for the wavelet semiparametric 

estimation. The SNR is set at 23 dB. The estimated OCV follows the true OCV variations quite well, 

and the other estimated parameters all converge to their real values with different convergence  

speeds. This result demonstrates that the proposed estimator can accurately identify the PLBM and  

time-invariant linear parameters. 

Figure 3. Real and estimated results of the simulation: (a) OCV; (b) sR ; (c) pR ; (d) pC . 

(a) (b) 

(c) (d) 

To illustrate the flexibility of the proposed semiparametric approach, a model bias is first 

introduced to the OCV model as: 

  (31)

where d is defined as the bias coefficient. Thus, the OCV can be remodeled as: 

  (32)
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Assuming the OCV model is known as (30), and from (5) and (6), the parametric model of a battery 

can be expressed by the following linear regression equation: 

 (33)

The above parametric model can be identified by standard RLS estimator, and the identification 

results were compared with the proposed semiparametric approach as shown in Figure 4. As expected, 

the proposed semiparametric approach can accurately estimate the equivalent circuit parameters since 

it does not rely on any prior knowledge of OCV model.  

Figure 4. Estimated results of equivalent circuit parameters with the semiparametric and 

parametric approaches: (a) Rs; (b) Rp; (c) Cp. 

(a) (b) 

(c) 

It can be seen from Figure 4a that the parametric approach can also estimate the ohmic internal 

resistance Rs accurately. This is because the fact that the ohmic internal resistance represents the 

terminal voltage variation caused by a current variation in the battery and the slowly varying OCV bias 

has very little effect on the terminal voltage variation. However, as can be seen from Figures 4b,c the 

parametric approach cannot estimate the equivalent polarization resistance and capacitance accurately, 

and the larger the model bias (i.e., the larger d), the larger estimation error will be. This result indicates 

that the polarization parameters are much more sensitive to OCV model bias in comparison with the 

ohmic internal resistance. 

We next compare the performance of the proposed recursive penalized wavelet estimator, the RLS 

wavelet estimator according to (19), and the adaptive control approach [17] with respect to the  

mean-squared error (MSE) of the OCV, which is defined as: 
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 (34) 

where E{} denotes the expectation operator and the lower bound of the summation is set as N0 = 100 

to ensure a fair comparison. To evaluate the MSE, we conducted 500 replicate Monte Carlo 

simulations for each SNR. Moreover, to clearly illustrate the sensitivity of each approach to observed 

noise, the input-output data are not pre-filtered. For the adaptive control approach, the OCV was 

identified based on the discrete version of Equations (11) and (12) in [17]. The results are shown in 

Figure 5 and illustrate the sensitivity of the three identification approaches to the observed noise. As 

expected, the performance of all three approaches increases with the SNR. In the low-SNR regime, the 

wavelet estimators clearly outperform the adaptive control approach due to the fact that the wavelet 

estimators identify OCV only using the large scale expansion coefficients as shown in (17), thus the 

high frequency noise ( spanned by small scale expansion coefficients) can be effectively reduced from 

the identified OCV. However, the MSE performance of the adaptive control approach increases 

significantly with increasing SNR. In the high-SNR regime, the MSEs of the adaptive control approach 

and the proposed recursive penalized wavelet estimator are almost indistinguishable. Additionally, it 

can be seen that the proposed penalized wavelet estimator outperforms the RLS wavelet estimator 

because of the power of the l1-norm penalty.  

Figure 5. MSEs of OCV plotted against SNR.  

 

From the above simulation results, it can be seen that the recursive penalized wavelet estimator 

works well for identifying the equivalent circuit parameters and OCV. The PLBM, as a semiparametric 

model, combines the simple linear structure and direct physical interpretation ability of the parametric 

model with the flexibility of the nonparametric model. This is done by modeling the unknown term u(k) 

in (8) as a nonparametric component, which exhibits high fitting flexibility compared to parametric 
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approaches [4,15], i.e., the nonparametric approach can be used to accurately identify the OCV without 

making any prior assumptions on the functional form of OCV (except it is a slowly varying signal). 

Moreover, unlike the fully nonparametric approaches [7,9], the proposed semiparametric approach 

assumes the availability of equivalent circuit model that has explicit physical meaning, i.e., it can 

directly extracts the equivalent circuit parameters and OCV from the identification results.  

It should be pointed out that the wavelet-based PLBM (18) is a generic battery model, which is 

capable of provide more rich and useful description of battery dynamics in comparison with the 

baseline model (8). For example, if only the Haar scale basis function at scale zero is used to expand 

the nonparametric component u(k), the wavelet-based PLBM will be reduced to the baseline model. 

Since the adaptive identification approaches proposed in [17,21] are based on the baseline model, a 

better performance of these adaptive identification approaches could be anticipated by employing the 

wavelet-based PLBM, which is an interesting topic for future study.  

4.2. Experiments 

The objective of the experiments is to validate whether the identified results properly represent the 

real input-to-output behavior of the battery. The experimental studies were conducted on a battery 

module composed of nine LiMn2O4 lithium-ion cells connected in series Each healthy cell has a 

nominal voltage of 3.6 V and a nominal capacity of 15 A·h. The experimental setup comprised a 

Digatron EV battery testing system EVT300-500, a battery management module, a controller area 

network communication unit, and a host computer running the built-in BMS software BTS-600, as 

shown in Figure 6. The EVT300-500 system includes a programmable charger/electronic load (which 

can charge or discharge the battery module with a maximum voltage of 500 V and maximum current 

of 300 A) and a real-time data acquisition unit that can collect test data, including terminal voltage, 

outflow current, temperature, and accumulated ampere-hours and watt-hours. The battery management 

module can also measure the terminal voltage and temperature of each cell in the battery module. The 

BTS-600 software can deal with the collected data and generate control signals for the EVT300-500 system 

based on the designed program. To reduce the influence of temperature fluctuation, the experiments were 

performed under a predefined temperature of 28 °C using a temperature-controlled chamber. 

To predict the voltage response of the PLBM, the linear parameters and nonparametric component 

must first be identified experimentally. After full charging (SoC = 100%) followed by a rest period, the 

battery module was discharged to 90% SoC at a constant current of 5 A. The terminal voltage and 

current collected for one FUDS driving cycle are shown in Figure 7a,b, respectively. The sampling 

period was a half second, and the penalty threshold was empirically chosen as λ = 1.5. The results are 

shown in Figure 8.  

Figures 8a–d show that, given appropriate initial parameter selection, all estimated parameters 

converged after 400 s. The OCV reduced slowly from its initial value of 34.036 V to the final value of 

33.951 V because it decreased as a monotonic function of the SoC. The convergence rate of Rs was 

much faster than those of the other parameters under a steady value of 25.6 mΩ, which implied that the 

ohmic internal resistance Rs was less sensitive to the charge–discharge behavior of the lithium-ion 

battery than the other parameters. The polarized resistance Rp and capacitance Cp converged to  

14.3 mΩ and 3900 F, respectively, with some fluctuations. 



Energies 2013, 6 2600 
 

 

Based on the previously obtained identification results, we calculated the predicted value of the 

voltage response of the PLBM using a one-step forward predictor. The voltage response predicted by 

the model was compared with the measured voltage response as shown in Figure 9a. The relative error 

analysis result is also shown in Figure 9b. It can be seen that the voltage predicted by the model 

accurately tracked the measured value despite the large initial value error, and the relative voltage error 

converged into ± 0.25% of the error band only.  

Figure 6. Schematic diagram of the battery testing system. 

 

Figure 7. Measured input–output data in a FUDS cycle: (a) Terminal voltage; (b) Current. 
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Figure 8. Identification results for a FUDS cycle: (a) OCV; (b) Rs; (c) Rp; (d) Cp. 

(a) (b) 

(c) (d) 

Figure 9. Validation results of the voltage responses in a FUDS cycle: (a) Measured and 

predicted battery voltage responses; (b) Relative error rate. 
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5. Conclusions  

To characterize the dynamic behavior of lithium-ion batteries for EVs, this paper has proposed a 

novel semiparametric identification approach based on the wavelet-based PLBM model. For 

simplicity, the PLBM developed in this study was based on the first-order equivalent circuit model. 

However, the analysis results can be easily extended to higher order models. The essential features and 

advantages of the proposed identification scheme may be summarized as follows: 

(1) As a semiparametric model, the PLBM features the flexibility of the nonparametric component 

while maintaining the direct physical interpretation of the parametric component. Due to its flexible 

structure, the PLBM can be identified even with poor preliminary knowledge of the OCV. 

(2) Because the wavelet method provides a powerful tool for nonstationary signal analysis, we 

advocate use of the wavelet MRA expansion to model the nonparametric component of the PLBM. 

(3) The identification algorithm is very simple because it requires only elementary computations, 

and simple recursive routines are available for updating both R(k) and r(k), similar to the RLS algorithm. 

(4) To exploit the sparsity in the MRA representation and allow for online implementation, a 

recursive penalized wavelet estimator is proposed, which uses a modified CCD algorithm with l1-norm 

penalty on the wavelet coefficients to identify the wavelet-based PLBM. 

(5) Because the Haar wavelet basis functions are compactly supported, only a small fraction of the 

wavelet coefficients must be updated for every new measurement data obtained, resulting in  

low-complexity online computation. 
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