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Abstract: In order to realize the online learning of a hybrid electric vehicle (HEV) control 

strategy, a fuzzy Q-learning (FQL) method is proposed in this paper. FQL control strategies 

consists of two parts: The optimal action-value function Q*(x,u) estimator network (QEN) 

and the fuzzy parameters tuning (FPT). A back propagation (BP) neural network is applied 

to estimate Q*(x,u) as QEN. For the fuzzy controller, we choose a Sugeno-type fuzzy 

inference system (FIS) and the parameters of the FIS are tuned online based on Q*(x,u). The 

action exploration modifier (AEM) is introduced to guarantee all actions are tried. The main 

advantage of a FQL control strategy is that it does not rely on prior information related to 

future driving conditions and can self-tune the parameters of the fuzzy controller online. The 

FQL control strategy has been applied to a HEV and simulation tests have been done. 

Simulation results indicate that the parameters of the fuzzy controller are tuned online and 

that a FQL control strategy achieves good performance in fuel economy. 

Keywords: hybrid electric vehicle; fuzzy Q-learning (FQL) control strategy; Q*(x,u) 

estimator network (QEN); fuzzy parameters tuning (FPT) 
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1. Introduction 

Hybrid electric vehicles (HEV), which combine the advantages of the fuel vehicle and pure electric 

vehicle, is the future of the road vehicle. Control strategy is one of the key technologies for hybrid 

electric vehicle and plays a decisive role on the performance of the vehicle. However, designing a 

highly-efficient and real time control strategy is a challenging task due to the complex structure of a 

HEV and an uncertain driving cycle. 

Many existing control strategies are rule-based [1–4], such as the thermostatic strategy, the 

load-following strategy and electric assist strategy. These control strategies have been developed based 

on the results of extensive experimental trials and human expertise. Some other control strategies 

employ heuristic control techniques, with the resultant strategies formalized as fuzzy rules. Though 

these rule-based strategies are effective and can be easily implemented, their optimality and flexibility 

are critically limited by working conditions. Therefore, a control strategy that performs well under 

certain conditions may not provide satisfactory results under other conditions. 

According to the literature [5–10], to optimize the operation of the HEV drivetrain, some 

model-based global optimization methods have been employed in control strategy design, such as 

dynamic programming (DP), sequential quadratic programming (SQP), genetic algorithms (GA), and so 

on. Usually, these algorithms can manage to determine the optimal power split between the engine and 

the motor for a particular driving cycle. However, the optimal power-split solutions obtained are only 

optimal with respect to a specific driving cycle and, in general, it is neither optimal nor charge-sustaining 

for other cycles. Unless future driving conditions can be predicted during real-time operation, there is no way 

to imply these control laws directly. Moreover, these methods suffer from the “curse of dimensionality” 

problem, which prevents their wide adoption in real-time applications. In conclusion, control strategy 

designs built upon global optimization techniques can serve to evaluate the potential fuel economy of a 

given drivetrain configuration, as well as the optimality of realizable control strategies. 

Several studies, which developed neural networks to optimize the parameters of fuzzy controllers, 

show good fuel economy and system efficiency [11–13]. In these studies, fuzzy controllers can be easily 

and directly designed by optimizing parameters, such as the shape of membership functions. The 

strategy result shows about 2%–4% better fuel economy than the “fuzzy controller only” optimization 

result, but this strategy uses fixed parameters for optimization, which makes it an offline optimization 

strategy; thus, the parameters of fuzzy controller cannot vary from environment to environment. 

To adapt different driving cycles, researchers have proposed a model predictive control (MPC) for 

HEV which is a closed-loop optimal control strategy [14–19]. To obtain the current control action,  

the optimal control problem in the finite domain is solved at each sampling instant. A dynamic model 

based on a predictive future, control action based on online rolling optimization, and feedback correction 

of the model error are the core features of the algorithm. This control strategy has the advantages of good 

control effect and strong robustness. During this process the limitations, uncertainty, nonlinearity, 

controlled variable, and manipulated variables, are dealt with effectively. However, when the prediction 

or control domain is very long, the MPC algorithm needs to solve an optimal control problem at each 

decision step and the algorithm is hardly executed in real-time for the great amount of calculation. 

In order to make a control strategy adaptive to different driving cycles and convenient for practical 

application, we propose an approach to tune fuzzy controllers based on fuzzy Q-learning (FQL). The 
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FQL algorithm consists of two parts: a Q-function estimation network (QEN) and fuzzy parameters 

tuning (FPT). A back propagation (BP) neural network is adopted to estimate and generalize the optimal 

action-value function Q(x,a), then Q(x,a) and an evaluation signal are used to guide the fuzzy controller 

to tune parameters so that the fuzzy controller achieves better performance. Unlike traditional 

Q-learning algorithms, the optimal action is not obtained directly based on approximated values of 

Q(x,a) and candidate discrete actions; rather, a fuzzy inference system (FIS) is applied to provide 

continuous control output. Compared with the Q-learning algorithm, FIS is introduced to enhance the 

generalizability of the state space and generate continuous action, to avoid the problem which is known 

as the “curse of dimensionality” in continuous systems, to tune the parameters and structure of FIS 

online so that FIS can be more adaptive to the external changes caused by the environment. The 

decrease of computational load makes FQL algorithm more convenient for practical applications. 

2. Problem Formulation 

The prototype vehicle is a single axis parallel HEV, and the drivetrain structure of the HEV is shown 

in Figure 1. The drivetrain is composed of an engine, an electric traction motor/generator, Ni-MH 

batteries, an automatic clutch, and an automatic/manual transmission system. The motor is directly 

linked between the auto clutch output and transmission input. This architecture provides the regenerative 

braking during deceleration and allows an efficient motor assist operation. To provide pure electrical 

propulsion, the engine can be disconnected from the drivetrain by the automatic clutch. Important 

parameters of this vehicle are given in Table 1. 

 

Figure 1. Schematic diagram of the parallel hybrid electric vehicle drivetrain. 
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Table 1. Summary of the hybrid electric vehicle (HEV) parameters. 

Item Parameter 

Spark ignition (SI) engine 
Displacement: 1.0 L 

Maximum power: 50 kW at 5700 r/min 
Maximum power: 89.5 N·m at 5600 r/min 

Permanent magnet motor 
Maximum power: 10 kW 

Maximum torque: 46.5 N·m 

Advanced Ni-MH battery 
Capacity: 6.5 Ah 

Nominal cell voltage: 1.2 V 
Total cells: 120 

Automated manual transmission 
5 speed 

GR: 2.2791/2.7606/3.5310/5.6175/11.1066 

Vehicle Curb weight: 1000 kg 

The state vector of the HEV system includes three state variables, i.e., X(k) = (Tdem(k), v(k), SOC(k))T, 

where Tdem(k) stands for required torque at time k, v(k) is the vehicle speed, and SOC(k) represents the 

remaining charge of the battery at time k. The control vector is U(k) = Te(k), where Te(k) represents the 

output torque from the engine. The motor output torque Tm(k) can be obtained by subtracting Te(k) from 

Tdem(k). A torque split control strategy, which defines the best torque split between the engine and the motor, 

is adopted. 

The control strategy goal of the HEV is to find the optimal control strategy that maps the observed 

states X(k) to the control action U(k) so as to minimize vehicle fuel consumption and emissions along a 

traveling route [20]. In the meantime, the vehicle drivability and battery health should be satisfied. 

Mathematically, the control strategy of the HEV can be formulated as an infinite-horizon dynamic 

optimization problem as follows: 

0

( ) γ ( )k

k

J x R k




  (1)

where R(k) is the immediate cost function incurred by U(k) at time k and γ ∈ (0,1) is a discount factor 

that assures the convergence of the infinite sum of cost function. One of the key benefits of an infinite 

horizon problem is that the generated control strategy is time-invariant and, thus, can be easily 

implemented. 

The cost function R(k) consists of the sum of the weighted fuel economy, emissions, and SOC,  

as shown in Equation (2): 

fuel 1 ems 2 SOC( ) ( ) ( ) ( )R k R k a R k a R k    (2)

3. Fuzzy Q-Learning (FQL) Mechanism 

The schematic diagram of a FQL control strategy is shown in Figure 2. FQL control strategies 

consists of two parts: i.e., Q*(x,u) estimator network (QEN) and FIS parameters tuning (FPT). A BP 

neural network as the QEN is used to estimate Q*(x,u). For the fuzzy controller, we choose a 

Sugeno-type fuzzy controller. 
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Figure 2. The schematic diagram of fuzzy Q-learning (FQL) control strategy. QEN: Q*(x,u) 

estimator network; FIS: fuzzy inference system; AEM: action exploration modifier. 

3.1. Back Propagation (BP) Neural Network for Estimating Q*(x,u) (QEN) 

The application of reinforcement learning in control problems focuses on two main types of 

algorithms: actor-critic learning and Q-learning. The actor-critical learning system is a two-step process: 

i.e. to estimate the state value function J(x) and to choose the optimal action for each state.  

For Q-learning, the system estimates an action value function Q(x,u) for all state-action pairs and selects 

the optimal control algorithm based on Q(x,u) [21]. 

The action value function Q(x,u) is the expected discounted sum of rewards with the initial state x and 

initial action u which can be written as: 

1
0

( , ) { γ | , }k
t k t t

k

Q x u E r x x u u


 


    (3)

where u  is the action that acts on the system, and E( ) is the expected value function. The optimal 

action-value function Q*(x,u) is represented as: 
* *

1 1( , ) { ( ) γmax ( , ') | , }t t t t
u

Q x u E r x Q x u x x u u    
，

 (4)

The QEN plays the role of approximating or predicting the optimal action-value function Q*(x,u) 

associated with different input states and control output. A BP neural network is adopted to estimate 

Q*(x,u) due to its good approximation property. The architecture of the QEN is shown in Figure 3. 

The topology of the QEN is considered to be a three-layer structure having 4-10-1 nodes. The inputs of 

QEN are state variables of a HEV, and are vehicle speed v(k), battery SOC, required torque Tdem(k), and 

control action U(k). The output of QEN is Q(x,u). 
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Figure 3. Architecture of the QEN. 

In the QEN, Q(x,u) is represented by: 

)(),( VfuxQ   (5)

10

1

ω(40 ) ( )
i

V i y i


   (6)

))(()( iafiy   (7)

4

1

( ) ( )ω( 1, )
j

a i U j j i


   (8)

where, 

V is the summed input of the output node; 

 + i is the weight between hidden node and the output node; 

y(i) is the output of the hidden node; 

a(i) is the summed input of ith hidden node; 

j − 1,i is the weight between input node and hidden node; 

U(i) is the input of QEN; and 

f is the activation function of the node. 

Here, a sigmoid function is adopted as an activation function of the node, i.e., f(x) = 1/[1 + exp(−x)]. 

The parameters of the QEN are tuned based on generalized policy iteration (GPI). We can 

approximate the optimal action-value function with the neural network by reducing the TD error  

δt continuously: 
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The objective of the neural network is to minimize the following expression: 

21
δ

2 tE   (10)

The weight-update rule for the neural-network-based gradient-descent method is given by: 
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t t


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
 (11)
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Combining the above two equations, we can obtain: 
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t
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
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
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We can obtain 
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
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(16)

where the control output of FIS is the fourth input of the neural network. 
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3.2. Fuzzy Interface System (FIS) Parameters Online Tuning-Based on Q*(x,u) (FPT) 

This section focuses on how to tune the parameters of the fuzzy controller based on the approximated 

Q(x,u) obtained from the previous section. In order to optimize the output of the FIS, update the 

parameters of the FIS to maximize the action value function Q(x,u) with respect to the control output u 

for the current state. We can tune the parameters of FIS using gradient rules: 

( , )
ξ( 1) ξ( ) β

ξ
t tQ x u

t t


  


 (17)

( , ) ( , )

ξ ξ
t t t tQ x u Q x u u

u

  


  
 (18)

where,  is the parameter to be tuned in FIS such as Kl
j, cl

i, and l
i. We have obtained uuxQ tt  /)],([  

already through Equation (16), thus will only need to deduce / ξu  . 

The Sugeno-type fuzzy inference system is chosen in our FQL control strategy. If the state vector is 
represented by nT

n Rxxxx  ),...,,( 21 and the control output Ru  , the IF-THEN rules of the fuzzy 

controller may be expressed as: 
l

nn
l

l FisxandFisxIF ,...,:R 11  

n
l
n

lll xKxKxKKuTHEN  ...22110  
(19)

where Fi
l is the label of the fuzzy set in xi, for l = 1, 2, …, M. Kl

0, Kl
1, Kl

2,…and Kn
l are the constant 

coefficients of the consequent part of the fuzzy rule. We use product inference for the fuzzy 

implication, singleton fuzzifier, and center-average defuzzifier, respectively. The final output value is: 
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 
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where Fμ
l
i  is the membership degree of the fuzzy set l

iF , 10 x . 

A Gaussian function is used as the membership function of the fuzzy system, i.e.: 
2

2

( )

(σ )μ ( )

l
i i

l l
i i

x C

F
ix e




  (21)

for i = 1, 2, …, n ( n  is the number of input variable) and l = 1, 2, …, M (M is number of fuzzy rule). 

Now we know the parameters that need to be tuned, i.e., c  and  , in our proposed  

Sugeno-type FIS. 

If we let: 

2

1

exp( ( ) )
σ

ln
l i i

l
i i

x c
z




   (22)

Equation (22) represents the product of different input membership functions in one fuzzy rule: 

n
l
n

llll
xKxKxKKy  ...22110  (23)

Equation (23) represents the output of one fuzzy rule: 
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where, a, b, and u represents the weighted summation, summation of weight of M rules, and total  

output respectively. 
Thus we can calculate / ξu   by the following equations: 
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3.3. Exploration Policy and Action Modifier 

Witkins has shown that Q(x,a) converges to Q*(x,a) with a probability 1, if all actions continue to be 

tried from all states [22]. In order to guarantee all actions to be tried, we implemented an exploration 

policy for the control output u recommended by the FIS. The action exploration modifier (AEM) is 

introduced to generate the control command uc. The uc is the sum of u and an additive disturb action ud, 

which has a normal distribution with the mean equal to zero and the standard deviation σQ(t) 

recommended by the FIS. The AEM can solve the dilemma of “exploration” in reinforcement learning, 

and is added after the FIS and before the system input, i.e., uc = u + ud，and ud ~N(0,σQ(t)). 

The σQ(t) calculated as follows: 

σ ( ) / [1 2exp(max ( , ))]Q t k Q x a   (28)

where k is coefficient, which can expand or shrink the disturb action. 

3.4. Overall Implementation Procedure 

The detailed implementation procedure is presented as follows. 

1) Initialize Q(xt,ut), the parameters ω (1)–ω (40), ω (41)–ω (50) of the QEN, and the parameters 

ξ of the FIS. 

2) Obtain the new control output ut based on (20) and input of the FIS. 

3) Before it is fed to the actual system, u is processed by the action modifier according to uc = u + ud. 

4) The action modifier provides uc, which acts as the control value of the system. 

5) Based on our requirements for the system, we evaluate the performance of the controller as r  

and obtain the states of the system. 

6) Obtain the approximated Q(xt+1, ut+1) from the QEN based on the current control action, and 

current states, and some previous states. 
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7) From r , Q(xt,ut), and Q(xt+1, ut+1), we can calculate the TD error t based on Equation (11). 

Here, we assume Q(xt+1, ut+1) ≈ maxu’Q(xt+1, u’) because ut+1 is obtained from the FIS, which 

continuously maximizes Q(xt,ut) with respect to the control output u . 

8) Based on t obtained from Step 7, we can update the parameters of the QEN according to 

Equations (14) and (15). 

9) Tune the parameters of the FIS based on Equations (17)–(27). 
10) Substitute ),( tt uxQ  with ),( 11  tt uxQ . 

11) If the parameters of the QEN and the FIS are not changed any more or after predefined 

iterations, the learning procedure is terminated; otherwise, return to Step 2 after a fixed 

sampling time . 

4. Simulation Results and Discussion 

In order to know the effectiveness of the FQL algorithm, simulation experiments were done in 

ADVISOR. Using a simulation to test the algorithm in a variety of driving cycles can eliminate the huge 

cost and time needed for actual experimentation. The simulation model for the HEV mentioned in 

section 2 was built in ADVISOR and is shown in Figure 4. 

 

Figure 4. HEV model in ADVISOR. 

For this particular HEV system, the parameters of the algorithm used in the simulations are 

summarized in Table 2, with proper notations defined in it. 

Table 2. Summary of FQL algorithm parameters. 

Parameter Value 

Number of input nodes in QEN 4 
Number of hidden nodes in QEN 10 

Learning rate of QEN η 0.34 
Rate of Gradient descent β 0.32 

Coefficient of AEM h  0.40 
Discount factor γ 0.90 

Emission cost weight a1 0 
SOC deviation cost weight a2 1 

Coefficient of σQ(t) k  0.41 
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The next step is to define cost function R(k). The reason for the selection of a1 = 0 is simply because 

the emission maps are not provided for the engine. Thus, the resultant control strategy is a fuel-economy 

only strategy. In order to consider the power economy influence on fuel economy, we let a2 equals 1: 

fuel 1 ems 2 SOC( ) ( ) ( ) ( )R k R k a R k a R k    (29)

)(R fuel k  and )(RSOC k  can be defined as follows: 


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

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
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
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./53.005.0

/88.0/53.05.0

/88.01

)(R            fuel

sgx

sgxsg

sgx

k

，

，，

，，

 (30)














.001.03.0

001.000

03.0

)(R SOC

y

y

y

k

，

，，

，，

 (31)

where x is the instantaneous fuel consumption value and y the SOC change rate. 

The FQL algorithm was written in MATLAB. The fuzzy rules were predesigned according to 
engineering experience, and complete rules details are given in Table 3, where the parameter of eT  

satisfies the relationship: VS < S < M < B < VB < SC < MC < BC, the parameters of Tdem and SOC 

satisfy the relationship: VS < S < M < B < VB. 

Table 3. Summary of fuzzy rules. 

Te 
Tdem

VS S M B VB 

SOC 

VS BC BC MC SC VB 

S BC MC MC SC VB 

M SC SC M M B 

B S S M B B 

VB VS VS S S M 

Initially, the membership functions of the fuzzy controller were randomly initialized. In order to 

illustrate the control strategy more clearly, a convenient method is applied to represent it in an intuitive 
manner. A torque-split-ratio (TSR) e demτ /T T  is defined to quantify the positive power flows in the 

powertrain [23]. Four positive power operation modes are defined, including motor only ( τ 0 ), engine 

only ( τ 1 ), power-assist ( 0 τ 1  ), and charging mode ( τ 1 ). Figures 5 and 6 show the initial 

membership functions and TSR map for initial fuzzy controller. 

 



Energies 2015, 8 11178 

 

 
(a) 

 
(b) 

Figure 5. (a) Initial membership functions of demT ; and (b) initial membership functions of SOC. 

 

Figure 6. Torque-split-ratio (TSR) map for the initial fuzzy controller. 

A. Simulation under Urban Dynamometer Driving Schedule (UDDS) 

Simulation test was done under standard driving cycle UDDS. Figure 7 depicts the changing trend of 

the TSR map for fuzzy controller during the driving cycle. From 0 s to 1369 s, we can see that the surface 

of the TSR map is becoming smoother. The online learning of the fuzzy Q learning control strategy is  

the reason behind the TSR map smoothing. Figure 8 shows the final membership functions of the  

fuzzy controller. 
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(a) 

(b) 

(c) 

Figure 7. Changing trend of fuzzy controller TSR map under Urban Dynamometer Driving 

Schedule (UDDS): (a) TSR map for fuzzy controller in 500 s; (b) TSR map for fuzzy 

controller in 1000 s; and (c) TSR map for fuzzy controller in 1369 s. 
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(a) 

(b) 

Figure 8. (a) Final membership functions of demT  under UDDS; and (b) initial membership 

functions of SOC under UDDS. 

The simulation results for the UDDS driving cycles are shown in Figure 9. The FQL control strategy 

tends to maintain the battery SOC near 50%, finally. This leaves enough capacity to handle an extended 

period of battery discharge and enough capacity to absorb a long period of charging. 

 

Figure 9. Simulation results under UDDS. 
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In order to evaluate the performance and effectiveness of the FQL control strategy, the experiment 

results are compared with a heuristic rule-based control strategy known as “Parallel Electric Assist 

Control Strategy” and the fuzzy logic control strategy. The comparison results are listed in Table 4. Power 

consumption is converted to fuel consumption; equivalent fuel consumption is obtained by adding the 

converted power consumption and fuel consumption. As shown by the results of Table 4, equivalent fuel 

consumption of fuzzy control is decreased by 3.10% compared with the rule-based control strategy. 

Meanwhile, the equivalent fuel consumption of the FQL is decreased by 2.67% compared with the fuzzy 

control strategy. The FQL control strategy achieves good performance. 

Table 4. Compare results under UDDS. 

Control strategy Fuel consumption Equivalent fuel consumption 

Rule-based (L/100 km) 3.88 3.87 
Fuzzy control (L/100 km) 3.67 3.75 

FQL (L/100 km) 3.48 3.65 

Figures 10 and 11 depict the distribution of engine and motor operating points under the rule-based 

control strategy and FQL control strategy. The FQL control strategy is a fuel strategy which limits the 

instantaneous fuel consumption. This strategy is not based on the efficiency of the engine, but it 

primarily limits the fuel use to a particular value. As shown in Figure 10, most of the engine operation 

points under the FQL control strategy are below the 0.3 g/s fuel use line, while a great amount of engine 

operation points under the rule-based control strategy are below the 0.55 g/s fuel use line. That means the 

instantaneous fuel consumption of the FQL control strategy is less than the rule-based control strategy 

most of the time. The motor operation point distribution of the FQL control strategy is shown in  

Figure 11. The efficiency of motor operating under the FQL control strategy is better than the rule-based 

control strategy. 

 

Figure 10. Engine operation point distribution under UDDS. 
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Figure 11. Motor operation point distribution under UDDS. 

Torque split trajectory by using the FQL control strategy is shown in Figure 12. In order to illustrate 

the torque split trajectory, we choose 160–320 s period from the driving cycle. It is illustrated that the 

engine provides most of the torque demand, while the motor helps when more torque is needed. The 

figure also depicts a relatively smooth profile of the engine torque compared with the demand torque and 

the motor torque. The smoother engine torque from the fuzzy Q learning control strategy indicates that it 

helps improve the operating conditions of the engine. 

 

Figure 12. Torque split trajectory by using the FQL control strategy under UDDS. 

B. Simulation under New European Driving Cycle (NEDC) 

In order to check the effectiveness of the proposed method, it is tested on different driving conditions 

(NEDC driving cycles) starting from the same initial conditions (the same parameters for both neural 

network and fuzzy controller). Figure 13 show the final membership functions of the FQL control 

strategy under NEDC cycle are different from that under UDDS cycle; as a result we get two different 

controllers. That is, the control strategy really learns from the environment. 
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(a) 

 

(b) 

Figure 13. (a) Final membership functions of Tdem under New European Driving Cycle 

(NEDC); (b) Initial membership functions of SOC under NEDC. 

Simulation results for the NEDC driving cycles are shown in Figure 14. We can see that the SOC 

also maintains near 50%, finally. The rules of the fuzzy controller have a significant effect on the final 

value of SOC to make sure that SOC is maintained near 50%, and the proposed method in this paper 

only changes the parameters of the membership function of the fuzzy controller during the cycle.  

Table 5 shows the comparison between fuel consumption and equivalent fuel consumption with 

different control strategies, and we can see the FQL control strategy also achieves good performance. 

 

Figure 14. Simulation results under NEDC. 
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Table 5. Compare results under NEDC. 

Control strategy Fuel consumption Equivalent fuel consumption 

Rule-based (L/100 km) 3.90 3.92 
Fuzzy control (L/100 km) 3.67 3.79 

FQL (L/100 km) 3.43 3.66 

5. Conclusions 

An online learning control strategy based on FQL has been proposed to improve the fuel economy for 

a hybrid electric vehicle. The FQL control strategy contains two parts: QEN and FPT. We used a BP 

neural network as QEN to estimate Q*(x,u). For the fuzzy controller, we chose a Sugeno-type fuzzy 

controller and the parameters of the fuzzy controller were tuned online based on Q*(x,u). The action 

exploration modifier (AEM) is introduced to guarantee all actions are tried. Simulation results indicate 

that the parameters of the FIS are tuned online and the FQL control strategy achieves good performance 

in fuel economy.  
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