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Abstract: Global energy consumption has been highly dependent on fossil fuels which cause 

severe climate change and, therefore, the exploration of new technologies to produce 

effective renewable energy plays an important role in the world. Pressure-retarded osmosis 

(PRO) is one of the promising candidates to reduce the reliance on fossil fuels by harnessing 

energy from the salinity gradient between seawater and fresh water. In PRO, water is 

transported though a semi-permeable membrane from a low-concentrated feed solution to a 

high-concentrated draw solution. The increased volumetric water flow then runs a hydro-turbine 

to generate power. PRO technology has rapidly improved in recent years; however, the 

commercial-scale PRO plant is yet to be developed. In this context, recent developments on 

the PRO process are reviewed in terms of mathematical models, membrane modules, process 

designs, numerical works, and fouling and cleaning. In addition, the research requirements 

to accelerate PRO commercialization are discussed. It is expected that this article can help 

comprehensively understand the PRO process and thereby provide essential information to 

activate further research and development. 
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1. Introduction 

To date, global energy consumption significantly relies on fossil fuels which are closely related to 

carbon emissions, resulting in an increase of climate change. As such, the exploration of new 

technologies to obtain energy is increasingly becoming important due to the acceleration of fossil fuel 

depletion, which has caused apprehension about the available energy supply [1,2]. To meet the  

ever-increasing energy demands, renewable energy resources such as solar, wind, waves and tidal, biomass, 

and geothermal sources have been introduced and now share approximately 22% of the total global 

energy supply [3]. 

Salinity gradient energy (SGE), which utilizes the chemical potential difference between two  

solutions having different salinities, has recently gained attention as a promising candidate to reduce the 

dependence on the fossil fuels. Approximately 0.61 kWh of free energy can be harvested by mixing 1 m3 

of fresh river water and seawater [4]. In addition, the potential of SGE is estimated to be ~2.6 TW, which 

might make it possible to cover the global energy consumption demands [5]. Other factors that make 

this technology more favorable include the fact that no emissions of greenhouse gases such as carbon 

dioxide are produced and there is less dependence on the weather and seasonal conditions compared to 

renewable energy technologies such as solar and wind energy. 

Pressure-retarded osmosis (PRO) is a type of SGE to relieve the energy stress. In PRO, water is 

transported though a semi-permeable membrane from the feed to the draw side and the pressurized 

volumetric water flow operates a hydro-turbine to generate power. Although the theoretical concept of 

harnessing the energy by the mixing of low-saline and high-saline water first was discovered in the early 

1950s [6], the specific mechanism was proposed by Loeb in the 1970s [7]. However, PRO has long been 

considered as economically unfavorable due to its low performance. The use of reverse osmosis (RO) 

membranes, which were found to be unsuitable for PRO applications, caused severe concentration 

polarization and finally resulted in a reduction of the overall performances [8]. Based on recent advances 

in the technological and economic improvement of membrane technologies, PRO has re-emerged as a 

potentially viable energy option, and lab-scale to pilot-scale demonstrations have actively been 

conducted. For example, the first PRO pilot plant was constructed by Statkraft in Norway in 2009, and 

since then several PRO and PRO-hybrid pilot plants have been built or are under construction [9–11]. 

These facilities include a RO-PRO hybrid pilot plant that was built using a mega-ton water project in 

Japan, while a RO-MD-PRO hybrid pilot plant was constructed by the global MVP (GMVP) project in 

Korea. Here, M is for membrane distillation (MD), V is for valuable resource recovery, and P is for PRO. 

Both projects contribute significantly to advance the PRO process. 

In addition, PRO potential and applicability have been intensively investigated in other countries.  

As an example, the possibility of utilizing PRO in the remote regions of Quebec (Canada) was estimated 

to have a net energy potential from 0.889 TWh/year to 10.545 TWh/year, according to the site-specific 

conditions [12]. In Iran, a feasibility study of constructing a 25 MW PRO plant where the Bahmanshir 
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river meets the Persian Gulf has been investigated [13]. Recently, the feasibility of PRO in Australia was 

explored based on different combinations of feed and draw solutions by reflecting the source water 

qualities and the government policies [14]. However, despite this increasing attention and the rapid 

advancements of the PRO process, several challenges still remain before PRO can reach the  

commercial stage. 

Within this context, the objective of this study is to overview the developments of the PRO process 

in terms of mathematical models, membrane modules, and process designs. Compared to the recently 

published review papers [15,16], an emphasis of this study is to provide information on the numerical 

studies to estimate the feasibility of PRO and PRO-hybrid processes, in conjunction with recent fouling 

and cleaning studies. Recent advances and progresses of PRO membranes and processes are also 

extensively updated. Then, the research requirements and directions to further progress PRO 

commercialization are discussed. Consequently, this review paper can provide comprehensive 

information to promote the further PRO developments. 

2. Theoretical Background 

2.1. Characteristics of Osmosis-Driven Processes 

Osmosis-driven processes can be divided into three types based on membrane orientation, the 

existence of hydraulic pressure, and the position of the hydraulic pressure applied. Naturally occurring 

osmosis has a driving force of forward osmosis (FO) that causes water to be transported through the  

low-concentrated feed side to the high-concentrated draw side (Figure 1a). Two different operations are 

possible based on the membrane orientations: an active layer facing the feed solution mode (referred to 

as the AL-FS mode or FO mode) and an active layer facing the draw solution mode (referred to as the 

AL-DS mode or PRO mode). The AL-FS mode has more frequently been used in the FO processes since 

it is less affected by membrane fouling in spite of it having a lower water flux than the AL-DS mode. 

Research using pressure-assisted osmosis (PAO), which is also referred to as pressurized forward 

osmosis (PFO) or pressure-assisted FO (PAFO), has recently been proposed that applies the pressure at 

the feed side in order to further enhance the performance of the FO process (Figure 1b). A pressure 

ranging from 0 bar to 10 bar has typically been applied in order to increase the water transport while 

avoiding substantial increases in the energy consumption [17]. In contrast to these two cases, however, 

a pressure lower than the osmotic pressure difference between the feed and draw solutions is applied at 

the draw side in the PRO process (Figure 1c). 

 

Figure 1. Schematic of osmosis-driven processes: (a) forward osmosis (FO);  

(b) pressure-assisted osmosis (PAO); and (c) pressure-retarded osmosis (PRO). 
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2.2. Water Flux and Power Density 

Mathematical approaches to describe the water transport in membrane processes, including irreversible 

thermodynamics models (e.g., Kedem-Katchalsky model and Spiegler-kedem model), pore-based 

models (e.g., sorption-capillary flow model and pore flow model), and diffusion-based models (e.g., 

solution-diffusion model and diffusion-adsorption model), were summarized by Soltanieh and Gill in 

1981 [18]. Among these models, the solution-diffusion model has been widely used in membrane-based 

desalination processes, especially in RO, FO, and PRO, which was originally developed by Lonsdale in 

1965. Three assumptions are required to employ the solution-diffusion model: (1) the solvent and solute 

dissolve at the surface of the non-porous membrane; (2) water is solely transported by the diffusion 

mechanism; and (3) the linear concentration profile should be satisfied [19]. Although the membranes 

for RO, FO, and PRO are non-porous compared to the porous microfiltration (MF) or ultrafiltration (UF) 

membranes, they cannot be perfectly pore-free. In this case, not only diffusion but convection may also 

influence the water transport. Furthermore, if a high-saline solution is used, the linearity of the 

concentration profile can decrease. Despite the limits, however, the solution-diffusion model is the  

most common model used to date because of its simplicity. 

According to the solution-diffusion model, the water flux is expressed as Equation (1) and becomes 

Equation (2) based on Henry’s law. 

w
w w

dc
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dx
   (1)
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where wJ  is the water flux; wD  is the diffusion coefficient of water in the membrane; wc  is the 

concentration; x  is the axis perpendicular to the membrane surface; R  is the gas constant; T  is the 

absolute temperature; and μ w  is the chemical potential as defined in Equation (3). If wV  is independent 

of the pressure, Equation (4) can be derived. 

μ lnw w wRT a V P      (3)

μ π ( π)w w w wV V P V P         (4)

where wa  is the chemical activity of water; wV  is the partial molar volume of water; P  is the hydraulic 

pressure; and π  is the osmotic pressure difference. Then, the water flux can be finally expressed  

as follows: 

( π) ( π)w w w
w

D c V
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
 (5)

where A indicates the water permeability described as functions of concentration and temperature. 

However, as the osmotic pressure is higher than the hydraulic pressure in PRO, and Equation (6) is 

typically used to calculate PRO water flux, which makes the value of the positive number. 

( π )wJ A P     (6)
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As an indicator to evaluate the performance of PRO membranes, the power density is expressed as 

the product of the water flux and the hydraulic pressure: 

( π )wW J P A P P        (7)

2.3. Concentration Polarizations and Reverse Solute Flux 

In the PRO processes, salts are accumulated inside or on the outer surface of the membranes, referred 

to as the concentration polarization (CP), which consequently plays a negative role on the performance. 

In general, CP is divided into internal concentration polarization (ICP) and external concentration 

polarization (ECP) based on the arising position as indicated in Figure 2. The water flux in Equation (6) 

is further derived as Equation (8) by reflecting the existence of ICP and ECP [20]. 
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where ,πD b  and ,πF b  are the osmotic pressure of draw and feed solutions; k  is the mass transfer 

coefficient; K  is the solute resistivity; B  is the solute permeability; S  is the membrane structure 

parameter; t  is the thickness of the membrane support layer; τ is the tortuosity; ε is the porosity; and 

D  is the diffusion coefficient. 

Salts cannot be penetrated through the active layer and eventually are accumulated inside the support 

layer, causing a concentration increase at the interface of the active layer and the support layer.  
This phenomenon is referred to as ICP and is described as the term exp( )wJ K  in Equation (8). 

The concentration of the draw solution is diluted at the surface of the active layer due to the water 

transported from the feed side to the draw side, and is referred to as the dilutive ECP. The effect of ECP 

is presented as exp( )wJ

k
  in Equation (8). Although concentrative ECP occurs at the surface of  

the support layer, it has been ignored because of its relatively low contribution to the membrane 

performance [21]. 

In reality, the solute permeates from the high-concentrated draw side to the low-concentrated  

feed side by diffusion resulting from the rejection rate of the membranes that cannot reach the 100% 

goal [22]. These reversely transported solutes are accumulated in the support layer and ultimately 

aggravate the ICP phenomenon. The denominator of Equation (8) denotes the impact of the reverse 

solute flux and the exacerbated ICP. 
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Figure 2. Concentration polarization and reverse solute flux in PRO. ,D bC  and ,F bC  are the 

concentrations of the bulk draw and feed solutions, respectively. ,D mC  is the concentration  

at the active layer surface, and ,F mC  is the concentration at the active layer and support  

layer interface. 

3. Membrane Developments in PRO 

RO membranes were used to apply for the PRO evaluations resulting from the non-existence of  

PRO-specialized membranes at the initial stage of PRO development. Nevertheless, it was found that 

the RO membranes are not suitable for PRO applications due to the thick support layer which causes 

severe ICP [8]. Following the rapid improvements on the membrane technology in the 2000s, and the 

increased focus on SGE, the fabrication of membranes specialized for PRO has actively been conducted 

worldwide. In this section, the recent developments in the PRO membranes will be discussed by dividing 

two configurations, e.g., flat-sheet and hollow-fiber membranes. 

3.1. Flat-Sheet Membranes 

By reflecting the PRO applications, high salt rejection and high water permeability are the key 

parameters on the membrane developments on PRO. Until the early 2000s, research on the flat-sheet 

membranes predominantly focused on two materials: cellulose acetate (CA) membranes developed by 

Loeb in the 1960s, and commercialized cellulose triacetate (CTA) membranes developed and provided 

by Hydration Technology Innovation (HTI). From the beginning of 2010, thin-film composite (TFC) 

flat-sheet membranes, mostly composed of two layers (a polyamide (PA) active layer and a highly 
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porous support layer), are actively being developed due to their advantage on the PRO performance,  

as compared to a CTA commercial membrane. Compared to the CTA membrane, TFC membranes  

have a relatively higher salt retention rate due to their thin-film PA selective layer while also having a 

lower ICP phenomenon, which leads to a higher water flux because of the higher porosity in the support 

layer. Several research groups in the US and in Singapore have taken leadership positions in developing 

flat-sheet membranes [23–29]. Table 1 shows the characteristics of notably developed flat-sheet  

PRO membranes. 

The composition of the porous support layer fabricated using non-solvent-induced phase separation 

to minimize ICP is the basis of technologies developed in 2011 to make PA TFC membranes, with 

membrane performance being improved with the presence of both finger-like and sponge-like structures 

in the support layer [23]. In addition, the PRO performances were further enhanced by the modification 

of the PA active layer in which the power density was improved from 6.09 W/m2 to 10.0 W/m2, when 

the feed and draw solutions were used from river water and seawater, respectively. In 2013, a fully  

sponge-like structured membrane support consisting of a small structural parameter for the PRO 

membranes was fabricated and displayed excellent mechanical properties that could withstand a high 

pressure [24]. To further enhance the PRO performance, the PA layer was modified and the power 

density increased up to 12 W/m2 with deionized (DI) water as the feed solution and 1 M NaCl as the 

draw solution at a hydraulic pressure of 15 bar. A PA-based TFC membrane including a polyacrylonitrile 

(PAN) support was fabricated, and it was revealed that the increasing PAN concentration and the 

application of a post-treatment of the support layer by polydopamine coating and ethanol treatment could 

increase the PRO performance [25]. From the identical group, a power density of 18.09 W/m2 at 22 bar 

with the TFC membrane was attained by applying a pre-treatment and post-treatment, adding a surfactant  

into the interfacial polymerization (IP) solution as a pre-treatment and immersing the membranes in 

N,N-dimethylformamide (DMF) as a post-treatment [26]. 

Although the performances of TFC flat-sheet membranes were improved by modifying the support 

and/or PA selective layer which was fabricated by conventional phase separation technique, their 

structural parameter (S) values remain high (≥350 µm), which caused severe ICP. Because PRO 

membranes are required to consist of a high mechanical strength which withstands the hydraulic pressure 

at the draw side, the sponge-like structure would be a desirable membrane structure. Nonetheless,  

this morphology normally has a relatively low porosity compared to the finger-like structures. The ideal 

S value for a PRO membrane is around 150 µm [30]. Thus, in attempts to reduce the S values on PRO 

membranes, several research groups have developed electrospinning techniques to produce porous 

membrane support [27–29]. 

Nanofiber mats as the support layer of TFC PRO membranes produced by electrospinning provide 

remarkable advantages such as high porosity, low tortuosity, and thin membrane thickness, and these 

characteristics subsequently decrease the S value. In 2013, an electrospun PAN nanofiber support was 

first adopted for thin-film nanofiber composite PRO (TNC-PRO) membranes comprising a high 

mechanical strength and an S value of around 150 µm, which is very close to the ideal value [27].  

In 2014, the TFC nanofiber membranes fabricated had a support and two different active layers  

generated from (1) isophthaloyl chloride and polyethyleneimine and from (2) trimesoylchloride (TMC) 

and m-phenylene diamine (MPD) via IP for NF-like and RO-like TFC PRO membranes, respectively [28]. 

More recently, a novel TFC membrane composed of a tiered polyetherimide (PEI) nanofiber support 
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strengthened by functionalized multi-walled carbon nanotubes (f-CNTs) and an ultrathin PA-based 

active layer was reported [29]. Maintaining a stable power density during 10-hour experiments verified 

the potential of this membrane for long-term operation. Furthermore, another type of thin-film 

nanocomposite membrane with f-CNTs in a polyethersulfone (PES) support layer was reported [31].  

The increase of the power density up to 110% was exhibited based on the CNT-induced porosity, 

hydrophilicity of the support layer, and the chemical etching of the PA active layer. 

Table 1. Flat-sheet membrane development for PRO. 

Name 
Material  

Active/Support 
Draw Solution Feed Solution 

Pressure 

(Bar) 

Power Density 

(W/m2) 
Ref. 

PA-PSf TFC PA/PSf flat-sheet 0.5 M NaCl 40 mM NaCl 12 10.0 [23] 

PA-PI TFC PA/PI flat-sheet 1.0 M NaCl DI water 15 12 [24] 

PAN-TFC 
PA/PDA coated 

PAN flat-sheet 
3.5 wt % NaCl DI water 10 2.6 [25] 

TFC-PRO 
Modified PA with 

SDS/PI flat sheet 
1.0 M NaCl DI water 22.0 18.09 [26] 

TNC-PRO 
PA/modified PAN 

nanofiber 

1.06 M NaCl  

(Seawater brine) 

80 mM NaCl  

(Synthetic brackish) 
15.2 15.2 [27] 

TNC-PRO 
PA/modified PAN 

nanofiber 

1.06 M NaCl  

(Seawater brine) 

0.9 mM NaCl  

(Synthetic river) 
15.2 21.3 [27] 

PAN-mTFC  

(RO-like) 
PA/PAN nanofiber 0.5 M NaCl DI water 10.3 8 [28] 

PAN-pTFC  

(NF-like) 
PA/PAN nanofiber 0.5 M NaCl DI water 8.6 6.2 [28] 

TFC-PRO 
PA/CNTs-PEI 

composite nanofiber 
1.0 M NaCl DI water 16.9 17.3 [29] 

TFN-PRO PA/CNTs-PES 0.5 M NaCl DI water 6 1.65 [31] 

PSf: polysulfone, CNTs: Carbone nanotubes, PI: P84 copolyimide (Matrimid®5218), PDA: Polydopamine, 

SDS: Sodium dodecyl sulphate. 

3.2. Hollow-Fiber Membranes 

Hollow-fiber membranes have been developed and are regarded as more attractive than the flat-sheet 

membranes in terms of real applications due to their high packing density, low footprint, and ease of  

scale-up [32]. However, unlike flat-sheet membranes, TFC hollow-fiber membranes require a high 

mechanical strength that could endure a high hydraulic pressure by itself without a backing fabric support. 

Importantly, these membranes appear to be further developed and optimized for the PRO processes. The 

fabrication of hollow-fiber membranes specialized for PRO applications started in 2012, led by research 

teams in Singapore. The representative milestones of PRO hollow-fiber membrane developments are 

shown in Table 2. 
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Table 2. Hollow-fiber membrane development for PRO. 

Name 
Material  

Active/Support 

Selective 

Layer 

Draw 

Solution 
Feed Solution 

Pressure 

(Bar) 

Power 

Density 

(W/m2) 

Ref. 

PES-TFC PA/PES Lumen side 1.0 M NaCl 10 mM NaCl 8.4 11.0 [32] 

PES-TFC PA/PES Lumen side 1.0 M NaCl 
40 mM NaCl  

(Waste water brine) 
9.0 10.6 [32] 

TFC-PEI PA/PEI Lumen side 1.0 M NaCl 10 mM NaCl 15.1 20.9 [33] 

TFC-PEI PA/PEI Lumen side 1.0 M NaCl 10 mM NaCl 15.1 18.7 [33] 

PBI-PAN 
PBI-POSS/ 

PAN 
Outer layer 1.0 M NaCl 10 mM NaCl 7.0 2.5 [34] 

TFC-PI PA/PI Outer layer 1.0 M NaCl DI water 20.0 
7.6  

(=13.7 (1)) 
[35] 

TFC-PI PA/PI Lumen side 1.0 M NaCl 10 mM NaCl 15.0 14.4 [36] 

TFC-PI PA/PI Lumen side 1.0 M NaCl 40 mM NaCl 15.0 10.6 [36] 

TFC-PI PA/PI Lumen side 
1.0 M  

Na-Fe-Ca 
DI water 12.0 16.2 [37] 

TFC-P84 PA/P84 Lumen side 1.0 M NaCl DI water 21.0 12.0 [38] 

PDA-TFC PA/PDA-PES Outer layer 0.6 M NaCl DI water 7.0 3.0 [39] 

PDA-TFC 
PA-TBP/ 

PDA-PES 
Outer layer 0.6 M NaCl DI water 8.0 3.9 [40] 

PES-TFC PA/PES Lumen side 1.0 M NaCl DI water 20.0 24.3 [41] 

PES-TFC PA/PES Outer layer 0.6 M NaCl DI water 6.0 1.6 [42] 

PSf: polysulfone, CNTs: Carbone nanotubes, PI: P84 copolyimide (Matrimid®5218); PDA: Polydopamine, 

SDS: Sodium dodecyl sulphate; (1) The power density is equivalent to its inner-selective (lumen side) hollow-fiber 

counterpart (i.e., membrane area calculated on the basis of the inner diameter) having the same module size, 

packing density, and fiber dimensions. 

In 2012, a TFC hollow-fiber membrane with a polyethersulfone (PES) support and PA active layer in 

the lumen side was first introduced [32], and in 2013, the performance was significantly increased by 

improving the mechanically strengthened support layer fabricated using a PEI polymer to produce TFC 

PRO membranes [33]. The first hollow-fiber PRO membranes where the active layer was located at the 

outer layer were fabricated by Chung’s research group in Singapore [34,35]. In particular, one was the 

mixed matrix membrane made from the PBI/polyhedral oligomeric silsesquioxane (POSS) active layer 

and the PAN/PVP support layer, and another one was a defect-free TFC hollow-fiber membrane 

produced by the vacuum-assisted interfacial polymerization technique. In 2014, a TFC PRO hollow-fiber 

membrane having high robustness was designed by controlling the phase separation conditions such as 

manipulating the composition of the polymer solution and spinning parameters well, and it was tested 

using different draw solutions such as NaCl and hydro-acid complex draw solutes, denoted as  

Na-Fe-Ca [36,37]. In addition, the P84 co-polyimide TFC hollow-fiber membrane was developed, and it 

could withstand a hydraulic pressure up to 23 bar [38]. To increase the power density, modification of 

the PES-supported membrane using polydopamine (PDA) and then adding tributyl phosphate (TBP) as 

an additive during the IP was applied [39,40]. PES TFC hollow-fiber membranes consisting of high 

asymmetry, high porosity, and small pore size distribution were then developed and were found to have 
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a maximum power density of 24.3 W/m2 at 20 bar [41]. In order to examine the potential of hollow-fiber 

membranes for PRO power generation, the influences of operating parameters and the membrane 

fabrication conditions such as the concentrations of monomers including MPD and TMC and reaction 

times were subsequently compared [42]. 

4. Applications in PRO 

The concept of harnessing energy from waters with different salinities was first invented by Pattle in 

1954 [6]. Then, this technology was intensively studied in the 1970s, led by Loeb, who firstly suggested 

the terminology of “pressure-retarded osmosis” [7]. In the 2000s, PRO was re-merged due to rapid 

advances in membrane technology as well as the utilization of a pressure exchanger (PX).  

In addition, the membrane prices were significantly decreased as a result of advances in membrane 

development, and the reduction of energy consumption became more likely by applying a PX in PRO, 

which was originally designed for the RO processes [43]. Based on these break-through events, research 

on PRO has actively been conducted, from lab-scale to pilot-scale projects. The world’s first PRO pilot 

plant was launched in 2009 in Norway, with several PRO-related pilot plants subsequently being 

constructed and operated worldwide. Figure 3 summarizes the increased interest in PRO and key 

developments of the PRO process. In this section, advances in the PRO processes are discussed for two 

major applications: (1) a stand-alone PRO process and (2) PRO-hybrid processes as the water and energy 

co-generation process. 

 

Figure 3. Key developments of the PRO process. Increased attention in PRO is shown by 

the number of PRO publications collected via Scopus. 
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4.1. Stand-Alone PRO Processes 

A Norwegian power company (Statkraft) that has specialized in hydro power analyzed the economic 

feasibility of a salinity gradient power in 2008 [9]. Since then, international interests have been drawn 

to PRO and Statkraft led technological developments in the field. The world’s first PRO pilot plant 

prototype was constructed by Statkraft in Tofte, aiming at producing 10 kW of electricity by pairing 

river water as a feed solution and seawater as a draw solution (Figure 4). Spiral-wound membrane 

modules which adopt an effective membrane area of 2000 m2 and 10–15 bars of the hydraulic pressure 

were applied, resulting in an average power density of 3 W/m2. Unfortunately, this value was relatively 

lower than the power density of 5 W/m2 required to make PRO economically feasible [9,44]; Statkraft 

announced the termination of the PRO pilot project at the end of 2012, ahead of the construction of the 

scaled-up pilot plant (2 MW) [45]. 

 

Figure 4. Schematic of Statkraft’s PRO pilot plant, adapted from [9]. 

4.2. PRO-Hybrid Processes 

The primary drawback of a stand-alone PRO process is its relatively low power generation, resulting 

from the low osmotic pressure difference between seawater and river water. If the required energy for 

pre-treatments is taken into account, the net energy can be further decreased. Based on these 

considerations, the hybridization of the PRO process with other desalination technologies has actively 

been investigated. In particular, the RO process is the most preferred option to be coupled with because 

of advantages such as the alleviation of environmental issues caused by the direct discharge of 

concentrated brine from RO into the ocean and increasing the PRO power generation by utilizing the 

high-concentrated brine as a draw solution [46]. 

A prototype RO-PRO hybrid plant was first constructed in Fukuoka (Japan), as part of the national 

project named the “Mega-ton Water System”. The plant was originally designed by combining RO, PRO, 

and sewage treatment systems [10] (Figure 5). By utilizing 420 m3/d of the wastewater effluent as a feed 

solution and 460 m3/d of the RO brine as a draw solution, the eight 10-inch hollow-fiber membrane 

modules from Toyobo were achieved with the maximum power density of 13 W/m2 at 30 bar of the 

hydraulic pressure [47]. A scale-up of this RO-PRO hybrid plant is currently being planned in Japan. 

Another pilot-scale PRO-hybrid research project has been conducted as the “Global MVP” project in 

Korea. The objective of this project was to evaluate the feasibility of the RO-MD-PRO hybrid process 

in terms of reducing the discharged water concentration and the energy consumption. In the hybrid 
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process, the concentrated RO brine enters the MD feed side, and the further concentrated MD brine is 

then utilized as a PRO draw solution while the waste water effluent is used as the feed solution (Figure 6). 

Consequently, improvement of total plant efficiency compared to a stand-alone RO plant is expected 

due to the additional water production by MD and the reduction of net energy consumption resulting 

from the PRO energy generation. Specifically, the following pilot plant will be built: a RO system 

capable of 1000 m3/d water production, a MD system with a water production capacity of 400 m3/d,  

and a PRO system having a 5 W/m2 power density [11]. 

 

Figure 5. Schematic of the RO-PRO hybrid plant in Japan, adapted from [10]. 

 

Figure 6. Schematic of the RO-MD-PRO hybrid plant in Korea, adapted from [11]. 

In the US, Achilli et al. [48] reported the experimental results of their RO-PRO small-pilot system, 

in which they demonstrated the possibility of a PX between the RO and PRO systems (Figure 7).  

Three 2.8 m2 spiral-wound RO membrane modules (SW30-2540, Dow Film Tec) and a 4.18 m2 4040 

spiral-wound PRO membrane module developed by Oasys Water were installed. By applying filtered 

municipal tap water as the PRO feed solution and synthesized seawater as the RO feed water, the average 

power density of the RO-PRO hybrid system with the PX was reported to be 1.1–2.3 W/m2. This concept 

was further developed by Sarp et al. [49] and Prante et al. [50]. Energy recovery rather than energy 

production was proposed in their works, obtained by employing the high-pressure diluted PRO draw 

solution to pressurize the RO feed water via the PX. 
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Figure 7. Schematic of the RO-PRO hybrid system in the US, adapted from [48]. 

Another approach, a closed-loop PRO process referred to as osmotic heat engine (OHE), has been 

proposed; it is composed of two steps: energy generation and draw solution recovery (Figure 8) [7].  

The possibility of utilizing low-grade heat sources such as solar and geothermal energies and biomass 

heat to re-concentrate the draw solution via the thermal separation stage was regarded as the benefit of 

the OHE [51]. Further challenges, however, remain before this becomes an economically feasible  

process. Enhancing the efficiency of the power generation can be achieved by selecting a draw solution 

that has a high osmotic pressure, high solubility, and high recovery using low-grade heat [52]. Recently, 

a PRO-MD hybrid OHE system that uses methanol as an organic solvent was suggested in an attempt to 

improve the thermal separation efficiency of the draw solution [53]. 

 

Figure 8. Schematic of osmotic heat engine, adapted from [52]. 
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5. Numerical Studies Regarding PRO 

Since Loeb first suggested a mathematical model to simulate the PRO performance in 1976 [54], PRO 

models have been regarded as a way to additionally consider the effects of ECP, ICP, and reserve solute 

flux, which were discussed in Section 2 [8,20,21,55]. Recently, these models have been further modified 

to improve the accuracy of simulating the pilot-scale PRO systems: Kim et al. [56] considered the variations 

of concentration and flow velocities along the membrane channel length, and Naguib et al. [57] included 

the effect of ECP on the feed side, which to date had been ignored in small systems. Table 3 summarizes 

the noteworthy PRO model developments. 

Table 3. PRO model developments. 

Author (Year) Remarks Ref. 

Loeb (1976)  First PRO model [54] 
Lee et al. (1981)  Consideration of ICP effect [8] 
McCutcheon and 
Elimelech (2006) 

 Consideration of ICP and dilutive ECP (draw side) [21] 

Yip et al. (2011)  Consideration of ICP, dilutive ECP, and reverse solute flux [20] 

Sivertsen et al. (2012) 
 Modification of the model for hollow-fiber membranes 
 Consideration of ICP and dilutive ECP 

[55] 

Kim et al. (2013) 
 Consideration of ICP, dilutive ECP, and variations of 

concentrations and velocities along the membrane channel 
[56] 

Naguib et al. (2015) 
 Consideration of ICP, dilutive ECP, concentrative ECP  

(feed side), and variations of the concentrations and velocities 
along the membrane channel 

[57] 

As demonstration research on the PRO and PRO-hybrid processes is being actively performed 

worldwide, interests in numerical studies have been focused on estimating the harnessed energy from 

PRO by thermodynamic approaches and to simulate the process performances at a large-scale plant to 

consequently evaluate the economic feasibility of the PRO (Table 4). 

The thermodynamic limits of the PRO process under three operation modes (reversible mode, and 

constant-pressure operation under counter-current flow mode or co-current flow mode) were compared 

with calculating the extractable specific energy [58]. The maximum specific energy was found to be 

0.192 kW/m3 when pairing seawater (0.6 M NaCl) and river water (0.015 M NaCl), which accounted 

for 75% of the maximum specific Gibbs free energy. In other studies, the dimensionless approach was 

newly applied for an ideal counter-flow PRO system to estimate the optimal operating conditions as well 

as required membrane area [59]. More recently, analysis and optimization of PRO was attempted via a 

dimensionless parameter referred to as normalized specific energy production, and then the influence of 

the dilution of draw solution was intensively studied [60]. In the same year, a novel approach to estimate 

a volumetric energy density of PRO was reported [61]. Based on the method, the maximum achievable 

specific energy density can be determined by the osmotic pressure and the mass fraction of the feed and 

draw solutions regardless of the membrane properties. 

In addition, an energy and thermodynamic analysis of the single-stage PRO process was conducted 

by He et al. [62], and further, the performance of the dual-stage PRO process under four different 

configurations was identified [63]. It was found that the configurations of the continuous draw and 
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continuous feed solution (CDCF) and the continuous draw and divided feed solution (CDDF) were more 

beneficial than for single-stage PRO processes. The performance of two dual-stage PRO processes was 

also evaluated by Altaee and Hilal under two different configurations, denoted as an old dual-stage 

design and a new dual-stage design [64,65]. The difference between the two designs was the partial  

(old dual stage) or entire (new dual stage) utilization of seawater flow from the first PRO stage, which 

resulted in a 17.4% increase in the power density achieved with the new design. 

In line with trends in process developments, the RO-PRO hybrid configurations have also been 

favored in numerical research, with four configurations of the RO-PRO hybrid processes being evaluated 

under various operation pressures of RO and PRO, concentrations of feed and draw solutions, and water 

and energy prices [56]. The efficiency of the different designs was subsequently compared via a new 

indicator, the “water and energy return rate (WERR)” (Equation (10)), which can assess the performances 

of the water and energy co-generation process. 

,Price ( ) PriceElectricity PRO Pump Water P ROWERR W W Q     (10)

where PriceElectricity  and PriceWater  are the electricity price and water price, respectively; PROW  is the 

energy generated by PRO; PumpW  is the rate of work done; and ,P ROQ  is the volumetric flow rate of the 

water produced by RO. 

The feasibility condition (FC) number (Equation (11)) is another index used to examine the RO-PRO 

hybrid process, and this number should be >1 in order to operate the hybrid process without utilizing an 

additional energy source, which can be referred to as a stand-alone RO-PRO hybrid process [66]. 

PRO P

RO

P Y
FC

P Y





 (11)

where PROP  and ROP  are the hydraulic pressures applied to the PRO draw solution and the pressure 

applied on the RO feed water, respectively; PY  is the dimensionless water permeation; and Y  is the RO 

water recovery. 

Important roles of numerical studies include both the ability to estimate the process performance  

and to optimize the process. A mixed integer nonlinear programming model-based superstructure 

optimization was conducted in an attempt to seek an optimal arrangement of the RO-PRO hybrid process 

by considering the total annual profit of the hybrid system as an objective function [67]. 

Recently, a new generation of PRO-hybrid processes has been developed. An integrated system of 

multi-stage vacuum membrane distillation (MVMD) and PRO with a recycling flow scheme (MVMD-R 

system) was introduced and the performance was evaluated by considering the inlet feed flow rate and 

the ratio of the recycling flow [68]. In addition, a salinity-solar powered RO (SSRO) system was 

proposed and its feasibility was compared to that of salinity-powered RO (SRO) processes by using 

numerical approaches [69]. 
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Table 4. Numerical studies of PRO and PRO-related processes. 

Author Process Type Remarks Ref. 

Naguib et al. PRO 
 Simulate bench-scale and commercial-scale  

hollow-fiber membranes 
[57] 

Lin et al. PRO 

 Compare thermodynamic limits under different 
operation modes (reversible, constant-pressure  
with co-current flow, constant-pressure with  
counter-current flow) 

[58] 

Banchik et al. PRO 
 Dimensionless analysis for an ideal counter-flow 

PRO system 
[59] 

Mingheng Li PRO 
 Model-based analysis and optimization via a 

dimensionless parameter named as normalized 
specific energy production 

[60] 

Reimund et al. PRO 
 Pressure-volume analysis to determine the total 

volumetric energy density regardless of  
membrane properties 

[61] 

He et al. 
PRO  

(single-stage) 
 Energy and thermodynamic analysis of  

single-stage PRO 
[62] 

He et al. 
PRO  

(dual-stage) 

 Performance simulations of dual-stage PRO under 
four different configurations  
(CDCF, DDDF, CDDF, DDCF) * 

[63] 

Altaee and Hilal 
PRO  

(dual-stage) 

 Performance simulations of dual-stage PRO under 
two different configurations  
(old design and new design) ** 

[64,65] 

Kim et al. RO-PRO hybrid 

 Compare performance of RO-PRO hybrid process 
under four different configurations according to the 
plant order and feed water concentrations 

 Develop feasibility indicator for RO-PRO hybrid 
process: Water and energy return rate (WERR) 

[56] 

He et al. RO-PRO hybrid 
 Diagrammatical analysis of FO-PRO hybrid process 
 Develop feasibility indicator for RO-PRO hybrid 

process: Feasible condition (FC) number 
[66] 

Almansoori  
et al. 

RO-PRO hybrid 
 Structural optimization of RO-PRO hybrid process 

via mixed integer nonlinear programming model 
[67] 

Lee et al. MD-PRO hybrid  Performance simulation of MVMD-R *** system [68] 

He et al. 
RO-PRO hybrid,  

RO-PRO-solar hybrid 

 Compare performance between salinity-solar 
powered RO (SSRO) and salinity powered RO 
(SRO) processes 

[69] 

* CDCF: continuous draw and continuous feed solution, DDDF: divided draw and divided feed solution, CDDF: 

continuous draw and divided feed solution, DDCF: divided draw and continuous feed solution; ** Old design: 

partial use of seawater from the first PRO stage, New design: entire use of seawater from the first PRO stage; 

*** MVMD-R: multi-stage vacuum membrane distillation and PRO with recycling flow scheme. 
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6. Fouling and Cleaning in PRO Processes 

6.1. Membrane Fouling in PRO 

Fouling occurring in membrane-based water treatment and seawater desalination processes leads to a 

decrease in the performance of the overall process, such as a reduction in the water flux and an increase 

of energy consumption. Fouling is classified into organic fouling, inorganic fouling, bio-fouling, and 

colloidal fouling according to the main foulant. The major mechanisms of fouling include pore 

narrowing, pore plugging, and cake formation. Pore narrowing occurs when pollutants are absorbed into 

the internal pore, pore plugging occurs when pollutants plug pores, and cake formation occurs when 

pollutants pile up onto the membrane surface (Figure 9). 

 

Figure 9. Mechanisms of membrane fouling: (a) pore narrowing; (b) pore plugging;  

and (c) gel formation. 

PRO fouling was initially regarded as less serious since the less-compacted cake layer caused by the 

lower hydraulic pressure seems to be more easily removed by cleaning processes than for RO [70,71]. 

PRO fouling, however, should be regarded as an important factor affecting the process performances 

because AL-DS mode operation (active layer faced draw solution), which is the preferred option for 

membrane orientation in PRO, may cause severe fouling. Indeed, there is a possibility for foulants to 

accumulate both outside and inside of the support layer due to the location of the support layer on the 

feed side. Despite this importance, however, fouling research relating to the PRO processes first 

appeared in 2013, and requires further rigorous investigation in the future. The PRO fouling research 

have been conducted to date are summarized in Table 5.  

She et al. [72] first investigated the impact of the organic fouling in the PRO processes and reported 

that the fouling could be aggravated by reverse solute diffusion, which was related to the type of draw 

solution, foulant type, and the intermolecular interaction between the draw solute and foulant. In addition, 

with regards to natural organic fouling (NOM), Thelin et al. [73] investigated the quality of the feed 

solution and membrane types, while Yip et al. [74] examined the influence of the effect of fouling and 

cleaning by osmotic backwash using their fabricated TFC membranes. In 2014, the scaling caused by 

calcium sulfate dehydrate (gypsum) was studied by considering the hydraulic pressure, membrane 

orientation, and types of draw solution and its concentrations [75]. More recently, the influences of  

the hydraulic pressure and pH on PRO organic fouling were studied by Kim et al. [76]. In addition,  

Kim et al. [77] investigated the effect of organic, inorganic, and combined fouling and reported that the 

support layer was more prone to inorganic fouling, specifically calcium phosphate scaling, due to the 

reverse solute flux and effects of ICP. In Singapore, real water sources were utilized to identify the extent 
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of fouling. The power density dropped by approximately 80% when the wastewater effluent from the 

NEWater plant and seawater RO brine from TuaSpring plant were used [78]. 

6.2. Membrane Cleaning in PRO 

For membrane processes, the methods of physical and chemical cleaning have usually been used to clean 

fouled membranes. The cleaning efficiency largely depends on the physical (reversible vs. irreversible) and 

chemical (organic vs. inorganic) properties of the fouling layer [79]. For instance, in pressure-driven 

membrane processes, periodic hydrodynamic cleaning can sufficiently mitigate physically reversible 

membrane fouling without requiring cleaning with strong chemicals, as physical flushing using a high 

cross-flow velocity easily detaches the deposited foulants from the membrane surface by enhancing the 

shear rate in a fluid channel [80,81]. Osmotic backwashing (OBW) further enhances the efficiency of 

physical flushing since the highly compacted fouling layer on the membrane surface becomes loosened 

by the swelling and lifting effects caused by the naturally driven osmotic backflow, such that the 

detached foulants are swept out by the physical flushing [82]. These hydrodynamic cleaning methods, 

however, can be less effective in the PRO processes because organic and inorganic foulants are deposited 

inside the porous support layer of the membrane. Hence, low shear force is transferred to detach the 

foulants from the support layer despite the increase of the cross-flow [74,77]. 

Yip and Elimelech [74] investigated the restoration of permeability from osmotic backwashing for 

NOM fouling and found that the permeation drag by osmotic backwashing could not completely remove 

the NOM adsorbed into the active-support layer interface. Recently, the effects of physical flushing, 

osmotic backwashing, and pressure-assisted osmotic backwashing against inorganic fouling were 

examined [77]. The beneficial impact of applying a feed solution pre-treatment that has an anti-scalant 

(e.g., Genesys PHO) was also confirmed, which led to the increase in the solubility of calcium phosphate. 

Table 5. Fouling and cleaning studies on PRO processes. 

Fouling 
Feed solution 

(Concentration) 

Draw Solution 

(Concentration) 
Foulant 

Membrane 

Type 

Cleaning 

Method 
Ref. 

Organic 10 mM NaCl 

CaCl2/NaCl/MgCl2/ 

Synthetic Seawater (SW)/ 

Synthetic SW desalination 

brine (SWBr) 

Alginate/ 

Humic acid 
CTA - [72] 

Organic 

Freshwater  

(Mostadmark water 

work in Norway) 

Synthetic salt water  

(NaCl + CaCl2 + DI water) 
NOM CTA/TFC - [73] 

Organic 

Synthetic river water  

(NaCl + NaHCO3 + 

CaCl2 + DI water) 

Synthetic seawater  

(NaCl solution) 
SRNOM TFC OBW [74] 

Scaling 
Feed solution  

with bulk gypsum 

Synthetic solution  

(CaCl2/NaCl/Na2SO4) 

Calcium sulfate 

dihydrate 

(gypsum) 

CTA - [75] 

Organic 

fouling 
10 mM NaCl 1.2 M NaCl Alginate CTA - [76] 
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Table 5. Cont. 

Fouling 
Feed Solution 

(Concentration) 

Draw Solution 

(Concentration) 
Foulant 

Membrane 

Type 

Cleaning 

Method 
Ref. 

Organic, 

inorganic, 

combined 

Synthetic wastewater 
Synthetic seawater 

and its RO brine 

Alginate,  

BSA, SRNOM 
CTA 

Physical 

flushing, 

OBW, 

Pressure-

assisted 

OBW 

[77] 

Organic 
Wastewater retentate  

from NEWater plant 
SWBr 

Effluent organic 

matter 

TFC-PES 

hollow-fiber 

membrane 

- [78] 

7. Concluding Remarks 

The exploration of renewable energy resources is necessary to meet the increasing global energy 

demands caused by rapid industrialization and population growth. As a promising candidate to relieve 

the heavy dependence on fossil fuels, PRO has drawn increased attention from academic and industrial 

communities. Using the salinity gradient between high- and low-saline solutions, PRO can overcome a 

shortcoming of conventional energy generation technologies and is beneficial to the other renewable 

energy technologies. For instance, harnessing salinity-gradient energy via PRO ensures no emission of 

greenhouse gases as well as less periodicity to seasonal and weather variations. In this context, the recent 

advances of PRO technology are reviewed with regards to theoretical background, membranes, process 

designs, and numerical studies such as mathematical model development, and simulation and 

optimization, followed by the recently conducted research specialized in PRO fouling and cleaning. 

The current lab-made PRO membranes for both flat-sheet and hollow-fiber types are mostly  

eligible to meet the economically viable power density of 5 W/m2. Demonstration research has been 

widely conducted in many countries from lab-scale to pilot-scale and is proven to be feasible. 

Nonetheless, commercial-scale PRO or PRO-hybrid plants have not been operated yet. The following 

challenges should be addressed in order to further activate the development in PRO technology to reach 

the commercial stage: 

 Development of high-performance PRO membrane module. Outstanding performances in terms 

of power density have been already achieved by hand-casting membranes. However, to maintain 

the high performance from small-scale membranes to modules is considered a critical issue.  

In addition, further enhancement of the PRO membrane and module can be achievable for 

discovering the new materials or optimizing the membrane parameters [83]. 

 Selection of adequate pre-treatments with considerations of feed water characteristics. Frequently 

preferred feed solutions such as wastewater effluent and river water contain various organic and 

inorganic pollutants, and consequently cause severe membrane fouling. In particular, for the 

commercial-scale plants, appropriate pretreatments corresponding to water quality characteristics 

are carefully considered. 

 Optimization of the process to enhance the economic feasibility. The efficient configuration of 
the PRO or PRO-hybrid processes should be suggested site-specific characteristics such as a 
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plant location, plant capacity, and types of available feed and draw solutions. In addition, optimal 

operating conditions in terms of the hydraulic pressure, flow rate, temperature, and pH need to 

be further investigated in order to increase the energy generation of the designed process. 

 Improvement of model-based economic analysis. Numerical studies to assess the commercial 

viability of the PRO process mostly have a critical limitation, i.e., excluding the cost for  

pre-treatments. To increase the reliability of feasibility studies, the models need to be carefully 

considered with the effects of all components such as pre-treatments, pumps, membrane modules, 

PX and hydro-turbine. Furthermore, an indicator that is focused on water and energy co-generation 

processes is highly required to fairly evaluate the efficiency of the PRO-hybrid processes. 
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