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Abstract: Prognostics is necessary to ensure the reliability and safety of lithium-ion batteries for
hybrid electric vehicles or satellites. This process can be achieved by capacity estimation, which
is a direct fading indicator for assessing the state of health of a battery. However, the capacity of
a lithium-ion battery onboard is difficult to monitor. This paper presents a data-driven approach
for online capacity estimation. First, six novel features are extracted from cyclic charge/discharge
cycles and used as indirect health indicators. An adaptive multi-kernel relevance machine (MKRVM)
based on accelerated particle swarm optimization algorithm is used to determine the optimal
parameters of MKRVM and characterize the relationship between extracted features and battery
capacity. The overall estimation process comprises offline and online stages. A supervised learning
step in the offline stage is established for model verification to ensure the generalizability of MKRVM
for online application. Cross-validation is further conducted to validate the performance of the
proposed model. Experiment and comparison results show the effectiveness, accuracy, efficiency,
and robustness of the proposed approach for online capacity estimation of lithium-ion batteries.

Keywords: lithium-ion battery; multi-kernel relevance vector machine; accelerated particle
swarm optimization; feature extraction; model verification; online capacity estimation

1. Introduction

A lithium-ion battery is a critical component of power systems in satellites, hybrid electric
vehicles, and portable electronic devices because of its desirable characteristics, such as high
energy density, absence of memory effect, low loss of electrical energy, and long service time [1,2].
Nevertheless, the failure of a lithium-ion battery may result in operational disability, or even
catastrophic failure of the entire system. As such, the state of health (SOH) of online lithium-ion
batteries, which have widespread applications and high reliability requirement, must be monitored.

Battery capacity is a main indicator of cell aging, and monitoring of the actual capacity values can
be used for SOH evaluation [1]. However, the monitoring process is challenging for data collection of
online capacity because internal state variables are inaccessible via general sensors [3]. Additionally,
battery capacity is related to several easily measurable features. Consequently, estimation techniques
should be applied on indirect indicators for online capacity estimation. In the literature [3,4],
degradation features were extracted from a charge process or a discharge step. Sometimes, feature
extraction was based on the full charging/discharging state of a battery [5], thereby ignoring partial
charge/discharge states during operation. In addition, continuous monitoring of varying variables,
such as charge voltage in a constant current (CC) charge step and charge current in a constant voltage
(CV) charge step is time consuming and expensive. In this paper, six novel features are extracted from
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charge/discharge (C-D) cycles with consideration of the partial discharging state and convenient data
collection during online operation.

To model the complex and nonlinear dependency between multiple features and battery
capacity, scholars have applied various intelligent data-driven methods for online capacity
estimation, such as neural network (NN) [6–8], support vector machine (SVM) [9–12], and relevance
vector machine (RVM) [4,13]. The NN approach can be used to establish a network to characterize the
relationship among various inputs (i.e., current, voltage, and temperature) and outputs (i.e., capacity).
However, a large number of diverse data should be used to ensure the effectiveness of the NN
approach [14]. In addition, SVM is a state-of-the-art technique for capacity estimation, particularly
under the condition of small training samples, but this method suffers from several limitations.
Tipping [15] reported that SVM outputs are not probabilistic and cannot capture the uncertainty in
estimations; moreover, the number of support vectors to be employed increases with the increasing
size of training data. RVM [15] is a sparse Bayesian approach that does not suffer from the
abovementioned limitations and exhibits higher generalizability than SVM. Nevertheless, RVM is
sensitive to training data coherence. To improve the generalization performance of RVM, a previous
study proposed the use of multi-kernel relevance vector machine (MKRVM) [16]. Fei et al. [17] utilized
MKRVM to predict the state of bearings. The perturbations of parameters in MKRVM may strongly
affect the performance of this method; hence, in the present study, an adaptive MKRVM (AMKRVM)
is built based on accelerated particle swarm optimization (APSO) to automatically optimize the
parameter settings of MKRVM. Compared with traditional particle swarm optimization (PSO), APSO
can accelerate convergence and simplify implementation [18]. The comparison results further show
the accuracy, robustness, and generalizability of the AMKRVM.

This paper proposes a comprehensive procedure, which contains offline and online stages, for
online capacity estimation of lithium-ion batteries. In the offline stage, offline data are utilized to
train AMKRVM, and verify the generalizability and robustness of the model, thereby ensuring the
accuracy of online capacity estimation.

This paper is organized as follows. Section 2 illustrates the feature extraction method. Section 3
presents the fundamentals of the proposed AMKRVM model, containing an introduction of MKRVM
and APSO. Section 4 describes the overall procedure of online capacity estimation of a lithium-ion
battery. Then, Section 5 summarizes the experimental procedures and discusses estimation and
comparison results. Finally, Section 6 shows the conclusions.

2. Feature Extraction for Capacity Prediction

2.1. Aging Experiments

The battery data used in this work are provided by National Aeronautics and Space
Administration (NASA) Ames Prognostics Center of Excellence [19], where 18,650-sized rechargeable
lithium-ion batteries were tested. Lithium-ion batteries in batches were run through three different
operational profiles: charge, discharge, and impedance, described as follows:

‚ Charge step: charging was conducted at a constant current (CC) level of 1.5 A until the charge
voltage reached 4.2 V. Charging was continued in constant voltage (CV) mode until the charge
current dropped to 20 mA.

‚ Discharge step: discharging was conducted in CC mode until the discharge voltage reached a
predefined cutoff voltage.

‚ Impedance measurement: measurement was performed through an electrochemical
impedance spectroscopy (EIS) frequency sweep from 0.1 Hz to 5 kHz.

Repeated charge and discharge steps can induce the degradation of lithium-ion batteries.
Meanwhile, impedance measurements provide insights into internal battery parameters, which vary
as degradation progresses. During an entire C-D cycle, charge and discharge steps may be continuous,
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or discontinuous for the impedance measurement. The experiments were terminated when the
battery capacity decreased by 30%.

2.2. Feature Extraction

Battery capacity, which decreases over the working time of a battery, is an important and
direct indicator for estimating SOH and remaining useful life of the battery [1]. In online or
in-orbit applications, such as electric vehicles and satellites, capacity measurement or monitoring
is difficult [3]. Saha et al. [10] used charge transfer resistance and electrolyte resistance extracted
from EIS to estimate battery capacity. However, these features can only be obtained via offline tests
under the optimal measuring conditions and by using specialized and expensive equipment for EIS
measurements [20]. The results of the aging experiment showed that increase in battery capacity loss
or resistance in a lifetime is related to operating conditions, such as voltage, current, and temperature.
However, in practical applications, several characteristics, such as current and voltage, are controlled
to meet the load requirements of an associated circuit and thus cannot represent battery aging [21].
In this regard, appropriate features should be extracted. In this paper, six measurable, indirect
degradation features are extracted from C-D cycles for capacity estimation. For example, figures in
Section 2.2 are drawn based on experimental data on aging of battery 7 provided by NASA.

2.2.1. Time Intervals Extracted from CC/CV Charge Step (F1 and F2)

The first two features are charge related and extracted from the CC/CV charge step.
Eddahech et al. [22] illustrated that CC capacity decreases with battery aging. Post-mortem analysis
also demonstrated that CV step leads to lithium intercalation into negative electrode and lithium
loss, which are the major causes of calendar aging [22]. Figure 1 shows the charge voltage and charge
current curves of battery 7 during three CC-CV charge steps in C-D cycles 2, 88 and 165. In each
charge step, the battery was first charged in CC mode and then in CV mode. The fixed cutoff voltage
and current cannot provide direct degradation information for capacity estimation. Hu et al. [23]
reported that total charge capacity can be divided into two parts, namely, CC charge capacity (CQcc)
and CV (CQcv) charge capacity. The formulas of CQcc and CQcv are expressed as

CQcc “

ż tcc

t0

I pτq dτ “ Icc ptcc ´ t0q (1)

CQcv “

ż tcv

tcc

I pτq dτ (2)

where t0 and tcc denote the beginning and ending time of the CC charge step, respectively; I is the
current variable; Icc is the value of the constant current, and tcv denotes the end time of the CV charge
step.
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Figure 1. The first and second charge-related features extracted from the charge step. (a) The first
feature extracted from the constant-current charge step; (b) The second feature extracted from the
constant-voltage charge step.
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CV charge capacity is difficult to accurately determine because of the nonlinear, varying current
in the CV charge step. In addition, continuous monitoring of varying variables is time-consuming
and expensive. According to Equations (1) and (2), CQcc and CQcv are related to the length of the CC
and CV charge periods, respectively. Thus, as shown in Figure 1, time intervals extracted from the
CC (F1) and CV steps (F2) are selected as two indirect health indicators. However, in most industrial
applications, batteries always start charging at a partial discharge state and end up in a full charge
state. In this case, F1 starts at the moment when the charge voltage reaches a predefined value, and
ends at the cutoff voltage. F2 = (tcv ´ tcc) is the time interval of the entire CV step. Figure 1 illustrates
that F1 and F2 become shorter because of capacity fading with increasing time. Thus, using F1 and F2

as two indirect degradation features is reasonable.

2.2.2. Time Interval between Two Predefined Discharge Voltages (F3)

Features extracted from the discharge step, such as discharge voltage [24] and discharge
capacity [4], can serve as health indicators of battery degradation. As shown in Figure 2, for battery
7, discharge was conducted until the voltage reached the lowest point at 2.2 V, then the battery
experienced a short period of self-recharge. Discharge voltage decreases nonlinearly in a discharge
step but cannot provide direct degradation information. Figure 2 also shows that discharge step
duration shortens with time. However, sensing of the accurate full discharge period is difficult
considering the partial discharge of online batteries. Thus, battery capacity cannot be obtained using
the ampere-hour method. To derive degradation information from the discharge step, Liu et al. [3]
proposed the use of the time interval of equal discharge voltage difference (F3) as a health indicator
for measuring fading capacity in each charging; they also proved the relationship between F3

and capacity.
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Figure 2. The third discharge-related feature extracted from the discharge charge step.

2.2.3. Average Temperatures during Charge and Discharge (F4 and F5)

The fourth and fifth degradation features are average temperatures during charge and discharge
step, respectively. Onda et al. [25] illustrated that the body temperature of a cell indicates its thermal
behavior, namely, endothermic process during charge cycle and exothermic process during discharge
cycle. The body temperature of a lithium-ion battery affects its capacity and resistance. Xing et al. [26]
reported that high temperatures can increase electron mobility and decrease internal impedance,
thereby enhancing the battery performance. However, lower impedance would result in a high
self-discharge. Therefore, high temperature can cause degradation, despite its ability to temporarily
increase the battery performance. Li et al. [27] demonstrated that the internal temperature of a battery
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not only functions as a safety precaution, but also provides external characteristic information, which
can be utilized to assess the decrease in battery capacity.

Figure 3 depicts the changes in the charge and discharge temperature of battery 7 in 168 cycles.
In each C-D cycle, charge temperature reached its peak when the CC mode was terminated and
then dropped during the charge step in CV mode. In the discharge step, temperature increased and
peaked at the highest point in the entire C-D cycle when discharge was completed. Subsequently,
the battery was cooled during self-recharge and impedance measurements. The variation trend of
the temperature within a C-D cycle is similar, but its distribution range varies with time. In addition,
Wang et al. [28] emphasized that a single lithium-ion battery consists of layers of cathode, separator,
current collector, and anode wound spirally into a cylinder. Although these components exhibit
different thermo-physical properties, a single battery can be regarded as a homogeneous cylinder
with an internal heat source. Therefore, average internal temperatures during charge and discharge
steps are considered in the model. The fourth feature (F4) extracted from the charge step is the average
temperature during a time interval (F1 and F2). Similarly, F5 is the average temperature during the
time interval F1 in the discharge step.
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Figure 3. Varying charge and discharge temperature curves of battery 7 of 168 cycles. (a) The varying
charge temperature curves; (b) The varying discharge temperature curves.

2.2.4. Cutoff Voltage in Discharge Step (F6)

The discharge cutoff voltage is related to depth of discharge (DoD). In real-life applications,
complete depletion of a battery is difficult. Sato [29] demonstrated that battery performance depends
on DoD. Omar et al. [30] evaluated ageing parameters in lithium-ion batteries through different
DoD. Seyed et al. [31] also pointed out DoD was one of the most significant degradation factors
in automotive applications. Thus, the discharge cutoff voltage is considered as the sixth feature in
our model.

2.3. Summary

In this section, six novel features are extracted for online capacity estimation and summarized
in Table 1.

Table 1. Six extracted features.

Extracted Features Descriptions

F1 time to charge (CC) between two predefined voltages
F2 time to charge (CV) between two predefined currents
F3 time to discharge between two predefined voltages
F4 average temperature during charge
F5 average temperature during discharge
F6 cutoff voltage
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Appropriate feature selection is significant for accurate capacity estimation. In this section, the
advantages and disadvantages of the selected features are analyzed to provide information for their
appropriate use. Overall, the common advantages of the extracted features are as follows:

‚ Closely related to capacity;
‚ Easily measured during operation;
‚ Measurement will not lead to a non-negligible burden on devices.

These features also exhibit several unique advantages. F1, F2 and F3 can deal with the partial
charge/discharge state in practical applications. Besides, changes in the surface temperature are
induced by internal physical and chemical reactions. Therefore, the average surface temperature,
as an external factor, can reflect internal changes in a battery to some extent.

However, the extracted features also present several limitations. Features F1 and F2 are charge
rate-dependent, whereas F3 is discharge rate-dependent. Hence, the degradation rates of these
features vary with changes in charge/discharge rates. F4, F5 and F6 are current-dependent because
they come into play when the current is drawn from the battery [21].

Table 2 summarizes the unique pros and cons of the six selected features. As RVM is sensitive to
data coherence, model training and testing should be based on data from the same type of batteries
under the same operating conditions.

Table 2. The pros and cons of the extracted features.

Extracted Features Advantages Limitations

F1, F2 can deal with partial charge state charge rate-dependent
F3 can deal with partial discharge state discharge rate-dependent

F4, F5 related to internal electrochemical reactions current-dependent
F6 simple current-dependent

3. Adaptive Multi-Kernel Relevance Vector Machine

In this section, an adaptive multi-kernel RVM (AMKRVM) model is proposed to utilize the
extracted features for estimating the online capacity of lithium-ion batteries. Multi-kernel RVM
(MKRVM), whose RVM kernel function is a weighted combination of several basic kernels, is an
improved version of the typical RVM model [15]. To automatically estimate the unknown parameters
in MKRVM model, the APSO algorithm is employed to construct AMKRVM model.

3.1. Multi-Kernel Relevance Vector Machine

For capacity estimation, a set of N input-target pairs txn, tnu
N
n“1 is given, where xn P RM indicates

the input feature vector, tn is the real capacity of a battery and M is the dimensionality of xn. The real
capacity value tn P R is a noisy output of the function y(xn) with the input feature vector xn; hence,

tn “ y pxnq ` εn (3)

where εn refers to the measurement errors or noise. A flexible and popular set of candidates for y(¨ )
is presented in the form of

y pxq “
N
ÿ

i“1

ωiK px, xiq `ω0 (4)

where ω = (ω1, ω2, . . . , ωN)T is the weight vector, K(x, xi) is the kernel function, and ω0 is the bias.
Assuming that independent measurement errors εn follow a mean-zero Gaussian distribution with
variance σ2 and the target tn is independent, the likelihood of the given data set is

p
´

t
ˇ

ˇ

ˇ
ω,σ2

¯

“

´

2πσ2
¯´N{2

exp
"

´
1

2σ2 ‖ t´Φω ‖2
*

(5)
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where t = (t1, t2, . . . , tN)T , and Φ = [φ(x1), . . . , φ(xN)]T is a N ˆ (N + 1) design matrix with
φ(xn) = [1, Kmix(xn, x1), . . . , Kmix(xn, xN)]T . To avoid the over-fitting phenomenon caused by the
maximum-likelihood estimation ofω and σ2, Tipping [15] adopted a Bayesian perspective by defining
a prior distribution overω as

p pω|αq “
N
ź

i“0

N
´

ω1

ˇ

ˇ

ˇ
0,α´1

i

¯

(6)

where α = (α1, α2, . . . , αN) is a (N + 1) vector of independent hyper-parameters. To complete the
hierarchical Bayesian model, we assume that hyper-priors over scale parameters α and σ2 follow
Gamma distributions.

According to Bayes rule, the total posterior over all unknown parameters is

p
´

ω,α,σ2
ˇ

ˇ

ˇ
t
¯

“ p
´

ω
ˇ

ˇ

ˇ
t,α,σ2

¯

p
´

α,σ2
ˇ

ˇ

ˇ
t
¯

(7)

The posterior distribution of weights can be obtained from Bayes’s rule:

p
`

ω
ˇ

ˇt,α,σ2 ˘ “
ppt|ω,σ2 qppω,αq

ppt|α,σ2 q

“
`

2πσ2˘´pN`1q{2 exp
!

´ 1
2 pω´ µq

T Σ´1 pω´ µq
) (8)

where the posterior covariance and mean are, respectively,

Σ “
´

βΦTΦ`A
¯´1

(9)

µ “ βΣΦTt (10)

where β = σ´2 and A = diag(α1, α2, . . . , αN).
Relevance vector learning thus maximizes the posterior distribution of the hyper parameters:

p
`

α,σ2
ˇ

ˇt
˘

9p
`

t
ˇ

ˇα,σ2˘ p pαq p
`

σ2˘. Therefore, it only needs to maximize the marginal likelihood
p
`

t
ˇ

ˇα,σ2˘ as

p
`

t
ˇ

ˇα,σ2˘ “
ş

p
`

t
ˇ

ˇω,σ2˘ p pω|αqdω

“
`

2πσ2˘´N{2
ˇ

ˇ

ˇ
σ2 I `ΦA´1ΦT

ˇ

ˇ

ˇ

´ 1
2 exp

"

´ 1
2 tT

´

σ2 I `ΦA´1ΦT
¯´1

t
*

(11)

The most-probable estimation of α and σ2, denoted as αMP and σ2
MP, respectively, can be

obtained by iteratively maximizing the marginal likelihood p
`

t
ˇ

ˇα,σ2˘. The iterative formulas to
update α and σ2 are

αnew
i “

1´αiΣii

µ2
i

(12)

´

σ2
¯new

“
||t´Φµ||2

N ´
řN

i“0 p1´αiΣiiq
(13)

where Σii is the i-th diagonal element of the posterior weight covariance Σ.
In RVM, the kernel function makes it possible to get linearly learning algorithms to learn a

nonlinear function. The kernel function significantly influences the RVM performance. Thus, an
appropriate kernel function for regression should be selected. To trade off the requirements
for generalizability and estimation accuracy of RVM, a previous study proposed MKRVM [16].
In MKRVM, each kernel function is a linear combination of different basic kernels. A typical
multi-kernel function is a combination of a radial basic function (RBF) kernel and a polynomial kernel
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because the former is local and the latter is global. Given a set of N observations xi (i = 1, 2, . . . , N),
the RBF kernel is written as:

KRBF
`

xi, xj
˘

“ exp

˜

´
||xi ´ xj||2

r2

¸

(14)

where r is a predefined parameter called kernel width. The polynomial kernel is defined as:

Kpoly
`

xi, xj
˘

“

´

xi ¨ xT
j ` 1

¯s
(15)

where s is the parameter of the polynomial kernel. The multi- kernel function can be written as

Kmix
`

xi, xj
˘

“ ρKRBF
`

xi, xj
˘

` p1´ ρqKpoly
`

xi, xj
˘

(16)

where ρ P [0, 1] is called as controlled parameter.

3.2. Adaptive Multi-Kernel Learning Based on APSO

The performance and sparsity of MKRVM are dependent on the appropriate choice of
kernel functions and their parameters. Determining the optimal combination of the unknown
parameters (r, s, ρ) in the multi-kernel function is a nonlinear optimization problem. The fixed
multi-kernel parameters cannot ensure the performance of MKRVM on all datasets of batteries
that operates under different conditions. Thus, we propose an adaptive MKRVM (AMKRVM)
based on APSO [32] to automatically select multi-kernel parameters during training. APSO is an
improved version of traditional PSO [33] and exhibits global optimization capability, simplicity, and
ease of implementation [34]. APSO can accelerate the convergence of the algorithm. In addition,
APSO can shorten search time and promote method efficiency since the inputs of MKRVM are
multi-dimensional feature vectors.

Fei et al. [17] used the root-mean-square error (RMSE) of regression results during the RVM
training to be the objective function for parameter optimization. This objective function produces
accurate regression results but weakens the generalizability of MKRVM, leading to the over-fitting
phenomenon. In this paper, the marginal likelihood p

`

t
ˇ

ˇα,σ2˘ in Equation (11) is therefore adopted
to construct the objective function as

Maximize: logp
´

t
ˇ

ˇ

ˇ
α,σ2

¯

(17)

In APSO, a particle represents a candidate combination of unknown parameters (r, s, ρ). For each
particle, the corresponding value of the objective function is called as fitness value. Parameters in a
particle have wide ranges, which construct the search space where particles can freely walk. The
procedure of APSO is summarized as follows:

Step 1: Generate a large swarm of particles of size P at random and initialize the parameters
in APSO.

Step 2: Calculate the fitness value of each particle by Equation (17).
Step 3: Given a predefined maximum number of iterations denoted as MaxInt, repeat the

following steps for q = 1, 2, . . . , MaxInt:

a. Update the optimal global solution found for far, denoted as g*.
b. Calculate the velocity of each particle by the following formula:

vq`1
p “ vq

p ` c1ξ ptq ` c2ξ
´

g˚ ´ xq
p

¯

(18)

where vp is the velocity of p-th particle; c1 and c2 are the learning factors or acceleration coefficients.
Here, ξ is generated from the standard normal distribution.
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c. Update position of each particle using:

xq`1
p “ xq

p ` vq`1
p (19)

where xp is the position of p-th particle.
In the APSO algorithm, the maximum number of iterations, particle size, and learning factors

should be initialized. By adopting the marginal likelihood as the objective function, we can use the
proposed APSO to automatically and rapidly determine the optimal kernel parameters during the
MKRVM training.

4. Overall Procedure for Capacity Estimation

The overall procedure of the proposed method for online capacity estimation is shown in
Figure 4. The procedure consists of two modules: offline and online stages.

Offline data are traditionally used only to determine unknown parameters in a specific model
for online capacity estimation [21]. In this paper, a supervised learning process is proposed to utilize
part of the offline data to ensure the generalizability of the model. In the proposed offline stage,
the degradation features are extracted from the offline raw data. The processed offline data are then
divided into two parts, one part for AMKRVM training and the other part for offline verification.
Training data are used to determine the optimal combination of the kernel parameters in MKRVM
via the APSO method. However, training is an MKRVM regression process. Training data can be
utilized to measure regression accuracy, but not to test the generalizability of MKRVM. Even if
the objective function in Equation (17) is adopted to avoid the over-fitting phenomenon to a great
extent, the local optimization of the kernel parameters cannot be completely avoided. Prior to
APSO implementation, several parameters that affect the APSO performance should be initialized.
For example, the initial maximum iteration and particle size considerably influences the running time
and convergence of the method, whereas the learning factors affect the search ability of APSO. Thus,
we establish a supervised learning step in the offline stage. Part of the offline data is used to verify the
generalizability of the trained MKRVM. According to the offline test results and a certain verification
criterion, parameter settings in the APSO algorithm can be adjusted to achieve time saving and global
optimum, and ensure the usability of MKRVM for online applications.

During the online stage, online data with well-trained and verified MKRVM are employed for
online capacity estimation.

Energies 2015, 8 11 

 

 

divided into two parts, one part for AMKRVM training and the other part for offline verification. 

Training data are used to determine the optimal combination of the kernel parameters in MKRVM via 

the APSO method. However, training is an MKRVM regression process. Training data can be utilized 

to measure regression accuracy, but not to test the generalizability of MKRVM. Even if the objective 

function in Equation (17) is adopted to avoid the over-fitting phenomenon to a great extent, the local 

optimization of the kernel parameters cannot be completely avoided. Prior to APSO implementation, 

several parameters that affect the APSO performance should be initialized. For example, the initial 

maximum iteration and particle size considerably influences the running time and convergence of the 

method, whereas the learning factors affect the search ability of APSO. Thus, we establish a 

supervised learning step in the offline stage. Part of the offline data is used to verify the 

generalizability of the trained MKRVM. According to the offline test results and a certain verification 

criterion, parameter settings in the APSO algorithm can be adjusted to achieve time saving and global 

optimum, and ensure the usability of MKRVM for online applications. 

During the online stage, online data with well-trained and verified MKRVM are employed for 

online capacity estimation. 

 

Figure 4. Overall procedure for capacity estimation. 
  

Figure 4. Overall procedure for capacity estimation.

12447



Energies 2015, 8, 12439–12457

5. Experimental Results and Discussion

5.1. Data Sources

In the experiments presented in Section 2.1, the lithium-ion batteries used had the same
specification and ambient temperature within batches. However, experimentation on different
batteries was conducted at different discharge levels, and the discharge current varied among
different batches. The data from three batches are utilized to verify the robustness and universality of
the proposed model. Detailed information on the data sources is listed in Table 3. As the ambient
temperature is the same within a batch, this parameter is not further considered in the model.
AMKRVM is separately trained and tested based on each batch.

The total number of C-D cycles of batteries in the three batches was 168, 40 and 72, respectively.
However, battery 18 only had 140 cycles. Furthermore, the third batch had three outliers in the raw
data. For battery Nos. 45–48, the discharge steps were terminated too early after 20, 54, and 66 C-D
cycles, at voltage levels of 3.45, 3.31 and 3.457 V, respectively. The corresponding capacity values were
measured as zero by mistake. Thus, before using the data of the third batch, these outliers should
be removed.

Table 3. Detailed information on data sources.

Batch Battery No. Ambient Temperature (˝C) Cutoff Voltage (V) Discharge Current (A)

1st 5, 6, 7, 18 24 2.7, 2.5, 2.2, 2.5 2
2nd 29, 30, 31, 32 43 2.0, 2.2, 2.5, 2.7 4
3rd 45, 46, 47, 48 4 2.0, 2.2, 2.5, 2.7 1

5.2. Battery Features and Analysis

Considering the partial discharge during on-line operation, F1 is set to be the time interval in
which the charge voltage increases from 2.7 to 4.2 V, and F3 is the time interval in which the discharge
voltage decreases from 3.7 to 2.7 V. For example, the results of feature extraction of batteries in the
first batch are given in Figure 5.

In Figure 5d,e, Tc and Td change nonlinearly and non-monotonically over time. According to the
heat-generation equation proposed by Bernard et al. [35]:

Q “
I

Voltotal

ˆ

Voc ´V ´ T
dVoc

dT

˙

(20)

where Q is the heat generated during battery operation; T is the temperature; I, Voltotal , Voc, and
V denote the current, total volume, open-circuit, and working voltage of the battery, respectively.
According to Equation (20), the generated heat Q contrarily decreases with increasing temperature.
Pals and Newman [36] proved that the heat-generation rate is higher for low temperatures than for
high temperatures. Thus, the temperature of a battery does not keep rising during C-D cycles and
must be considered because it influences the battery capacity.
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Figure 5. The curves of the first five features of batteries in the first batch. (a) Feature F1; (b) Feature
F2; (c) Feature F3; (d) Feature F4; (e) Feature F5.

5.3. Capacity Estimation Results and Discussion

In each batch, the first three batteries provide offline data, and the last one provides online data.
During training and verification, all input features and output capacity are normalized to the interval
[0, 1]. Estimation results are presented below.

5.3.1. Evaluation Criterion

Three evaluation criteria are used to measure the performance and accuracy of the
proposed approach.

(1) Root mean square error (RMSE) is a good measure of local accuracy, used to compare the
estimation errors of the model:

εRMS “

d

1
Np

ÿ Np
i“1pCi ´ Ĉiq

2 (21)

(2) Mean relative error (MRE) compares how incorrect a quantity is from an estimated capacity
considered to be true:

εMR “

˜

1
Np

ÿ Np
i“1

ˇ

ˇ

ˇ

ˇ

ˇ

Ci ´ Ĉi
Ci

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ˆ 100% (22)

(3) Coefficient of determination (R2): indicates the fitness of data in a statistical model and gives
information about the goodness of fit of a model. If the estimation is accurate, R2 will be close
to 1.

R2 “ 1´
řNp

i“1

`

Ci ´ Ĉi
˘2

řNp
i“1

`

Ci ´ Ci
˘2 (23)
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where Ci is the actual capacity; Ĉi is the estimated capacity; Ci is the mean value of the estimated
capacity; and Np is the sample size.

5.3.2. Offline Training and Verification

In each batch, the front half data of each battery is used to train AMKRVM, and the back half
data are used for verification. In the verification step, the criterion can be established according to
engineering requirement. In this case, AMKRVM is assumed well trained if over 90% real capacity
values are covered by the 95% confidence intervals (CIs).

The optimal parameters of MKRVM determined by the APSO method are summarized in Table 4.
The optimal values of the three parameters depend on a specific dataset and vary in different batches.
Thus, determining the optimal parameters is significant. In the verification step, despite changes
in the parameter settings of APSO, the variations in the optimization results are relatively small,
showing the robustness of the optimization algorithm. However, through verification steps, the
running time can be saved by changing the maximum number of iterations or particle size of APSO
on the premise of convergence of the algorithm.

Table 4. The optimal parameters of the multi-kernel relevance vector machine (MKRVM).

Batch
Optimal Parameters

r s ρ

1st 4.60 0.92 0.49
2nd 19.56 1.16 0.66
3rd 0.50 1.08 0.16

The regression and estimation results during offline training and verification of nine batteries
are shown in Figure 6. Asterisks in Figure 6 represent relevance vectors (RVs), which form the sparse
solution. The small number of RVs indicates the sparse property of MKRVM. Figure 6 also shows that
most real capacity values lie within the 95% CIs. The degradation rates of battery capacity in distinct
batches vary because of different ambient temperatures and discharge currents.

Table 5 summarizes the regression and estimation errors. Overall, in the three batches, the
proposed model performs well in the regression and estimation process. Interestingly, in the first
batch, some estimation errors are even less than regression errors, indicating the good generalizability
of MKRVM. In the second batch, data size is relatively small, but values of RMSE and MRE are less
than 0.01 and 1%, respectively; and even the smallest R2 is more than 0.9. The results of the second
batch demonstrate that the proposed approach can deal with a sparse dataset. In the third batch,
regression errors are small, but the values of R2 of the estimated capacity of batteries 45 and 47
are slightly far from 1. In Figure 6c, the back half data of batteries in the third batch are highly
nonlinear and fluctuate. Cameron et al. [37] proved that negative or small R2 values may occur when
fitting nonlinear functions to the data because of the computational definition of R2. Thus, small
R2 values in the third batch are rational. The values of RMSE and MRE in the estimation results in
the third batch are also acceptable. In addition, as the 95% CIs can cover most of the real battery
capacity, the performance of the proposed approach on the datasets of batteries in the third batch is
considered satisfactory.
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Figure 6. Regression and estimation results during the offline training and verification for the three
batches of nine batteries. (a) Batteries 5–7; (b) batteries 29–31; (c) batteries 45–47.

The offline verification process confirms the generalizability of the well-trained MKRVM.
The experiment results demonstrate that the proposed AMKRVM can produce accurate and robust
capacity estimation under various conditions.

Table 5. Regression and estimation errors during the offline training and verification process.

Batch Battery Regression Errors Estimation Errors

εRMS εMR (%) R2 εRMS εMR (%) R2

1st
No. 5 0.0015 0.0592 0.9997 0.0072 0.4479 0.9817
No. 6 0.0034 0.1362 0.9996 0.0033 0.2192 0.9972
No. 7 0.0238 0.5609 0.9267 0.0055 0.2688 0.9869

2nd
No. 29 0.0046 0.2197 0.9835 0.0090 0.4608 0.9335
No. 30 0.0020 0.0693 0.9966 0.0070 0.3466 0.9442
No. 31 0.0043 0.1996 0.9842 0.0058 0.3309 0.9481

3rd
No. 45 0.0058 0.6436 0.9945 0.0116 1.4982 0.7446
No. 46 0.0030 0.1784 0.9990 0.0096 0.6287 0.9316
No. 47 0.0024 0.1465 0.9995 0.0149 0.9254 0.7613
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5.3.3. Online Estimation

The well-trained MKRVM is utilized to estimate the capacity of the fourth battery in each batch
(Nos.18, 32 and 48). After offline verification, the well-trained MKRVM do not need to be trained
again using the data of the online batteries. The estimation results obtained using parameters listed
in Table 4 are summarized in Figure 7, and Table 6 shows the estimation errors. The 95% CIs can cover
most of the real capacity values. Although the degradation data of online batteries is not utilized to
estimate parameters in MKRVM, the method still performs well. The online estimation results verify
the accuracy and effectiveness of the proposed approach.
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Figure 7. Online capacity estimation results: (a) Battery 18; (b) Battery 32; (c) Battery 48.

Table 6. Estimation errors of the online estimated capacity.

Battery Estimation Errors

εRMS εMR (%) R2

No. 18 0.0155 0.8032 0.9898
No. 32 0.0077 0.3281 0.9870
No. 48 0.0119 0.5516 0.9508

5.4. Method Validation and Comparison

To verify the accuracy of the proposed approach, we conducted the first comparison study to
determine the estimation errors of two other adaptive RVMs with a single kernel. The first model
for comparison is an RVM with RBF kernel (M1), and the second RVM only uses the polynomial
kernel (M2).

To utilize the dataset, a cross-validation (C-V) process is employed to assess the estimation
performance of each model. In C-V, the original data are divided into two parts: one for training and
the other part for testing. In each batch, M batteries are randomly selected as the training data and
the remaining (4-M) batteries are used for testing. In each batch, the C-V process is repeated k = CM

4
times, with each of the four batteries used exactly CM´ 1

3 times as the validation data. Total C-V RMSE
is computed as

εCV “

g

f

f

f

e

1
U

k
ÿ

i“1

ÿ

xnPXpiq
test

ˆ

tn ´ y
Xpiq

train
pxnq

˙2
(24)

where Xpiqtest and Xpiqtrain are the test and the training datasets in ith C-V process, respectively;

y
Xpiq

train
denotes the AMKRVM model built with the test subset Xpiqtest; tn is the actual response of the

input xn P Xpiqtest; and U is the total number of test data points for the k C-V processes.
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The comparison results are summarized in Table 7. The values of C-V RMSE of the AMKRVM
are smaller than that of the two single-kernel models, which shows that the multi-kernel function
enables the RVM to be more accurate and general than the single kernel. In online applications,
the degradation data of the on-line battery are not used to train RVM, and generalizability plays a
significant role in estimation. The results illustrate that the proposed AMKRVM approach has better
performance in online applications than the other single-kernel RVMs under different conditions.

Table 7. Comparison results of C-V RMSEs of three models.

Batch M
C-V RMSE

EMKRVM M1 M2

1st
3 0.0342 0.0573 0.0794
2 0.0496 0.0767 0.0927
1 0.0557 0.0975 0.1096

2nd
3 0.0107 0.0323 0.0779
2 0.0155 0.0423 0.0878
1 0.0148 0.0290 0.1001

3rd
3 0.0303 0.3047 0.3008
2 0.0307 0.3491 0.3180
1 0.0536 0.3522 0.4414

Additionally, C-V RMSEs of the proposed model under different training data size illustrate that
more accurate estimated capacity can be obtained with more training data used. An opposite result
occurs in the second batch when M decreases from 2 to 1. However, in Table 7, the increase in C-V
RMSEs in the second batch during C-V processes is nearly negligible. The MKRVM performance on
the second batch is stable. Similar conclusions can be drawn from Table 5. Thus, the aforementioned
opposite result may be due to normal experimental errors. Overall, the C-V results validate the
accuracy of the proposed model.

The second experiment compares the running time of the proposed AMKRVM with that of
MKRVM that uses traditional PSO to search for optimal parameters. The results show that the
iterative numbers of APSO (around 200 iterations) are less than that of the latter approach (around
340 iterations), thereby confirming the efficiency of the proposed method.

6. Conclusions

This paper proposes an ensemble and data-driven approach for online capacity estimation
of lithium-ion batteries. First, six features are extracted from cyclic charge/discharge cycles and
used as health indicators for a battery. An adaptive method based on MKRVM and APSO
algorithm is then employed to regress and estimate the capacity. To ensure the robustness of the
model for on-line application, we utilized offline data for training MKRVM and verifying method
generalizability. Finally, cross-validation is performed in model comparison to validate the accuracy
of the proposed model.

Experimental results demonstrate that the proposed approach has satisfactory performance
under different conditions. AMKRVM can be used to automatically and effectively determine optimal
parameter settings under distinct circumstances. The novel offline supervised learning step ensures
the efficiency and robustness of the estimation. In model comparison, the cross-validation results
show the validity of our model. Compared with single-kernel RVMs, the novel AMKRVM produces
more accurate and robust estimation results. Besides, the C-V results indicate that estimation accuracy
increases as more training data are used because of the relatively good coherence of the sample data.
Finally, it shows that parameter optimization through APSO is also more efficient. The results verify
that the proposed method is promising for online battery prognostics.
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However, the AMKRVM training is limited in the same patch data because ambient temperature
is not included as a variable in the model. The optimal parameters of MKRVM differ under varied
ambient temperatures. As the influence of the ambient temperature on capacity degradation is highly
demonstrated, further research must be performed to explore the effects of this parameter.
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Nomenclature

AMKRVM adaptive multi-kernel relevance vector machine
APSO accelerated particle swarm optimization
CC constant current
CI confidence interval
CV constant voltage
C-D cycle charge/discharge cycle
C-V cross-validation
DoD depth of discharge
EIS electrochemical impedance spectroscopy
MKRVM multi-kernel relevance vector machine
NN neural network
PSO particle swarm optimization
RBF radial Basic Function
RME Mean Relative Error
RMSE root-mean-square error
RVM relevance vector machine
SOH state-of-health
SVM support vector machine
CQcc CC charge capacity
CQcv CV charge capacity
I current variable (A)
Icc value of the constant current (A)
t0 begin time of the CC charge step
tcc end time of the CC charge step
tcv end time of the CV charge step
N input data size
txn, tnu

N
n“1 input-target pairs

K(¨ ) kernel function
ω the weights vector
εn measurement error
σ2 variance of the measurement error
Φ design matrix
α vector of independent hyper-parameters
Σ the posterior covariance of the weightsω
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µ the posterior mean of the weightsω
KRBF radial basic function kernel
Kpoly polynomial kernel
Kmix multi-kernel function
r kernel width of KRBF
s the parameter of the polynomial kernel
g* the global best solution
vp the velocity of p-th particle
c1, c2 learning factor
xp the position of p-th particle
ξ a random number generated from standard norm distribution
Q the heat generated during battery operation (Wm3)
T temperature (K)
Voltotal the total volume of a battery (m3)
Voc the open-circuit voltage (V)
V the working voltage (V)
εRMS root mean square error
εMR mean relative error
R2 coefficient of determination
Ci actual capacity
Ĉi estimated capacity
Ci mean value of the estimated capacity
Np size of the estimated capacity
εCV cross-validation error
M number of batteries for training

References

1. Farmann, A.; Waag, W.; Marongiu, A.; Sauer, D.U. Critical review of on-board capacity estimation
techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281,
114–130. [CrossRef]

2. Erdinc, O.; Vural, B.; Uzunoglu, M. A dynamic lithium-ion battery model considering the effects of
temperature and capacity fading. In Proceedings of the 2009 International Conference on Clean Electrical
Power, Capri, Italy, 9–11 June 2009; pp. 383–386.

3. Liu, D.; Wang, H.; Peng, Y.; Xie, W.; Liao, H. Satellite lithium-ion battery remaining cycle life prediction
with novel indirect health indicator extraction. Energies 2013, 6, 3654–3668. [CrossRef]

4. Hu, C.; Jain, G.; Schmidt, C.; Strief, C.; Sullivan, M. Online estimation of lithium-ion battery capacity using
sparse Bayesian learning. J. Power Sources 2015, 289, 105–113. [CrossRef]

5. Li, J.; Wang, L.; Lyu, C.; Luo, W.; Ma, K.; Zhang, L. A Method of Remaining Capacity Estimation for
Lithium-Ion Battery. Adv. Mech. Eng. 2013, 5. [CrossRef]

6. Eddahech, A.; Briat, O.; Bertrand, J.; Deletage, J.; Vinassa, J.-M. Behavior and state of health monitoring of
Li-ion batteries using impedance spectroscopy and recurring neural networks. Int. J. Electr. Power Energy
2012, 42, 487–494. [CrossRef]

7. Kim, J.; Lee, S.; Cho, B. SOC/capacity estimation of a Li-Ion battery based on pattern recognition at different
temperature. In Proceedings of the 2011 IEEE 8th International Conference on Power Electronics and ECCE
Asia (ICPE & ECCE), Jeju, Korea, 30 May–3 June 2011; pp. 296–303.

8. Zhang, C.; Jiang, J.; Zhang, W.; Wang, Y.; Sharkh, S.M.; Xiong, R. A novel data-driven fast capacity
estimation of spent electric vehicle lithium-ion batteries. Energies 2014, 7, 8076–8094. [CrossRef]

9. Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining
useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239,
680–688. [CrossRef]

12455

http://dx.doi.org/10.1016/j.jpowsour.2015.01.129
http://dx.doi.org/10.3390/en6083654
http://dx.doi.org/10.1016/j.jpowsour.2015.04.166
http://dx.doi.org/10.1155/2013/154831
http://dx.doi.org/10.1016/j.ijepes.2012.04.050
http://dx.doi.org/10.3390/en7128076
http://dx.doi.org/10.1016/j.jpowsour.2012.11.146


Energies 2015, 8, 12439–12457

10. Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-ion battery state of health monitoring and remaining useful life
prediction based on support vector regression-particle filter. J. Power Sources 2014, 271, 114–123. [CrossRef]

11. Hu, Y.; Hu, C.; Kong, X.; Zhou, Z. Real-time lifetime prediction method based on wavelet support vector
regression and fuzzy c-means clustering. Acta Autom. Sin. 2012, 38, 331–340. [CrossRef]

12. Wang, S.; Zhao, L.; Su, X.; Ma, P. Prognostics of Lithium-Ion Batteries Based on Battery Performance
Analysis and Flexible Support Vector Regression. Energies 2014, 7, 6492–6508. [CrossRef]

13. Saha, B.; Goebel, K.; Poll, S.; Christophersen, J. An integrated approach to battery health monitoring using
bayesian regression and state estimation. In Proceedings of the 2007 IEEE Autotestcon, Baltimore, MD,
USA, 17–20 September 2007; pp. 646–653.

14. Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing
mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [CrossRef]

15. Tipping, E.M. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1,
211–244.

16. Gonen, M.; Aipaydin, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
17. Fei, S.; He, Y. A Multiple-Kernel Relevance Vector Machine with Nonlinear Decreasing Inertia Weight PSO

for State Prediction of Bearing. Shock Vib. 2015, 2015. [CrossRef]
18. Wang, G.-G.; Hossein Gandomi, A.; Yang, X.-S.; Hossein Alavi, A. A novel improved accelerated particle

swarm optimization algorithm for global numerical optimization. Eng. Comput. 2014, 31, 1198–1220.
[CrossRef]

19. Saha, B.; Goebel, K. Battery Data Set; National Aeronautics and Space Adminstration (NASA) Ames
Prognostics Data Repository: Moffett Field, CA, USA, 2007.

20. Dalal, M.; Ma, J.; He, D. Lithium-ion battery life prognostic health management system using particle
filtering framework. Proc. Inst. Mech. Eng. Part O J. Risk 2011, 225, 81–90. [CrossRef]

21. Jin, G.; Matthews, D.E.; Zhou, Z. A Bayesian framework for on-line degradation assessment and residual
life prediction of secondary batteries inspacecraft. Reliab. Eng. Syst. Saf. 2013, 113, 7–20. [CrossRef]

22. Eddahech, A.; Briat, O.; Vinassa, J.-M. Determination of lithium-ion battery state-of-health based on
constant-voltage charge phase. J. Power Sources 2014, 258, 218–227. [CrossRef]

23. Hu, C.; Jain, G.; Zhang, P.; Schmidt, C.; Gomadam, P.; Gorka, T. Data-driven method based on particle
swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery.
Appl. Energy 2014, 129, 49–55. [CrossRef]

24. Widodo, A.; Shim, M.-C.; Caesarendra, W.; Yang, B.-S. Intelligent prognostics for battery health monitoring
based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [CrossRef]

25. Onda, K.; Ohshima, T.; Nakayama, M.; Fukuda, K.; Araki, T. Thermal behavior of small lithium-ion battery
during rapid charge and discharge cycles. J. Power Sources 2006, 158, 535–542. [CrossRef]

26. Yinjiao, X.; Williard, N.; Tsui, K.L.; Pecht, M. A comparative review of prognostics-based reliability methods
for Lithium batteries. In Proceedings of the Prognostics and System Health Management Conference
(PHM-Shenzhen), Shenzhen, China, 24–25 May 2011; pp. 1–6.

27. Li, J.; Lyu, C.; Wang, L.; Zhang, L.; Li, C. Remaining capacity estimation of Li-ion batteries based on
temperature sample entropy and particle filter. J. Power Sources 2014, 268, 895–903. [CrossRef]

28. Wang, T.; Tseng, K.J.; Zhao, J.; Wei, Z. Thermal investigation of lithium-ion battery module with different
cell arrangement structures and forced air-cooling strategies. Appl. Energy 2014, 134, 229–238. [CrossRef]

29. Sato, N. Thermal behaviour or analysis of lithium-ion batteries for electric and hybrid vehicles.
J. Power Sources 2001, 99, 70–77. [CrossRef]

30. Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.;
Van den Bossche, P.; Coosemans, T.; et al. Lithium iron phosphate based battery—Assessment of the aging
parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [CrossRef]

31. Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and
prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124.
[CrossRef]

32. Gandomi, A.H.; Yun, G.J.; Yang, X.S.; Talatahari, S. Chaos-enhanced accelerated particle swarm
optimization. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 327–340. [CrossRef]

33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on
Neural Networks; IEEE: Perth, Australia, 1995; Volume 4, pp. 1942–1948.

12456

http://dx.doi.org/10.1016/j.jpowsour.2014.07.176
http://dx.doi.org/10.3724/SP.J.1004.2012.00331
http://dx.doi.org/10.3390/en7106492
http://dx.doi.org/10.1016/j.jpowsour.2013.05.040
http://dx.doi.org/10.1155/2015/685979
http://dx.doi.org/10.1108/EC-10-2012-0232
http://dx.doi.org/10.1177/1748006XJRR342
http://dx.doi.org/10.1016/j.ress.2012.12.011
http://dx.doi.org/10.1016/j.jpowsour.2014.02.020
http://dx.doi.org/10.1016/j.apenergy.2014.04.077
http://dx.doi.org/10.1016/j.eswa.2011.03.063
http://dx.doi.org/10.1016/j.jpowsour.2005.08.049
http://dx.doi.org/10.1016/j.jpowsour.2014.06.133
http://dx.doi.org/10.1016/j.apenergy.2014.08.013
http://dx.doi.org/10.1016/S0378-7753(01)00478-5
http://dx.doi.org/10.1016/j.apenergy.2013.09.003
http://dx.doi.org/10.1016/j.jpowsour.2014.01.085
http://dx.doi.org/10.1016/j.cnsns.2012.07.017


Energies 2015, 8, 12439–12457

34. Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010.
35. Bernardi, D.; Pawlikowski, E.; Newman, J. A General Energy Balance for Battery Systems.

J. Electrochem. Soc. 1985, 132, 5–12. [CrossRef]
36. Pals, C.R.; Newman, J. Thermal modeling of the lithium/polymer battery I. Discharge behaviour of a single

cell. J. Electrochem. Soc. 1995, 142, 3274–3281. [CrossRef]
37. Cameron, C.; Frank, W.; Cane, H.; Khosla, C. An R-squared measure of goodness of fit for some common

nonlinear regression model. J. Econ. 1997, 77, 1790–1792. [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

12457

http://dx.doi.org/10.1149/1.2113792
http://dx.doi.org/10.1149/1.2049974
http://dx.doi.org/10.1016/S0304-4076(96)01818-0

	Introduction 
	Feature Extraction for Capacity Prediction 
	Aging Experiments 
	Feature Extraction 
	Time Intervals Extracted from CC/CV Charge Step (F1 and F2) 
	Time Interval between Two Predefined Discharge Voltages (F3) 
	Average Temperatures during Charge and Discharge (F4 and F5) 
	Cutoff Voltage in Discharge Step (F6) 

	Summary 

	Adaptive Multi-Kernel Relevance Vector Machine 
	Multi-Kernel Relevance Vector Machine 
	Adaptive Multi-Kernel Learning Based on APSO 

	Overall Procedure for Capacity Estimation 
	Experimental Results and Discussion 
	Data Sources 
	Battery Features and Analysis 
	Capacity Estimation Results and Discussion 
	Evaluation Criterion 
	Offline Training and Verification 
	Online Estimation 

	Method Validation and Comparison 

	Conclusions 

