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Abstract: Given the stochastic nature of wind, wind power grid-connected capacity prediction plays
an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting
methods make enormous contribution to mapping wind power strategy, power dispatching and
sustainable development of wind power industry. This study proposes a bat algorithm (BA)-least
squares support vector machine (LSSVM) hybrid model to improve prediction performance.
In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality
tests are conducted to examine the influence of installed capacity with different lags, and partial
autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity.
The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of
LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that
the accuracy improvement of the present approach can reach about 20% compared to other single
or hybrid models.

Keywords: wind power grid connected capacity prediction; bat algorithm (BA); least squares
support vector machine (LSSVM); Granger causality test

1. Literature Review

As one of the most proven forms of environmentally friendly and renewable energy, wind power
continues to attract considerable attention throughout the world [1-4]. In 2014, the new installed
capacity of global wind power was 51,477 MW, of which China accounted for 45.4%, explicitly
becoming a global leader pertaining to wind power capacity. However, this rapid integration of
wind power into the grid has resulted in many operational challenges in the distribution networks
since most wind farms are directly connected to the distribution network instead of the transmission
network. The benefit of rapid extension of the distribution system is incident to the operational
challenges. Although they have started to create impact on the overall power system operation, until
recently no support were imperatively offered to the distribution/transmission system operation [5].
For instance, the overwhelming scale and speed of deployment are now embarrassing China’s wind
power industry due to grid connectivity issues. The problem of “abandoned wind” in China has led
to more than 100 billion kWh of power being wasted. The disconnection between the rapid increase
of wind power supply and grid-connected consumption hinders the sustainable development of
the wind power industry. As the literature on grid-connected capacity prediction only gives scant
regard to the disorderly expansion of wind power, there appeared to be a situation of repeated
construction and “surplus production”. Therefore, the precise forecasting approaches with respect
to grid-connected capacity have positive implications on the reduction of the wasted energy and the
healthy and stable development of the wind power industry.
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There is abundant literature on wind power predication, most of which has been published
during the past few years. The predication literature covers many aspects of wind power.
These include, but are not limited to, wind speed forecasting, generated power and generated
energy prediction, relatively with little attention to wind power grid connected capacity prediction.
The methods of these studies can be classified into two categories: time series models and artificial
intelligent algorithm models. Most of these approaches utilize time series analysis, encompassing
vector autoregressive (VAR) models [6,7] and autoregressive moving average (AMRA) models [7-10].
Torres [8] decribed a modified ARMA model owing to the non-Gaussian nature and the
non-stationary nature of wind, and the method behaved especially well in longer-term forecasting.
Erdem [9] decomposed wind speed into lateral and longitudinal components with each component
being represented by an ARMA model, then the results were combined to obtain predictive values.
Liu [10] proposed an ARMA-GARCH algorithm for modeling the mean and volatility of wind
speed, with the model being evaluated the effectiveness through multiple methods. The results
suggested the current approach effectively grasped the trend of wind speed. Jiang [11] presented
a hybrid model of autoregressive moving average and generalized autoregressive conditional
heteroscedasticity to forecast wind speed. The simulation results demonstrated the proposed method
outperformed the compared approaches. Nevertheless, the extensive implementation of time series
model on wind power prediction can be problematic, since it has poor nonlinear fitting performance.

Conversely, the adaptive and self-organized learning characteristics of intelligent algorithms
apparently validate the estimation of nonlinear time series. For instance, artificial neural network
(ANN) [12-17] and LSSVM [17-20] are perceived to be highly effective methods in the field of wind
power forecasting. Guo [18] successfully conducted a hybrid Seasonal Auto-Regression Integrated
Moving Average and Least Square Support Vector Machine (SARIMA-LSSVM) model to predict
the mean monthly wind speed. De Giorgi [19] developed a comparative study for the prediction
of the power production of a wind farm, using historical data and numerical weather predictions.
It was illustrated that the hybrid approach based on WD-LSSVM significantly outperformed hybrid
artificial neural network (ANN)-based methods. Yuan [20] established a LSSVM model with the
light of gravitational search algorithm (GSA) for short-term output power prediction of a wind farm.
Compared with the back propagation (BP) neural network and support vector machine (SVM) model,
the modeling results indicated that the GSA-LSSVM model had higher accuracy for short-term
output power prediction. Wang [21] decomposed the non-stationary time series into several intrinsic
mode functions (IMF) and the trend item, then each IMF was forecasted by diverse LSSVM models.
These forecasting results of each IMF were combined to gain the final value of output power of the
wind farm.

With the rapid development of artificial intelligence technology, many scholars are devoting
growing time and resources to delve deeper into LSSVM. Since the regularization parameter ¢ and
the kernel parameter o of the LSSVM have a great influence on the performance of the prediction
model, a body of studies established LSSVM model based on different intelligent algorithms for wind
power prediction achieving better overall results [21-24]. Hu [22] constructed a corrected quantum
particle swarm optimization (QPSO) algorithm for LSSVM parameters selection, and as a result,
the generalization capability and learning performance of LSSVM model was clearly enhanced.
Sun [23] introduced a LSSVM model optimized by PSO. The simulation results recognized that the
proposed method can distinctly increase the predicting accuracy. Wang [24] designed a LSSVM
model, the parameters of which were tuned by a particle swarm optimization based on simulated
annealing (PSOSA). Four wind farms as a case study in Gansu Province, Northwest China were
applied to corroborate the effectiveness of the hybrid model. Song [25] employed a novel hybrid
prediction model using harmony search (HS) and LSSVM. In the pilot study, HS addressed the
issue of the blindness of parameter selection and kernel function of LSSVM, realizing the adaptive
selections of regularization parameter ¢ and kernel function parameter 0. Compared with the
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BP neural network and traditional statistical regression model, the HS-LSSVM model had higher
precision and forecasting efficiency.

However, it is clear that from the previous research that PSO results in a local optimum
during the regularization parameter selection process. In addition the weak local search ability of
the HS algorithm has negative implications on the convergence rate. In order to implement the
shortcomings of existing algorithms, in 2010, a new global algorithm, namely, the bat algorithm (BA),
was developed by Yang, based on the echolocation behavior of bats [26]. With a good combination
of the paramount advantages of PSO, genetic algorithm (GA) and HS, the superiority of BA relies on
its simplification, powerful searching ability and fast convergence. Recently, a burgeoning number of
studies are focusing on BA for parameter optimization [26-30]. Hafezi [27] exploited a compound BA
strategy to predict stock prices over a long term period. The model was tested for forecasting eight
years of DAX stock prices in quarterly periods and was perceived as a suitable tool for predicting
stock prices. Meng [28] applied a novel bat algorithm (NBA) to four real-world engineering designs,
and the effectiveness, efficiency and stability of NBA in the light of biological basis were noticeably
promoted. Senthilkumar [29] selected the best set of features from the initial sets through BA
conceived as one of the recent optimization algorithm for reducing the time consumption in detecting
record duplication. Venkateswara Rao [30] adopted BA to minimize real power losses in a power
system for generation reallocation with unified power flow controller. Yang [31] explored a new
multi-objective optimization approach on the basis of BA to suppress critical harmonics and foster
power factor for passive power filters (PPFs). Considering the excellent performance of BA in the
process of parameter optimization, it is the purpose of the present paper to utilize BA to select the
two pertinent parameters of the LSSVM model and gain the global optimal solution.

Furthermore, a wealth of variables have an impact on the forecasting accuracy and efficiency,
and there has been less research looking at the input selection. These studies tend to select inputs
using personal experience alone. However, in this paper, not only Stationarity, Cointegration and
Granger causality tests are conducted to select the environmental factor reasonably [32], but also
the partial autocorrelation analysis (PACF) is presented to calculate the lags of the growth rates of
grid-connected capacity. Then, this study performed a BA-LSSVM hybrid model for wind power
grid connected capacity prediction.

The principal purpose of this study is to investigate the accurate forecasting method of
wind power capacity. In this research, a hybrid model which based on BA-LSSVM is applied.
The parameters in LSSVM are fine-tuned by BA to ensure the generalization and the learning
ability of LSSVM. To select the appropriate inputs, Stationarity, Cointegration and Granger causality
tests and the partial autocorrelation analysis are conducted. The proposed method is simple and
effective for prediction. The focus of the study is on comparing the results obtained by the
BA-LSSVM, PSO-LSSVM, HS-LSSVM, PSO-BPNN, single LSSVM and ARMA models. This paper
is divided into five major sections as follows. Section 2 describes the principles of BA and LSSVM
respectively. In Section 3 a hybrid model is constructed which is designed to predict grid connected
capacity in relation to wind power. Then, the proposed model is examined by a case study and
a deep comparison of the existing methods. Finally, Section 5 provides some conclusions of the
whole research.

2. Bat Algorithm (BA) and Least Squares Support Vector Machine (LSSVM)

2.1. Bat Algorithm (BA)

BA is a new meta-heuristic algorithm inspired by the echolocation behavior of bats. It provides
an excellent way for the optimization and classification as its powerful selection of complicated
problems [26]. The basic flow of BA can be generalized as the pseudo code listed in Algorithm 1.
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Algorithm 1. Pseudo code of the Bat Algorithm.

(1) Initialize the position of bat population x; (i =1, 2, ..., n) and v;
(2) Initialize pulse frequency f; at x;, pulse rates r; and the loudness A;
(3) While (f < maximum number of iterations)

(4) Generate new solutions by adjusting frequency

(5) Update the velocities and solutions

(6) If (rand >r;)

(7)  Select a solution among the best solutions

(8) Generate a local solution around the selected best solution

(9) Endif

(10) Generate a new solution by flying randomly

(11) If (rand < A; & f(x;) < f(x*))

(12) Accept the new solutions

(13) Increase r; and reduce A;

(14) End if

(15) Rank the bats and find the current best x*

(16) End while

2.2. Least Squares Support Vector Machine (LSSVM)

LSSVM, proposed by Suykens [33], is an improved algorithm of support vector machine (SVM),
adopting the loss function different from SVM and minimizing the square error. A quadratic
programming problem is transformed into linear equations through replacing inequality constraints
with equality constraints, addressing the calculation issue of large-scale data sufficiently. Figure 1

shows the flow chart of LSSVM principle.
Start

A 4

Set training
vectors

A 4

Establish optimal
objective function of
LSSVM

A 4

Define the Lagrange
function

A

Obtain linear equations
according to the KKT
conditions

A 4

Obtain the final form of
LSSVM

Figure 1. The flow chart of LSSVM principle.
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Then, there are two parameters, the regularization parameter and the kernel parameter,
determining forecasting accuracy of the LSSVM model. In previous studies, experimental
comparison, grid searching method and cross validation are optimized to the two parameters,
but it is time-consuming and inefficient. Therefore, this paper adopts BA to optimize the
two parameters, which can enhance and further the adaptability of the model and improve the
prediction accuracy effectively.

3. Bat Algorithm-Least Squares Support Vector Machine (BA-LSSVM) Approach

Based on BA-LSSVM model, the basic steps of parameter optimization can be described
as follows:

(1) Parameters setting

The main parameters of BA are initial population size n, maximum iteration number N, original
loudness A, pulse rate 7, location vector x, speed vector v.

(2) Initialization population

Initialize the bat populations position, each bat location strategy is a component of ¢ and o, which
can be defined as follows:
X = Xmin + rand(1,d) x (Xmax — Xmin) (1)

where the dimension of the bat population: d = 2.
(3) Update parameters

Calculate the fitness of population, find the current optimal solution and update the pulse
frequency, speed and position of bats as follows:

fi:fminJF(fmax*fmin) x B )
of = o]+ (xf = x*) x f; 3)
xh = xf_l + 0} (4)

where 8 denotes uniformly random numbers, 3 € [0,1]; f; is the search pulse frequency of the bat i,
fi € [fminSfmax]; vf and vffl are the speeds of the bat i at time t and -1, respectively; further, xf and xffl
represent the location of the bat i at time t and -1, respectively; x* is the present optimal solution for
all bats.

(4) Update loudness and pulse frequency

Produce uniformly random number rand, if rand > r;, disturb the optimal strategy randomly and
acquire a new strategy; if rand < A; and f(x) > f(x*), then the new strategy can be accepted as well as
the r; and A; of the bat are updated as follows:

At = g Al ®)
rf“ =91 — exp(—1)] (6)
where « and v are constants.

(5) Output the global optimal solution

The current optimal solution can be obtained depending on the sort of all fitness values of the
bat population. Repeat steps Equation (2) to Equation (4) till the maximum iterations and output the
global optimal solution. Thus, a wind power grid connected capacity prediction model is performed.
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In sum, the BA-LSSVM algorithm flow chart is demonstrated in Figure 2. Firstly, LSSVM
approach is employed to model the training set, and the mean square error of true value and
predictive value is adopted as a fitness function of BA. Then, the group of parameter of LSSVM is
optimized by BA for the minimum fitness value. Finally, the LSSVM model with optimal parameters
can be applied to predict the wind power grid connected capacity.

Input

Set parameters of LSSVM and BA

A 4

Initialization population

\ 4

Calculate the fitness value of BA

\ 4

Current optimal strategy

A 4

Update pulse frequency, velocity

and location of BA

A 4

Update pulse frequency and loudness

Reach the maximum

iterations or not?

Obtain the optimal parameters

A 4

End

Figure 2. The flow chart of BA-LSSVM.
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4. Forecasting and Analysis of BA-LSSVM

4.1. Evaluation Indexes of Prediction Accuracy

In this article, mean square error (MSE), root mean square error (RMSE) and mean absolute
error conceived as evaluation indexes are employed to assess the performance of the proposed

model quantitatively:
2
n

1 A
MSE = EZ (Yi - Y,) 7)
i=1
v (v
RMSE = | - i i
1 A
MAE = E,Z Y, —Y; 9)

where 7 is defined as the year to be forecasted, Y; is the actual value at year i, and Y; is the predictive
value correspondingly.

4.2. Input Selection for Prediction Model

In this subsection, during the period of 1995-2014, newly installed capacity, cumulatively
installed capacity, grid-connected capacity and cumulatively grid-connected capacity of the wind
power of China are regarded as the original data. Moreover, in order to enhance forecasting accuracy,
this study also formulates the growth rates of installed capacity and grid-connected capacity related
to wind power. Then, to confirm the non-stationary of time series, the stationarity of each group is
examined by unit root test of ADF with Lag 1, as shown in Table 1.

Table 1. Unit root test: 1995-2014.

Test Installed Capacity of Wind Power Grid-Connected Capacity of Wind Power
Methods New Cumulative Growth Rate New Cumulative ~ Growth Rate
ADF test 0.0987 0.8264 —1.8702 0.2432 —0.6924 —2.1677

(—3.0403) (—3.0403) (—3.0403) (—3.0403) (—3.0403) (—3.0403)

Conclusion  non-stationary non-stationary non-stationary non-stationary non-stationary non-stationary

The null hypothesis of ADF is the existence of unit root; the critical values of significance level are indicated in
parentheses; the significance level is 0.05.

According to Table 1, the ADF values of the all-time series are more than the critical value of
0.05. Thus, it can be concluded from Table 1that each time series is non-stationary. For the simplicity
of dealing with the initial data, this research on grid-connected capacity forecasting of wind power
could be the prediction for the annual growth rate of grid-connected capacity of wind power.

The study on the prediction for the annual growth rate of grid-connected capacity of wind power
is conducted by the following steps. From previous research, it can be concluded that the input
selection and the parameters have great influences on the performance of LSSVM method. Thus,
this paper selects the growth rate of installed capacity belonging to the experimental variables as an
exogenous variable of the growth rate of grid-connected capacity in different periods depending on
a Granger causality test, and the historical data of the growth rate of grid-connected capacity are
regarded as endogenous variables through calculating PACF.

In order to mine the environmental information, the correlation analysis of the growth rate of
installed capacity and the growth rate of grid-connected capacity is developed appropriately. Their
changes in the same year are noticeably described in Figure 3. It indicates that the growth rate of
grid-connected capacity fluctuation is in line with the growth rate of installed capacity in almost
years. To confirm this finding, a Granger causality test needs to be administered.
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Figure 3. Relationship between the growth rate of installed capacity and the growth rate of
grid-connected capacity.

Therefore, the exact causality of the two variables with various lags is explored through the
Granger causality test. Granger, a Nobel Prize Winner of Economics in 2003, discovered the test
approach first. The causality amongst economic variables can be analyzed in the light of the Granger
causality test. One of the preconditions of the test method is the time series must be stable, otherwise it
inclines to display the spurious regression issues. However, from Table 1, it seems that all-time series
are non-stationary. Hence, this matter needs to be resolved by a cointegration test. The long-term
information which is essential for analysis would be discarded if made stationary. In order to
determine whether the two non-stationary variables have a long-term steady relationship or not,
in this research, a Johansen and Juselius Cointegration test is conducted by exploiting Eviews7.2
under the Windows 7 environment. The test results are indicated in Tables 2 and 3.

Table 2. Unrestricted Cointegration Rank Test (Trace).

Hypothesized Trace 0.05

. e s
Number of CE(s) Eigenvalue Statistic Critical Value Probability
None * 0.7150 25.9793 15.4947 0.0009
At most 1 0.1713 3.3835 3.8415 0.0658

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level; * denotes rejection of the hypothesis at the 0.05 level;
** MacKinnon-Haug-Michelis (1999) p-values.

Table 3. Unrestricted Cointegration Rank Test (Maximum Eigenvalue).

Hypothesized . Trace 0.05 e wk
Number of CE(s) Eigenvalue Statistic Critical Value Probability
None * 0.7150 22.5958 14.2646 0.0019
At most 1 0.1714 3.3835 3.8415 0.0658

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level; * denotes rejection of the hypothesis at
the 0.05 level; ** MacKinnon-Haug-Michelis (1999) p-values.

According to Table 3, “None” denotes the null hypothesize that there is no cointegration
relationship, the trace statistic of this hypothesized is 22.5958, but the critical value of 0.05 is 14.2646.
That is, the trace statistic is higher than the critical value. Therefore this finding does not support
the null hypothesize, indicating there is at least one cointegration relationship. Then, “At most 1”
represents the null hypothesize that there is at most one cointegration relationship, the trace statistic
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of this hypothesized is 3.3835, but the critical value of 0.05 is 3.8415, therefore this finding does
support the null hypothesize, revealing there is one cointegration relationship.

Similarly, according to Table 4, it might be concluded that there is one cointegration relationship
under the significance level of 0.05. Based on these findings, it can be concluded that the growth rate
of installed capacity and the growth rate of grid-connected capacity maintain a long-term steady
relationship. Therefore, implementing a Granger causality test can be reasonable. The Granger
causality test results of the two non-stationary variables from Lag 1 to Lag 4 are highlighted in Table 4.

Table 4. Granger causality test for the growth rates of installed capacity and grid-connected capacity.

Hypothesis Lag1 Lag 2 Lag 3 Lag 4

GROWTH_RATE_IC does not cause GROWTH_RATE_GCC 0.0364 0.0210 0.0399 0.0411
GROWTH_RATE_GCC does not cause GROWTH_RATE_IC 0.8204 0.7849 0.1511 0.2812

GROWTH_RATE_IC is the growth rate of installed capacity; GROWTH_RATE_GCC is the growth rate of
grid-connected capacity; the data in the Table 4 are the associated probabilities from Lag 1 to 4.

As illustrated in Table 4, according to the associated probability, under the significance
level of 0.05, we can reject the null hypotheses that “GROWTH_RATE_IC does not cause
GROWTH_RATE_GCC” from all lags, demonstrating that the growth rate of installed capacity affects
the growth rate of grid-connected capacity. Hence, the growth rate of installed capacity can be utilized
as the environmental variable for LSSVM input with the growth rate of grid-connected capacity.
However, the information that “GROWTH_RATE_GCC does not cause GROWTH_RATE_IC” has
less relationship with the precision of grid-connected capacity prediction, thus this study will not
take the analysis of this results into consideration.

Moreover, the partial autocorrelation analysis of the growth rates of grid-connected capacity
is developed to select the input of LSSVM which is associated with the forecasting data. Figure 4
describes the result of partial autocorrelation analysis where PACF represents the growth rates of
grid-connected capacity. In this study, x; is set as the output variable, and x;_j can be regarded as
one of the input variable when the PACF is beyond the 95% of confidence interval. From Figure 4,
it is evident that the input variables for BA-LSSVM are x;, x;_1, Xi_9, Xj_10, Xi—11-

Finally, choosing the growth rate of wind power installed capacity and the growth rate of grid
connected capacity growth rate of China from 1995 to 2014 as the training set, the training model
is framed, and then data from the growth rate of installed capacity about wind power from 1995
to 2014 selected as test set can be applied to acquire the forecasting values of the growth rates of
grid-connected capacity in corresponding years. The overall forecasting method are constructed as
shown in Figure 5.

1

i I I |
0 .-__—77,

----II-II ]
| | | |
8 10 12

Lag

PACF

05

15 | |
0 2 4 6

Figure 4. The PACEF of the growth rates of grid-connected capacity.
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4.3. Pretreatment Method of Original Data

The pretreatment of original data can sufficiently contribute to accelerate the training speed and
convergence rate of the model. This paper effectively adopts a standardization method to reduce the
prediction error of LSSVM. The pretreatment results are shown in Figure 6. And the equation of the

A 4

Growth rates of grid

connected capacity

PACF

|

Figure 5. The overall forecasting method of BA-LSSVM.

approach can be described as follows [34]:

where ¥; is defined by standardized sequence value; ¥max and Xmin are the maximum and minimum

of the data, respectively.

X; =

Xmax — X

1
— Nomalized data of installed capacity
& | — Normlizd dta of gickcomected capacity
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Figure 6. The pretreatment results of raw data.
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4.4. BA-LSSVM Analysis Result

Previous studies on LSSVM can demonstrate that the performance of the LSSVM approach
depends on its parameters. The optimization of parameters is an indispensable part of LSSVM
model. BA regarded as a population intelligent optimization algorithm offers a novel idea for
searching the optimal parameters of LSSVM. In this article, RBF is chosen as the kernel function of
LSSVM algorithm, decreasing the complexity of the model and improving the training speed. Thus,
regularization parameter ¢ and kernel parameter ¢ can gain the optimal values through the powerful
automatic searching ability of BA. The main parameters of BA are shown in Table 5.

Table 5. Main parameters of BA.

Parameters Values Parameters Values
Initial population size 10 Minimum frequency 0
Initial loudness 0.25 Maximum frequency 5
Pulse rate 0.5 Max-iteration number 100

Using the test set, the forecasting performance of the LSSVM model with the parameters tuned
by BA is examined. The errors of LSSVM are described in Figure 7. From Figure 7, it can be
concluded that the error change of LSSVM is relatively steady. Only the errors of two years exceed 0.1.
Furthermore, the maximum error is —0.2031 amongst all errors, implying the forecasting results
are acceptable.

0.4 T T T T T T T T T
03f b
02F =

D';_ T‘P e e

01 F 1

Error

02F b
-03fF b

_Dd 1 1 1 1 1 1 1 1 1
1994 1995 1993 2000 2002 2004 2006 2008 2010 2012 2014
Year

Figure 7. The prediction error of BA-LSSVM.

4.5. Comparative Analysis of Different Methods

To illustrate the excellent performance of the proposed algorithm, this paper employs diverse
artificial intelligent algorithms to optimize the pertinent parameters of LSSVM model, including BA,
PSO and HS. Meanwhile, the single LSSVM and ARMA are developed to predict the growth
rate of grid-connected capacity of wind power. In addition, in this paper PSO and BP are also
applied to train the neural network for forecasting. Compared with the other forecasting models,
the LSSVM model based on BA displays better performance on the prediction of the growth rate of
grid-connected capacity.

In this paper, the optimal parameters of all LSSVM models are shown in Table 6. Regarding the
HS-LSSVM, the size of harmony memory is 10, the maximum of searching number is 100. In terms of
PSO-LSSVM, the max-iteration number of PSO is 100, the size of population is 30. In addition, with
respect to PSO-BPNN, the max-iteration number of PSO is 200, the number of neuron in hidden layer
is 15, and the training number of BP is 300, the learning rate is 0.003. Furthermore, the time durations
of the computing about different approaches are listed in Table 7. In this study, a computer equipped
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with an Intel® Core™ i3-3110M processor CPU @ 2.40 GHz, 4 GB RAM and the 64 bit Windows 7
operating system (OS) was used. Also, MATLAB R2014a was applied to write all programs of
this paper.

Then, using various approaches with independent variables engaged in merely initial the growth
rates of grid-connected capacity or the original growth rates of grid-connected capacity and the
homologous growth rate of installed capacity, Figure 8 suggests the forecasting results from 1995 to
2014 in China. And, evidently the comparison of prediction results with various models is recognized
in Table 8.

Table 6. The optimal parameters of LSSVM models.

p Forecasting Methods
arameters BA-LSSVM  PSO-LSSVM  HS-LSSVM LSSVM
c 14.0350 231.1334 169.5547 74.7342
0.0025 8.6721 5.1510 0.1267

Table 7. The time durations of the computing about different approaches.

Forecasting Methods
BA-LSSVM  PSO-LSSVM HS-LSSVM  PSO-BPNN LSSVM  ARMA
Time (s) 0.920 36.220 2.326 120.175 1.421 0.445

Table 8. The comparison of prediction results with different models.

Ind Forecasting Approaches
ndexes  TBA-LSSVM PSO-LSSVM HS-LSSVM  PSO-BPNN  LSSVM ARMA

MSE 0.0280 0.0436 0.0300 0.0854 0.0833 0.1279
RMSE 0.0903 0.2133 0.2281 0.1731 0.2869 0.4120
MAE 0.0406 0.1396 0.1143 0.1409 0.2382 0.4260

From Table 7, compared with PSO-LSSVM and HS-LSSVM, the forecasting time of BA-LSSVM
is smaller, demonstrating BA can reduce the time of parameter optimization of LSSVM effectively.
Moreover, the duration of computing about BA-LSSVM is lowest among all intelligent approaches.

15 ‘ ———
—6— BALSSVM
—+— PSOLSSWM
—— HS1SSVM
—¢— PSOBPNN
LSSWM
—4— ARMA

-
T

growth rate

Annual
&
|

| | | | | | | |
0
194 19% 198 2000 2002 2004 2006 2008 2010 2012 2014

Year

Figure 8. The forecast results with different models.
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The absolute errors between the true values and the estimated values may be captured according
to Figure 8. ARMA has poor performance on forecasting the growth rate of grid-connected capacity,
since the deviation of ARMA is the highest among the six methods. In contrast, the prediction values
obtained in almost years by BA-LSSVM can be acceptable. Furthermore, in comparison with the
single LSSVM model, the hybrid models of LSSVM with the parameters optimized by intelligent
algorithms have great advantages in prediction of the growth rate of grid-connected capacity. Most
importantly, the BA-LSSVM method outperforms other improved LSSVM models.

From Table 8, the following conclusions may be reached: (a) this study establishes three
improved LSSVM models, and the performance of LSSVM based on BA is superior to the HS-LSSVM
and the PSO-LSSVM with respect to the evaluation indexes of MSE, RMSE and MAE. For instance,
the MSE of the BA-LSSVM is 0.0280, but the PSO-LSSVM and HS-LSSVM are 0.0300 and 0.0436,
respectively; the MAE of the BA-LSSVM is 0.0406, but the PSO-LSSVM and the HS-LSSVM are
0.1396 and 0.1143, respectively. There is a paramount reason for this phenomenon, namely that
BA adopts the major advantages of the existing intelligent algorithms in some way, combining the
amazing echolocation behavior of bats, while PSO and HS are special cases of the BA in simplified
forms; (b) the improved LSSVM models have better performance than single LSSVM approach. The
primary reason may be the improved LSSVM model is added to the process of automatic searching,
which equips the LSSVM model with better learning and generalization ability to acquire the global
optimal solution easily; (c) the improved LSSVM approaches have higher accuracy than PSO-BPNN
in relation to the evaluation criteria. For instance, the MAE of the PSO-BPNN is 0.1409, but the
BA-LSSVM, the PSO-LSSVM and the HS-LSSVM are 0.0406, 0.1396 and 0.1143, respectively. This
might be accounted for by inability of BPNN to obtain the global optimal solution. A possible
explanation may be that the neural network utilizes the gradient descent method to optimize the
weights, and the optimization process can only be guaranteed to converge to one of the points.
Besides, the RMSE of PSO-BPNN is lower than PSO-LSSVM, HS-LSSVM. A explanation might be
that PSO-BPNN emphasize the RMSE taken as the sole fitness criterion while it neglects the other
indexes; (d) compared with the ARMA model which merely utilizes its own historical data, the
improved LSSVM methods and the hybrid neural network model (PSO-BPNN) are more powerful
than the ARMA model, which proves that the intelligent approaches have more research value and
development space than the statistical models in the area of forecasting.

5. Conclusions

In order to forecast the grid-connected capacity of wind power efficiently, a hybrid model is
framed in this study. Firstly, Stationarity, Cointegration, Granger causality tests and PACF are
employed to select the input of LSSVM method. Then, the regularization parameter ¢ and kernel
parameter ¢ of the proposed models are optimized by BA. Finally, the presented method with
favorable learning ability and generalization is applied to predict the growth rate of grid-connected
capacity of wind power.

According to the different prediction algorithms and the three evaluation indexes, the following
conclusions may be drawn: (a) the hybrid LSSVM models and the pure LSSVM model outperform
ARMA,; (b) the different criteria of the BA-LSSVM are minimum in comparison with PSO-LSSVM and
HS-LSSVMV; (c) The improved LSSVM approaches have higher forecasting accuracy than PSO-BPNN.
The exciting results demonstrate that the accuracy improvement of the BA-LSSVM can reach
about 20%, which indicates the current method is a very promising algorithm for wind power grid
connected capacity prediction.

Regarding some limitations of this study, further research is necessary. First, this study only
selected installed capacity as an exogenous variable of the growth rate of grid-connected capacity,
thus the other relevant factors that affect the grid-connected capacity are needed to investigate in
further research.
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Second, in this paper a normalized method were adopted to reduce the prediction error of

LSSVM. To enhance forecasting accuracy further, future studies need to explore more effective
approach of data processing.
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