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Abstract: Optimal power flow (OPF) objective functions involve minimization of the total 

fuel costs of generating units, minimization of atmospheric pollutant emissions, 

minimization of active power losses and minimization of voltage deviations. In this paper,  

a fuzzy multi-objective OPF model is established by the fuzzy membership functions and 

the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) 

algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover 

operations of a differential evolution algorithm are utilized to generate new solutions to improve 

exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference 

mutation solutions and the reference dimensions of crossover operations to improve swarm 

diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, 

IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained 

by other algorithms, which demonstrates the effectiveness and superiority of the IABC 

algorithm, and how the optimal scheme obtained by the proposed model can make systems 

more economical and stable. 

Keywords: optimal power flow; fuzzy satisfaction-maximizing method; artificial bee 

colony algorithm; differential evolution algorithm; tent chaos mapping 
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1. Introduction 

Research on the optimal operation theory of power systems reached a new level after the optimal 

power flow (OPF) concept was proposed by the French scholar Carpentier in the 1960s [1,2]. OPF is 

regarded as a development and extension of the class power flow, and it can combine economic 

operations with safe operations, and active power optimization with reactive power optimization of 

power systems. It has been an effective optimization tool for power systems after further research by 

numerous academics.  

The OPF problem is considered a complex multi-constraint, non-linear and non-continuous 

optimization problem. The linear programming [3,4], quadratic programming [5], simplified gradient 

method [6], Newton method [7] and interior point method [8] have been widely applied to solve it. These 

algorithms have relatively rapid calculation and are suitable for online calculation, but they aren’t suitable 

for optimization problems with discrete variables, as the optimization results are closely related to the 

position of initial points, so the algorithms easily converge to a local optimum when the position of the 

initial points is within the convergence domain of local optimum points.  

Heuristic algorithms are novel algorithms for solving the OPF problem. Typical heuristic methods 

include the genetic algorithm (GA) [9,10], particle swarm optimization (PSO) [11,12] and others. These 

algorithms possess better global search abilities, aren’t restricted by the initial point position, and can 

effectively solve problems with discrete variables. However, the GA easily converges to local optima 

and has complex encoding and decoding operations. The PSO algorithm also has the premature ending 

phenomenon, and the convergence speed is slow the during later evolution periods.  

The artificial bee colony (ABC) algorithm is one of the recently proposed heuristic algorithms, first 

suggested by Karaboga in 2005. It simulates the intelligent foraging behavior of honeybee swarms [13]. 

Its advantages include easy implementation and better exploration capacity, and it has been successfully 

applied to solve all kinds of optimization problems. The optimization mechanism of the ABC algorithm 

was analyzed in [14], performance testing was done using some typical numerical functions, and the results 

demonstrated that the ABC algorithm possesses superior performance in terms of solving numerical 

optimization problems compared with the GA algorithm, PSO algorithm and DE algorithm. In [15],  

the ABC algorithm was applied to solve an optimal reactive power flow problem of which the 

optimization objective was minimization of active power loss, and the simulation showed that the active 

power loss obtained by the ABC algorithm is lower than those obtained by other heuristic algorithms, 

and ABC algorithm had better convergence properties. In [16], the ABC algorithm was applied to solve 

a power system reconfiguration problem, which considered the active power loss as the objective 

function, and the simulation results showed that the power loss obtained by the ABC algorithm was less 

and the running time shorter than with other algorithms. In [17], the ABC algorithm was utilized to solve 

the economic dispatch problem, and the results indicated that the exploration capacity of the ABC 

algorithm was better than that of other algorithms. However, the ABC algorithm needs to further improve 

the capacities of maintaining population diversity and exploitation [18,19]. 

The paper proposes an improved ABC algorithm (IABC), and the search operation of the IABC 

algorithm for new solutions is replaced with the mutation and crossover operations of the DE algorithm 

to improve the exploitation capacity; the initial swarms, the reference solutions of the mutation operation 

and the reference dimensions of the crossover operation are generated by tent chaos mapping to improve 
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the swarm diversity. The proposed IABC algorithm is applied to solve the multi-objective OPF problem 

of which the objective functions involve minimization of total fuel costs, minimization of emissions, 

minimization of active power losses and minimization of voltage deviations. The objectives are fuzzified by 

the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The calculation model 

of the fuzzy multi-objective OPF-based IABC algorithm is established. Finally the proposed approach 

is tested on the standard IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are 

compared with those obtained by other methods and demonstrate that the proposed approach is efficient 

and superior. 

2. Optimal Power Flow Problem Formulation 

The goal of OPF is to optimize objective functions by determining the optimal control variables while 

satisfying all the constraints. It can be formulated as: 

Minimize: fi(x,u) I = 1,2…, Nobj (1) 

Subject to: g(x,u) = 0, h(x,u) ≤ 0 (2) 

where fi is the objective function i; Nobj is the number of objective functions; g is the equality constraint; 

and h is the inequality constraint; x is the vector of dependent variables including slack bus generated 

active power, generator reactive power output, load bus voltage and transmission line flow; u is the 

vector of independent control variables including generator active power output, generator bus voltage, 

transformer tap settings and shunt VAR compensation. In this paper, four different objective functions 

are considered. Their mathematical models and OPF constraints are described as follows. 

2.1. OPF Objective Function 

2.1.1. Minimization of Total Fuel Cost 

Nowadays with the rise in fuel prices and the increased power loads, the generated costs will obviously 

increase, therefore, it is important to find an optimal operation scheme to generate electricity with 

minimum costs by OPF calculation. The total fuel costs are considered one of the objective functions, 

and can be expressed as: 

2

1

1

genN

i Gi i Gi i

i

f a P b P c


  
 

(3) 

where f1 is the total fuel cost; Ngen is the number of generators; ai, bi, ci are the fuel cost coefficients of 

the ith generator; PGi is the active power output of thermal unit i. 

2.1.2. Minimization of Total Emission 

These days due to the increasingly serious problem of air pollution, more and more countries are 

concerned about environmental protection. Therefore, it is necessary to reduce the emissions of atmospheric 

pollutants caused by the operation of fossil-fueled thermal generation facilities. The total emissions are 

also considered as one of objective functions, and can be described as: 
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where f2 is the total emission; αi, βi, γi are the emission coefficients of the ith generator. 

2.1.3. Minimization of Total Power Loss 

Active power losses will occur during the operation of power systems, and more active power losses 

produced will increase the generated power costs. Therefore, the total power losses are also considered 

as one of the objective functions, and can be expressed as: 
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where f3 is the total active power loss; Nnod is total number of nodes; Vi, Vj are the voltage magnitudes at 

bus i and bus j, respectively; Gij, θij are the branch conductance and phase angles difference between bus 

i and bus j, respectively. 

2.1.4. Minimization of Voltage Deviation 

Bus voltage is one of the most important indices for secure operation and voltage quality. The objectives 

without voltage indices may result in a feasible solution that has an unattractive voltage profile [12]. 

Therefore, the load bus (PQ nodes) voltage deviations from 1.0 per unit are also considered as one of the 

objective functions, and can be expressed as: 

4
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(6) 

where f4 is the total voltage deviation; NPQ is total number of PQ nodes; and 1.0 is per unit. 

2.2. OPF Constraints 

The OPF constraints include equality and inequality constraints. The equality constraints are the 

power flow equations, and they can be described as: 
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where PGi, QGi are the active and reactive power output of the generating units at bus i, respectively;  

PLi, QLi are the demanded active power and reactive power of loads at bus i, respectively; Gij, Bij, θij are 

the transfer conductance, susceptance and voltage angle difference between bus i and bus j, respectively. 

In the OPF problem, the inequality constraints include: 

(a) Generator constraints: generator bus voltages, active power outputs, and reactive power outputs 

are restricted by their upper and lower limits as: 

min max

Gi Gi GiV V V 
, i = 1,2,…, Ngen (9) 
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min max

Gi Gi GiP P P 
, i = 1,2,…, Ngen  (10) 

min max

Gi Gi GiQ Q Q 
, i = 1,2,…, Ngen (11) 

(b) Transformer constraints: transformer tap settings are restricted by their upper and lower limits as: 

min max

Tj Tj TjT T T 
, j = 1,2,…, Ntra  (12) 

(c) Shunt VAR constraints: shunt VAR compensations are restricted by their upper and lower  

limits as: 

min max

Ck Ck CkQ Q Q 
, k = 1,2,…, Nvar (13) 

(d) Security constraints: these include the constraints of the load bus voltage magnitudes and 

transmission line loadings as: 

min max

Dm Dm DmV V V 
, m = 1,2,…, NPQ (14) 

max

Ln LnS S
, n = 1,2,…, Nlin (15) 

3. Fuzzy Multi-Objective OPF Model 

The paper considers the total fuel cost of generating units, the emission of atmospheric pollutants, the 

active power losses and the voltage deviations as the optimization objective functions. The methods for 

solving the multi-objective optimization problem include the weighting method [20] and fuzzy mathematics 

method [21]. The weighting coefficients of the weighting method are determined by decision maker 

preferences or several simulations. The fuzzy mathematics method utilizes membership functions to 

fuzzify the objective functions without weighting coefficient settings. In other words, the fuzzy mathematics 

method can make optimization results more objective and reasonable compared with the weighting 

method. We therefore utilize the fuzzy mathematics method to solve the multi-objective OPF problem, 

and use the following linear membership function so as to modify the candidate objective functions to 

its fuzzy form: 
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 (16) 

where fi is ith objective function; µ(fi) is the membership function of fi; λimax is upper limit value of fi  

and its value is the initial value; λimin is lower limit value of fi and its value is obtained by the single 

objective optimization; m is the number of objective functions. The curves of membership functions 

given by the Equation (16) are shown in Figure 1. 

The fuzzy satisfaction-maximizing method [22,23] is used to convert the multi membership function 

µ(fi) into the objective function µF of fuzzy multi-objective OPF, and it can be expressed as: 

 max 1 ( )F if    (17) 
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Figure 1. Membership functions of each optimization objective. 

The obtained model of fuzzy multi-objective OPF is described as: 

Minimize: μF (18) 

Subject to: g(x) = 0, h(x) ≤ 0 (19) 

The smaller value µF that is obtained by the fuzzy multi-objective OPF described by Equation (18) 

represents the higher fuzzy satisfaction value and the better optimal scheme. 

4. Improved Artificial Bee Colony Algorithm 

4.1. Artificial Bee Colony Algorithm 

The artificial bee colony algorithm is a novel heuristic algorithm inspired by the behavior of honeybee 

swarms searching for food sources, and the process of searching for an optimal solution simulates the 

behavior of honeybee swarms foraging for food sources with a maximum nectar amount. A food source 

foraged by honeybees represents a feasible solution of the optimization problem, and the ith food source 

is described as Xi = (xi1, xi2,…, xiD), where D is the number of dimensions for the optimization problem. 

The nectar amount of the food source represents the fitness value of the associated feasible solution [13,14]. 

The honeybee swarms are divided into employed bees, onlooker bees and scout bees, and their numbers 

are Ne, No and Nc, respectively. In the ABC optimization process, the employed bees do global searching 

for new food sources and pass on the information about the nectar amount to the onlooker bees;  

the onlooker bees choose one employed bee by the roulette wheel selection and do local searching for a 

new food source around the chosen one; if a food source isn’t improved by a predetermined number limit 

of trials, then that food source will be abandoned by the employed bee, and the scout bee will randomly 

generate a new food source instead of the abandoned one, therefore, this step can effectively avoid local 

optima. The optimization process of the algorithm mainly includes initialization, employed bee phase, 

onlooker bee phase and scout bee phase. 

4.1.1. Initialization 

The ABC algorithm randomly generates Ns numbers of initial feasible solutions Xi, generated as: 

min max minrand ( )ij ij ij ijx x x x     (20) 

where j = 1,2,…, D; xij is the jth dimension parameter of a feasible solution Xi; xijmax, xijmin are the upper 

and lower bounds for the dimension j, respectively; rand is random number between 0 and 1. 

1

µ(fi)

fiλimaxλimin
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4.1.2. Employed Bee Phase 

In the employed bee phase, the algorithm randomly chooses a dimension j and a feasible solution Xk, 

and searches for a new candidate solution iX   within the neighborhood of the associated feasible solution 

Xi. The searching equation is described as:  

 ij ij ij ij kjx x R x x    
 (21) 

where j∈{1,2,…, D}, k∈{1,2,…, Ne} are randomly generated and k ≠ i; x'ij is the jth dimension parameter 

of candidate solution iX  ; xkj is the jth dimension parameter of the feasible solution Xk; Rij is random 

number between −1 and 1. 

The fitness values of the feasible solutions are calculated by the following expression: 

1

1
i

i

fit
f




 
(22) 

where fi is the objective function value of feasible solution Xi; and fiti is the fitness value of feasible 

solution Xi. The greedy selection mechanism is utilized to select the better solution between iX   and Xi 

after the fitness values are calculated. A higher fitness value indicates the smaller objective function 

value and the better feasible solution. 

4.1.3. Onlooker Bee Phase 

After all employed bees complete the search processes, each onlooker bee selects a feasible solution 

depending on the probability value Pi to search for a new candidate solution using Equation (21), and 

records the better solution by the greedy selection mechanism. Pi is calculated by the following expression: 

1

e
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i N

i

i

fit
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(23) 

From Equation (23), it can be seen that by increasing the fitness value fiti, the probability of a feasible 

solution chosen by the onlooker bees increases. 

4.1.4. Scout Bee Phase 

If a feasible solution cannot be improved by a predetermined number of cycles limit, that shows the 

fitness value of the solution is a local optimum, then this solution will be abandoned and the a scout bee 

generates a new solution without any guidance using Equation (20). 

4.2. Improved Artificial Bee Colony Algorithm 

In the ABC algorithm, the exploration operation is accomplished by employed bees and scout bees, 

the exploitation operation is accomplished by onlooker bees. However, the exploration and exploitation 

capability is not well balanced, and the exploitation capability is poor [18]. In order to overcome the 

shortcomings of the ABC algorithm, the mutation operation, crossover operation and tent chaos mapping 

are introduced into the ABC algorithm to form an IABC algorithm. 
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4.2.1. Mutation and Crossover Operations 

The DE algorithm has a good exploitation capacity due to the mutation operation and crossover 

operations [24,25]. In order to improve the exploitation capacity of the ABC algorithm, the paper utilizes 

the mutation and crossover operation of DE algorithm instead of the searching operation of Equation (21). 

The new solution Ui of the mutation operation is generated by: 

   best 1 21 2i i i r rU X F X X F X X        (24) 

where Xi is the current solution at the lth iteration; Xbest is the current best solution at the lth iteration; Xr1 

and Xr2 are the different reference solutions (target vectors); r1 and r2 are the serial numbers of the 

reference solution, which are generated randomly and r1 ≠ r2 ≠ i; F1 and F2 are the scaling factors of 

the mutation operation. 

The new solution Vi of the crossover operation is generated by:  

φ ||

φ ||

ij j

ij

ij j

u CR j q
v

x CR j q

 
 

 
 (25) 

where φj is random parameter in the range [0, 1], generated anew for each value of j of solution Xi;  

CR is the constant of crossover operation in the range [0, 1]; q is a reference dimension, it is a random 

parameter in the range [0, D] which ensures that Vi gets at least one parameter from Ui. 

4.2.2. Tent Mapping 

Chaos is a kind of characteristic of non-linear systems, which is a bounded unstable dynamic behavior 

that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions [26]. 

Chaos is characterized as unpredictability, randomicity and regularity, and it does not repeatedly generate 

all the variables according to its own rules in a certain range [27]. If it were brought into the ABC 

algorithm, the ABC algorithm can maintain the population diversity and increase the chances of searching 

for better solutions. The logistic mapping and tent mapping are two different chaotic mapping behavior. 

Compared with logistic mapping, tent mapping has better uniform ergodicity, and the chaos optimization 

method based on tent mapping has higher searching efficiency [28]. The chaotic variables ch of tent 

mapping [28,29] are generated by: 

2 ( ) 0 ( ) 0.5
( 1)

2[1 ( )] 0.5 ( ) 1

ch m ch m
ch m

ch m ch m

 
  

    
(26) 

where m is mapping number. If the fixed points {0, 0.25, 0.5, 0.75} or the small periodic points  

{0.2, 0.4, 0.6, 0.8} of chaotic variables are generated, the new chaotic variables are generated by the 

small disturbance equation:  

2[ ( ) 0.1 ] 0 ( ) 0.5
( 1)

2[1 ( ( ) 0.1 )] 0.5 ( ) 1

ch m w ch m
ch m

ch m w ch m

  
  

     
(27) 

where w is random parameter in the range [0, 1]. 
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Based on the above, the candidate solutions are generated by mutation and crossover operations; the 

initial solutions, the reference mutation solutions and the reference dimensions of the crossover operation 

are generated by tent chaos mapping in the IABC algorithm. 

5. Implementation of the IABC Algorithm for OPF Problem 

In general, the process of the multi-objective OPF problem using the proposed IABC algorithm can 

be described as follows: 

(1) Read the power system data and the control parameters of the IABC algorithm. 

(2) Initialization solutions. The initial solutions are generated by tent chaos mapping, the steps are 

described as: 

(2.1) D numbers of chaotic variables ch in the range [0, 1] are randomly generated to form the initial 

chaotic sequence ch1 = (ch11, ch12,…, ch1D). 

(2.2) chaotic sequence chi (i = 2,…, Ns) is generated by Equation (26) or Equation (27) to form the 

chaotic matrix CH: 

11 12 1

21 22 2

1 2s s s

D

D

N N N D

ch ch ch

ch ch ch
CH

ch ch ch

 
 
 
 
 
  

 (28) 

(2.3) chaotic variables in the CH are transformed into the range of control variables to form the initial 

solutions by the following equation: 

 min max minij ij ij ij ijx x ch x x   
 (29) 

(3) Calculate the fitness value. Calculate the objective functions values using Equations (3)–(6) 

based on the results of the Newton-Raphson power flow; calculate the corresponding fuzzy membership 

function values using Equation (16); calculate the fuzzy objective function value using Equation (17) 

and calculate the fuzzy fitness value of each solution. 

(4) Employed bees phase. In this operation phase, each solution Xi searches for a new candidate 

solution Vi by the following steps: 

(4.1) Calculate values of parameters r1, r2 and q by tent chaos mapping, respectively. The calculated 

equations are described as: 

11 [ ( ) ] 1r er fix ch m N  
 (30) 

22 [ ( ) ] 1r er fix ch m N  
 (31) 

[ ( ) ] 1qq fix ch m D  
 (32) 

where fix is the top integral function; m is the mapping number; chr1(m), chr2(m) and chq(m) are chaotic 

variables of r1, r2 and q, respectively, which are generated by Equation (26) or Equation (27) and 

those initial values are randomly generated in the range [0, 1]. When the value r1 or r2 is larger than the 
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maximum value Ne, they are equal to the maximum value Ne; and when the value q is larger than the 

maximum value D, it is equal to the maximum value D. 

(4.2) Read out the corresponding solutions Xr1 and Xr2 from the solutions archive.  

(4.3) Utilize the mutation and crossover operations described as Equations (24) and (25) to generate Vi. 

(5) Greedy selection mechanism. The fuzzy fitness value fit(Vi) of the candidate solution Vi is 

calculated and compared with fit(Xi) of solution Xi, if the fit(Vi) is better than fit(Xi), Xi will be replaced 

by the candidate solution Vi, otherwise Xi is retained. 

(6) Calculate the probability value Pi. The probability value Pi of each solution Xi is calculated by 

Equation (23). 

(7) Onlooker bees phase. In this operation phase, the algorithm chooses one solution Xi with  

the corresponding probability value Pi and searches for a new candidate Vi nearby Xi based on  

Steps (4.1)–Step (4.3). Record the better solution between Vi and Xi by Step (5). 

(8) Scout bee phase. If one solution cannot be improved further over the number limit, and it will be 

abandoned and a new solution will be generated by Equation (20) to replace the abandoned one. 

(9) Memorize the optimal solution, optimal value of each objective function and fuzzy fitness value 

found so far. 

(10) Cycle operation. Set the cycle parameter l = l + 1 and if l < Lmax go back to Step (4), and otherwise 

the IABC algorithm is stopped and the optimal solution and corresponding objective function value output. 

The flow chart of the IABC algorithm for solving the multi-objective OPF problem is shown in Figure 2. 

Start

Initialization by Tent mapping 

 l=1

Employed bees search for new 

solutions by the flowchart(b)

Onlooker bees choose one solution 

according to Pi to search for new 

solution by the flowchart(b)

Scout bee phase

Memorize the best solution

Print the best solution

Yes

No

Stop

Read the power system 

data and parameters of 

the algorithm

l=l+1

Calculate probability value Pi by 

Eq.(15)

(a)

Start

Generate new solution 

by Eq.(16)(17)

Memorize the better 

solution by  greedy 

selection mechanism

Generate r1, r2 and q 

by Tent mapping

Stop

(b)

l>Lmax

 

Figure 2. Flowchart of the IABC algorithm. 
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6. Numerical Examples 

The proposed approach has been applied to the single objective OPF and fuzzy multi-objective OPF 

in the IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared to those 

obtained by other optimization algorithms described in the references. 

6.1. IEEE 30-Bus Test System 

The IEEE 30-bus test system is utilized to test the proposed method. Its total system demand is  

283.4 MW for active power and 126.2 MVAR for reactive power. It has six generators, four transformers 

and nine shunt VAR compensation devices, and has a total of twenty-four control variables for OPF. 

The limits of the generator buses are 0.95–1.1 p.u., and the transformer-tap settings are assumed to vary 

in the range [0.9, 1.1] p.u., with step size of 0.0125 p.u. The VAR injections of the shunt capacitors are 

assumed to vary in the range [0, 5] MVAR, with step size of 1 MVAR. The limits of load buses are 

0.95–1.05 p.u., Bus 1 is taken as slack bus. The other control parameters are shown in [12]. The single 

line diagram of the system is shown in Figure 3. 

1 2 5

3 4 6

7

8

912 1011

13 14 15 16 17

23 18 19

20 21 22

24

2526 27

2830 29

G1 G2 G5

G8

G11

G13

 

Figure 3. Single line diagram of the IEEE 30-bus test system. 

6.1.1. Convergence Characteristic Analysis 

Heuristic optimization algorithms are sensitive to the selection of the control parameters. The IABC 

algorithm parameters include Ns, Lmax, limit, F1, F2 and CR. In order to verify the stability of the proposed 

IABC algorithm to perturbations of the parameter values, we have simulated different cases with different 

parameter values in the OPF problem whose optimization objective is the minimization of the fuel cost 

for the IEEE 30-bus test system. The parameters F1, F2 and CR are introduced in reference [30],  

and their best values are F1 = F2 = 0.6 and CR = 0.5, respectively.  
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Case 1: limit = 30 and Lmax = 200 

In this case, the limit and Lmax values are equal to 30 and 200, respectively. The convergence 

characteristics are analysed for different values of the parameter Ns. Table 1 shows the minimum (Min), 

average, maximum (Max), and standard deviation (SD) values of fuel cost and average running time 

obtained by the IABC algorithm with different values of the Ns parameter over 20 independent runs. 

Table 1. Results obtained by the IABC algorithm with different Ns values for OPF with total 

fuel cost. 

Ns 
Fuel cost ($/h) 

Time (s) 
Min Average Max SD 

20 800.4320 800.4581 800.5103 0.0240 11.8249 

40 800.4296 800.4494 800.4888 0.0159 23.3254 

50 800.4259 800.4398 800.4637 0.0096 29.8517 

60 800.4244 800.4383 800.4601 0.0090 34.6824 

80 800.4228 800.4382 800.4590 0.0082 46.7110 

100 800.4215 800.4359 800.4520 0.0081 56.3808 

150 800.4212 800.4289 800.4499 0.0070 84.4469 

200 800.4194 800.4273 800.4437 0.0066 111.512 

From Table 1, it can be seen that the greater the parameter Ns value selected, the smaller the minimum, 

average and maximum values obtained by the IABC algorithm are, and the longer the running time taken 

is. The results demonstrate the optimal value changes with different Ns values of the IABC algorithm, and 

a better objective function value is obtained by the IABC algorithm when a greater Ns value is utilized.  

The convergence characteristics of searching for minimum value by IABC algorithm with different 

parameter Ns values are shown in Figure 4, show which it can be seen that the IABC algorithm is able 

to converge fast to the corresponding minimum value under the conditions of different parameter settings. 

The results verify the stability of the IABC algorithm to perturbations of the parameter Ns values. 

 

Figure 4. Convergence characteristics obtained by the IABC algorithms with different 

values of the parameter Ns for OPF with total fuel cost. 
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Case 2: Ns = 100 and Lmax = 200 

In this case, the convergence characteristics of the IABC algorithm with different limit parameter 

values are analyzed. Table 2 shows the minimum, average, maximum, standard deviation values and 

average running time obtained by the IABC algorithm with different limit parameter values over  

20 independent runs. 

Table 2. Results obtained by the IABC algorithm with different limit values for OPF with 

total fuel cost. 

Limit 
Fuel cost ($/h) 

Time (s) 
Min Average Max SD 

10 800.4530 800.4818 800.5042 0.0119 56.7482 

20 800.4376 800.4561 800.4802 0.0111 58.1910 

30 800.4215 800.4359 800.4520 0.0081 56.3808 

40 800.4168 800.4291 800.4372 0.0063 56.5577 

50 800.4094 800.4200 800.4364 0.0060 56.4471 

From Table 2, it can be seen that IABC algorithm with different limit values converges to different 

optimal values, and the better solution can be obtained with the greater limit parameter value. It also can 

be seen that the average running time is almost unchanged with the different limit parameter values.  

The convergence characteristics of searching for minimum value by IABC algorithm with different 

limit parameter values are shown in Figure 5, which illustrates that the proposed algorithm with different 

limit parameter values can quickly and stably converge to the corresponding optimal values. The results 

demonstrate the stability of the IABC algorithm to perturbations of the limit parameter values. 

 

Figure 5. Convergence characteristics obtained by the IABC algorithm with different parameter 

limit values for OPF with total fuel cost. 

Case 3: Ns = 100 and limit = 30 

In this case, the purpose of simulation is to analyse the convergence characteristics of the IABC 

algorithm with different Lmax parameter values. The minimum, average, maximum, standard values  

and average running time obtained by the IABC algorithm with different Lmax parameter values after  

20 independent runs are tabulated in Table 3. 
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Table 3. Results obtained by the IABC algorithm with different Lmax values for OPF with 

total fuel cost. 

Lmax 
Fuel cost ($/h) 

Time (s) 
Min Average Max SD 

50 800.5383 800.6626 800.8829 0.0860 15.8349 

100 800.4284 800.4518 800.4779 0.0137 28.6818 

150 800.4249 800.4439 800.4748 0.0121 42.4165 

200 800.4215 800.4359 800.4520 0.0081 56.3808 

250 800.4192 800.4295 800.4420 0.0080 70.8397 

300 800.4177 800.4293 800.4409 0.0072 84.6042 

As seen from Table 3, the minimum, average, maximum and standard deviation values are better and 

better with the greater Lmax parameter values, and the corresponding running time is longer and longer. 

The simulation data illustrate the IABC algorithm possesses stability convergence characteristic under 

the conditions of different Lmax parameter values. 

The convergence characteristics of searching for the minimum value by the IABC algorithm with 

different parameter Lmax values are shown in Figure 6, where the proposed IABC algorithm has stable 

behavior in obtaining the optimal values when different values of the Lmax parameter are selected. The 

simulation verifies the stability of the IABC algorithm to perturbations of the Lmax parameter value. 

Based on the above results of Case 1–Case 3, it can be illustrated that the proposed IABC algorithm possesses 

stable convergence characteristics and stability to perturbations of the control parameter values.  

 

Figure 6. Convergence characteristics obtained by the IABC algorithm with different Lmax 

parameter values for OPF with total fuel cost.  

6.1.2. Single Objective OPF on IEEE 30-Bus Test System 

For comprehensive consideration of convergence characteristic and running time, the parameter Ns, 

limit and Lmax values are equal to 100, 30 and 200, respectively. The standard deviation value under these 

conditions is less than 1% from results of Section 6.1.1, and it illustrates that the IABC algorithm has 

the better stability. 
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Firstly, the minimization of total fuel cost described by Equation (3) is selected as objective function 

for single objective OPF. The results obtained by the proposed IABC approach over 20 independent runs 

are compared to those obtained by the ABC algorithm, LDI-PSO algorithm [31], GSA algorithm [31], 

EGA algorithm [32] and IEP algorithm [33]. The results are summarized in the Table 4. 

Table 4. Results obtained by different algorithms for OPF with total fuel cost. 

Method 
Fuel cost ($/h) 

Min Average Max 

IABC 800.4215 800.4359 800.4520 

ABC 800.6850 800.7998 801.1376 

LDI-PSO [31] 800.7398 801.5576 803.8698 

GSA [31] 805.1752 812.1935 827.4950 

EGA [32] 802.0600 – 802.1400 

IEP [33] 802.4650 – – 

As shown in Table 4, the average total fuel cost value calculated by the IABC algorithm was  

800.4359 $/h, and it is obviously less than the other average values calculated by the ABC and other 

optimization algorithms. The maximum and minimum values calculated by the IABC algorithm are 

better than those calculated by other algorithms. The results show that the ability of the IABC algorithm 

to find the optimal solution is better than that of the other algorithms. The convergence characteristics of 

IABC and ABC algorithms are shown in Figure 7. 

 

Figure 7. Convergence characteristics of fuel cost for the IABC and ABC algorithms for an 

IEEE 30-bus system. 

From Figure 7 and the simulation data, it can be seen that when the iteration number reaches 60,  

the fuel cost value calculated by IABC is 800.5349 $/h, that is close to global optimal value 800.4215 $/h, 

however the value calculated by ABC is 804.2461 $/h, that is local optimal value. It also can be seen 

that the IABC convergence curve is smoother than those of the ABC algorithm. The results demonstrate 

the convergent performance of the IABC algorithm is better than that of the ABC algorithm. 
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To further demonstrate the superiority of the IABC algorithm, the other single OPF with different 

objective functions described by Equations (4)–(6) have been simulated. The results obtained by the 

IABC algorithm are compared to of the ABC algorithm, MSFLA algorithm [34], GA algorithm [34],  

PSO algorithm [35], DE algorithm [36], BBO algorithm [37] and DE algorithm [38]. The results are 

given in the Table 5. As shown in Table 5, the optimal values of total emission, power loss and voltage 

deviation calculated by IABC are 0.1943 ton/h, 3.0917 MW, 0.0918 p.u., respectively, which are smaller 

than those calculated by the other algorithms. The results show that the IABC algorithm has better 

performance than the other algorithms for solving different single objective OPF problems.  

The convergence characteristics of the IABC and ABC algorithms are shown in Figures 8–10. 

Table 5. Results obtained by the different algorithms for the single objective OPF. 

Method 
Objective function 

Emission (ton/h) Active power loss (MW) Voltage deviation (p.u.) 

IABC 0.1943 3.0917 0.0918 

ABC 0.1943 3.1216 0.1179 

MSFLA [34] 0.2056 – – 

GA [34] 0.2117 – – 

PSO [35] – 3.6294 – 

DE [36] – 3.2400 – 

BBO [37] – – 0.1020 

DE [38] – – 0.1357 

 

Figure 8. Convergence characteristics of total emission of the IABC and ABC algorithms 

for the IEEE 30-bus system. 

From Figure 8 and simulation data, it can be seen that when the iteration number reaches up to 20  

the emission value of 0.1943 ton/h calculated by the IABC algorithm is a global optimal value, however 

the value calculated by the ABC algorithm is a local optimal value. From Figures 9 and 10, it also can 

be seen that the IABC algorithm converges to highest quality solution among the other algorithms in 

less iterations. In additional, it can be seen that the convergence curve of the IABC one is smoother than 

that of the other algorithms. The results demonstrate that the convergence rate and convergence capacity 

of the IABC algorithm are obviously better than those of the ABC algorithm.  
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From the results of Section 6.1.2, it can be seen that the convergence capacity and the optimal  

value of the IABC algorithm are better than those of the ABC algorithm and other heuristic algorithms, 

which demonstrates the effectiveness and superiority of the IABC algorithm to solve the single objective 

OPF problem. 

 

Figure 9. Convergence characteristics of power loss of the IABC and ABC algorithms for 

the IEEE 30-bus system. 

 

Figure 10. Convergence characteristics of voltage deviation of the IABC and ABC algorithms 

for the IEEE 30-bus system. 

6.1.3. Fuzzy Multi-Objective OPF on IEEE 30-Bus Test System 

The results calculated in Section 6.1.2 are utilized as the reference values of the fuzzy membership 

function. Four objective functions are converted into fuzzy multi-objective ones by Equations (16) and (17), 

and the proposed method is used to solve the fuzzy multi-objective OPF problem. The optimal values 

calculated by the IABC and ABC algorithms for multi-objective OPF are given in Table 6. 

As shown in Table 6, the fuzzy fitness value calculated by the IABC algorithm is 0.7685, which is 

better than the 0.7571 value calculated by the ABC algorithm, and each objective function value obtained 

by the IABC algorithm is smaller than those provided by the ABC algorithm. The results indicate that 

the optimal scheme obtained by the proposed model can make systems more economical and stable than 
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those possible with the ABC algorithm. The convergence characteristics of the IABC and ABC algorithm 

for multi-objective OPF are shown in Figure 11. 

Table 6. Results obtained by the different algorithms for fuzzy multi-objective OPF. 

Optimization 

method 

Objective function 

Fuel cost 

($/h) 

Emission 

(ton/h) 

Active power loss 

(MW) 

Voltage deviation 

(p.u) 

Fitness 

value 

IABC 851.6111 0.2230 4.8731 0.3044 0.7685 

ABC 854.9166 0.2280 4.9820 0.3590 0.7571 

 

Figure 11. Multi-objective convergence characteristic curves of the IABC and ABC algorithms 

for the IEEE 30-bus system. 

From Figure 11, it can be seen that the fuzzy optimal value obtained by the IABC algorithm is smaller 

than that given by the ABC algorithm. In addition, the convergence characteristic curve of the IABC 

algorithm is smoother than that of the ABC algorithm. The results illustrate that the convergence capacity 

of the IABC algorithm is better than that of the ABC algorithm. 

6.2. IEEE 57-Bus Test System 

To further verify the performance of the proposed IABC algorithm, the IEEE 57-bus system was also 

used as a test system. The IEEE 57-bus test system consists of 80 transmission lines, seven generators, 

15 branches under load tap setting transformer branches and three shunt reactive power sources at the 

buses 18, 25 and 53. The total load demand of the test system is 1250.8 MW and 336.4 MVAR.  

The bus data, line data, generator data, cost and emission coefficients are taken from references [39]. 

The proposed IABC algorithm is utilized to solve single objective OPF and multi-objective OPF on the 

IEEE 57-bus system. 

6.2.1. Single Objective OPF on the IEEE 57-Bus Test System 

The four objective functions are considered as the optimization objective of OPF on the IEEE 57-bus 

system, respectively. The simulation results obtained by the IABC algorithm and standard ABC algorithm 

over 20 independent runs are tabulated in Table 7.  
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Table 7. Results obtained by the IABC and ABC algorithms for different single objective 

OPF for the IEEE 57-bus system. 

Compared 

item 

Optimization objective function 

Fuel cost ($/h) Emission (ton/h) Active power loss (MW) Voltage deviation (p.u) 

IABC ABC IABC ABC IABC ABC IABC ABC 

Min 41684 41781 1.0484 1.2048 11.1574 12.6260 0.6616 0.8514 

Average 41698 41840 1.1382 1.3262 11.9855 13.7754 0.7693 0.9376 

Max 41711 41927 1.3709 1.6351 13.7499 15.6453 0.8992 1.1081 

SD 7.7840 38.2438 0.0789 0.1202 0.7140 0.7917 0.0538 0.0719 

Time (s) 94.7014 95.7394 96.2508 96.5339 93.9822 98.2990 94.9440 98.7224 

As shown in Table 7, all the minimum, average, maximum and standard deviation values obtained  

by the IABC algorithm are better than those obtained by the ABC algorithm for solving the OPF problem 

with different optimization objectives. Moreover, the results in Table 7 also show that the average 

computation time of the 20 independent runs for proposed algorithm is shorter than the time for the ABC 

algorithm under the different optimization objective conditions. The results illustrate that the effectiveness 

and superiority of the proposed IABC algorithm for solving the OPF problem, and that it can converge 

to a better solution compared with the ABC algorithm. The convergence characteristics of the IABC and 

ABC algorithms for single objective OPF with different objective functions on the IEEE 57-bus system 

are shown in Figures 12–15, respectively. 

From Figures 12–15, it can be seen that the proposed IABC algorithm converges to better solutions 

much faster than the standard ABC algorithm. The results illustrate that the proposed method possesses 

better convergence characteristics for solving OPF problems. 

 

Figure 12. Convergence characteristics of fuel cost of the IABC and ABC algorithms for 

the IEEE 57-bus system. 
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Figure 13. Convergence characteristics of emissions of the IABC and ABC algorithm for 

the IEEE 57-bus system. 

 

Figure 14. Convergence characteristics of power loss of the IABC and ABC algorithms for 

the IEEE 57-bus system. 

 

Figure 15. Convergence characteristics of voltage deviation of the IABC and ABC algorithms 

for the IEEE 57-bus system. 

6.2.2. Fuzzy Multi-Objective OPF on the IEEE 57-Bus Test System 

In this case, the proposed IABC algorithm is used to solve the fuzzy multi-objective OPF problem 

for the IEEE 57-bus system. The minimum, average, maximum fitness values and standard deviation 
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value calculated by the IABC and ABC algorithms over 20 independent runs are given in Table 8. The 

best objective values obtained by the IABC and ABC algorithms over 20 independent runs are shown in 

Table 9. 

Table 8. Results obtained by the different algorithms for fuzzy multi-objective OPF for the 

IEEE 57-bus system. 

Optimization 

method 

Fuzzy fitness value Average time 

(s) Max Average Min SD 

IABC 0.7393 0.6697 0.5652 0.0367 90.8029 

ABC 0.6910 0.6103 0.5072 0.0560 91.2489 

Table 9. Best solutions obtained by the different algorithms for fuzzy multi-objective OPF 

for the IEEE 57-bus system. 

Optimization 

method 

Objective value 
Fitness 

value 
Fuel Cost 

($/h) 

Emissions 

(ton/h) 

Active power loss 

(MW) 

Voltage deviation 

(p.u.) 

IABC 44,152 1.2643 16.6196 0.9642 0.7393 

ABC 44,741 1.3396 17.6643 0.9728 0.6910 

As seen from Table 8, the maximum, average and minimum values obtained by the IABC algorithm 

are greater than those given by the ABC algorithm, and the standard deviation value calculated by the 

proposed approach is less than that provided by the ABC algorithm. Moreover, the average running time 

of the IABC algorithm is shorter than that of the ABC algorithm. The results demonstrate that the IABC 

algorithm can obtain better solutions compared with the standard ABC algorithm in less running time.  

By comparing the fuel cost, emissions, active power loss and voltage deviation results from the IABC 

algorithm and ABC algorithm (Table 9), it can be seen that the values of all the objectives obtained by 

the IABC algorithm are less than those given by the ABC algorithm. The results illustrate the superiority 

of the proposed IABC algorithm for solving the multi-objective OPF. The convergence characteristics 

of the IABC and ABC algorithm for multi-objective OPF for the IEEE 57-bus system are shown in 

Figure 16. 

 

Figure 16. Convergence characteristics of the IABC and ABC algorithms for multi-objective 

OPF for the IEEE 57-bus system. 
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Figure 16 illustrates that the proposed IABC algorithm can converge to higher quality solutions 

compared with the ABC algorithm in less iterations. The results verify the IABC algorithm possesses 

better convergence characteristics compared with the ABC algorithm. 

6.3. IEEE 300-Bus Test System 

In order to demonstrate the effectiveness of the proposed IABC algorithm, the IEEE 300-bus system 

was also used as a test system. The network includes 69 generators, 107 transformers and 29 shunt reactive 

power sources. The system data are taken from reference [40]. The simulation results obtained by the 

IABC algorithm and standard ABC algorithm over 10 independent runs for single objective OPF are 

tabulated in Table 10. 

Table 10. Results obtained by the IABC and ABC algorithms for different single objective 

OPF for the IEEE 300-bus system. 

Compared 

item 

Optimization objective function 

Fuel cost  

($/h) 

Emission  

(ton/h) 

Active power loss 

(MW) 

Voltage deviation 

(p.u) 

IABC ABC IABC ABC IABC ABC IABC ABC 

Min 783951 785474 6.1895 6.1943 295.4514 313.2970 5.5178 5.7047 

Average 783956 785861 6.1938 6.2029 295.5136 319.1695 5.5826 5.8782 

Max 783965 786159 6.2018 6.2102 295.5813 327.1119 5.6232 6.0778 

SD 5.8992 296.8968 0.0051 0.0056 0.0347 4.9314 0.0426 0.1323 

Time (s) 582.7570 597.3479 582.7750 596.1126 577.4225 580.8112 576.9575 582.3205 

It is observed from the results in Table 10 that the minimum, average, maximum and standard 

deviation values of each optimization objective from IABC algorithm are better than ABC algorithm. 

Moreover, the computation time of proposed method is shorter than the time of ABC algorithm. The 

proposed IABC algorithm is also used to solve the fuzzy multi-objective OPF problem for the IEEE  

300-bus system. The minimum, average, maximum fitness values and standard deviation value 

calculated by the IABC and ABC algorithms over 10 independent runs are given in Table 11. The best 

objective values obtained by the IABC and ABC algorithms over 10 independent runs are shown in 

Table 12. 

From Tables 11 and 12, it can be seen that the each objective value and fuzzy fitness value obtained 

by the IABC algorithm are better than those given by the ABC algorithm. The results illustrate the superiority 

of the proposed IABC algorithm for solving the multi-objective OPF. The convergence characteristics of 

the IABC and ABC algorithm for multi-objective OPF for the IEEE 300-bus system are shown in Figure 17. 

Table 11. Results obtained by the different algorithms for fuzzy multi-objective OPF for the 

IEEE 300-bus system. 

Optimization 

method 

Fuzzy fitness value Average time 

(s) Max Average Min SD 

IABC 0.9183 0.9127 0.9045 0.0055 580.6995 

ABC 0.8203 0.7870 0.7477 0.0326 587.2060 
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Table 12. Best solutions obtained by the different algorithms for fuzzy multi-objective OPF 

for the IEEE 300-bus system. 

Optimization 

method 

Objective value 
Fitness 

value 
Fuel cost 

($/h) 

Emissions 

(ton/h) 

Active power loss 

(MW) 

Voltage deviation 

(p.u.) 

IABC 785360 6.1934 297.6362 5.9169 0.9183 

ABC 788657 6.1995 321.2646 5.9608 0.8203 

 

Figure 17. Convergence characteristics of the IABC and ABC algorithms for multi-objective 

OPF for the IEEE 300-bus system. 

Figure 17 illustrates that the proposed IABC algorithm can converge to a better solution much faster 

than ABC algorithm. The results demonstrate the effectiveness and superiority of proposed method for 

solving OPF problem to larger scale system. 

7. Conclusions 

In this paper, we have presented an improved artificial bee colony (IABC) algorithm based on 

mutation operation, crossover operation and tent chaos mapping. The IABC algorithm is applied to solve 

the OPF problem with four different objective functions which are considered to minimize the fuel cost, 

emissions, power losses and voltage deviation. The proposed approach is successfully implemented on 

the IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The simulation indicates the proposed 

approach possesses better convergence characteristics, and furthermore, the results illustrate that the 

IABC algorithm is efficient and superior at solving OPF problems, and the obtained optimal scheme can 

make power systems more economical and stable. 
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