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Abstract: This paper explores real power generation planning, considering distributed 

generation resources and energy storage in a small standalone power system. On account of 

the Kyoto Protocol and Copenhagen Accord, wind and photovoltaic (PV) powers are 

considered as clean and renewable energies. In this study, a genetic algorithm (GA) was 

used to determine the optimal capacities of wind-turbine-generators, PV, diesel generators 

and energy storage in a small standalone power system. The investment costs (installation, 

unit and maintenance costs) of the distributed generation resources and energy storage and 

the cost of fuel for the diesel generators were minimized while the reliability requirement 

and CO2 emission limit were fulfilled. The renewable sources and loads were modeled by 

random variables because of their uncertainties. The equality and inequality constraints in 

the genetic algorithms were treated by cumulant effects and cumulative probability of 

random variables, respectively. The IEEE reliability data for an 8760 h load profile with a 

150 kW peak load were used to demonstrate the applicability of the proposed method. 
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1. Introduction 

Small standalone power systems are found on offshore islands and indigenous areas in mountains. 

This paper addresses the generation expansion planning involving wind-turbine generators (WTG), 

photovoltaic (PV), diesel generators, and energy storage (ES) for small standalone power systems to 

meet the restriction of fuel emissions [1,2]. Many works have addressed the generation expansion planning 

in small standalone power systems [3–19]. Existing methodologies fall into three categories: reliability, 

optimization-, and enumeration-based methods. With respect to reliability-based methods, Billinton presented 

a methodology for sizing the WTG and PV array, considering investment cost, loss of power supply 

probability (LPSP) and loss of load probability (LOLP) [3]. Ai compared the optimal sizes of a WTG/PV 

hybrid system with the annual LPSP values [4]. Nelson proposed a method using system load matching 

and LPSP, in which the number of WTGs was treated as an independent variable and the number of PV 

arrays was treated as a dependent variable [5]. Diaf considered different types and capacities of renewable 

sources to yield the desired reliability indices using the smallest “levelized cost of energy” [6]. 

Optimization-based methods were originally developed to reduce the investment, operating and fuel 

costs of distributed generation resources [7–16]. Katsigiannis combined simulated annealing and tabu 

search to solve the optimal capacities of WTG and PV in small autonomous power systems [7]. Vrettos 

and Papathanassiou investigated the capacity of the hybrid system components (diesel, WTG, and ES) 

by conducting a parametric analysis and then optimized the values using genetic algorithms [8].  

Belfkira used the DIviding RECTangles (DIRECT) algorithm to optimize the number and types of 

components of the hybrid system, ensuring that the total cost of the system was minimized and that  

the system demand was completely covered [9]. Cabral et al. minimized both costs of PV arrays and 

energy storage system while considering reliability constraints and uncertain irradiation levels [10]. 

Lujano-Rojas et al. employed artificial neural networks to acquire the expected values of net  

present cost (NPC) and reliability and used genetic algorithms to minimize the operational cost of the 

system [11]. The probability of a determined level of reliability must be guaranteed in a certain grade. 

Lujano-Rojas et al. optimized both the NPC and the energy index of unreliability [12]. NPC is the cost 

throughout the operative lifetime of the system, comprising the annualized capital cost and the 

annualized replacement cost. Kaviani et al. in [13] and Chen in [14] minimized the system costs 

involving investment, replacement, and operation and maintenance plus loss of load costs using 

particle swarm optimization (PSO). Borhanazad et al. minimized the sum of weighted cost and 

reliability index to balance the cost-effectiveness of the system and the quality of service in a 

microgrid using PSO [15]. Sharafi and ELMekkawy optimized the cost, reliability and fuel emission 

simultaneously using ε-constrained PSO [16]. 

Apart from reliability- and optimization-based methods, the enumeration method was designed to 

compare different types and sizes of distributed generation units in terms of investment, operation and 

fuel costs. Diaf et al. estimated the appropriate dimensions of a stand-alone hybrid PV/wind system 

that guaranteed the energy autonomy of a typical remote consumer with the lowest levelized cost of 

energy (LCE) [17]. Kaldellis assessed the smallest capacity of the wind turbine using its nominal 

power, capacity factor and mean power coefficient [18]. Recently, Luna-Rubio et al. briefly reviewed 

sizing methodologies and hybrid energy metrics (such as reliability and net present value) that have 

been developed in recent years [19]. 
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The above works have the following limitations: 

(a) Most of the aforementioned studies address only one (reliability, optimization or enumeration 

methods) approach to optimizing the capacities of distributed generation resources. Although 

the work of Lujano-Rojas considered both optimal investment and reliability [12], detailed 

treatment was not given. The cost of loss of load was considered in Kaviani’s [13] and Chen’s 

works [14]; however, it is difficult to gain the cost of loss of load. Borhanazad’s work is 

improper from the perspectives of mathematics because two equal weighting factors were 

assigned to the cost and reliability index in [15]. The disadvantages in the Sharafi and 

ELMekkawy’s method are that the upper limits of three individual objectives have to be given 

heuristically [16]. These limitations arise from the fact that the application of two of these 

methods becomes very complex. 

(b) ES is crucial in a small autonomous power system as it increases reliability and reduces the 

emission of greenhouse gases. However, some studies did not investigate this factor [3,13]. 

(c) The load and power generated by renewables are uncertain. Traditional approaches yield only 

deterministic solutions [3–9,13–18] because probability operations are very complex. Although 

some works concerned the uncertainties in renewable energies, their treatments were  

simplified [10–12]. Cabral et al. only utilized the average power output obtained by the 

maximum power of the PV generator and the probability density function (PDF) [10]. In order 

to simplify the calculation embedded in the optimization, Lujano-Rojas et al. used artificial 

neural networks in order to avoid Monte Carlo simulations [11]. Lujano-Rojas et al. also 

investigated the hourly average wind speed obtained by complex autoregressive moving 

average (ARMA) model and two algorithms to evaluate the inverse of cumulative distribution 

function (CDF) [12]. However, simplified average wind speed/power [10,12] may lead to 

inaccurate results; a complex but approximate method like [11] needs many computation times. 

Thus, efficient computation is needed to avoid complex probabilistic calculations and maintain 

acceptable accuracy. 

(d) Restrictions on greenhouse gas emissions are critical in both large grids and small autonomous 

power systems [1,2]. According to electricity acts in different countries, the restrictions of fuel 

emissions are allocated to the supply participants in the power market. Most works have not 

considered this factor [3–15,17,18] except for Sharafi and ELMekkawy’s work [16]. 

To address the above issues, this work minimizes the investment costs (installation and unit costs) 

of distributed generation (WTG, solar PV, diesel generation) and ES, and the fuel cost for diesel generators, 

while ensuring that the reliability requirement is met and the CO2 emission constraint is satisfied. 

The novelties and contributions of this paper are described as follows: 

(a) The factors of cost, reliability and fuel emission are considered simultaneously. Only cost is 

adopted in the objective function while both reliability and fuel emission are dealt easily with 

inequality constraints. In the above reviewed works, only Sharafi and ELMekkawy’s method 

considered all three factors using three individual objectives with heuristic upper bounds [16]. 

(b) The load, wind power and PV power are modeled with random variables. This work uses 

cumulants of random variables incorporating with the Gram-Charlier series expansion to model 

the uncertainty in the optimization algorithm. The proposed method may assign the value of 
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cumulative probability as a representative for the corresponding random variable. However,  

the works in [10–12] simplified the calculation of uncertainties using average quantities or  

ANN estimations. 

(c) The deterministic and stochastic results are compared and analyzed. It will be shown that the 

deterministic study yields a pessimistic solution with the largest cost among all approaches;  

large cumulative probabilities for renewable generations yield an optimistic solution. 

The rest of this paper is organized as follows. Section 2 formulates the problem to be solved. Section 3 

then presents the cumulant-based genetic algorithm. Section 4 summarizes the simulation results for a 

standalone power system with renewables, diesel generators and an energy storage system. Section 5 

draws conclusions. 

2. Problem Formulation 

2.1. Assumptions 

Unlike the traditional renewable energy planning in distribution systems [20,21], some assumptions 

concerning the optimizing capacity of distributed generation and ES in a small autonomous power 

system are made. 

(1) The system peak demand is small, of the order of several hundreds of kW. In this paper,  

the peak load in the small autonomous power system is 150 kW. 

(2) The system voltage level is low and the topology of the system is simple. In general, many 

feeders are connected to a single bus that supplies electric power to local customers. 

(3) The losses in the transformers and feeders are very small and can be ignored. 

(4) The infeasible voltage and line flow problems that are caused by outages can be neglected 

because only normal operating conditions are considered. 

(5) Historical meteorological data are available and meteorological conditions will be the same  

in the future (to the planning horizon). This assumption has been made in many existing  

works [4–7,9,15–17], and holds true when historical meteorological data over many years are 

considered. One year data are considered herein. Since the historical meteorological data  

are utilized, they are modeled as random variables with uncertainties. Meteorological data  

on wind speed and irradiation are converted into hourly wind power and PV power with 

uncertainties, respectively. 

(6) The future load profile is known. The IEEE 8760 h Reliability Test Data, which have been used 

elsewhere [3,13,22], is used. Owing to the load prediction, the hourly loads are modeled as 

random variables with uncertainties. This test system was developed in order to assess different 

reliability modeling and evaluation methodologies for the educational purpose [22]. The load 

profile in a year reflects the characteristics of power consumptions in different seasons, 

weekdays and weekends, days and nights, and even holidays. The test system provides ratios of 

loads at all hours with respect to the largest load, which is 150 kW in this paper. With these 

ratios, the load profile for 8760 h can be evaluated. This test system was also used in sizing the 

capacities of renewables in an autonomous power system in [3,13]. 
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(7) Reliability is quantified using the LOLP. The value of LOLP is specified by the supply quality 

to the customers. For example, LOLP = 0.01 means that the customers can only accept 87.6 h 

power shortage in a year. The maximum power generation of diesel generators and other 

distributed generation resources can be simplified by (1 − μ) × rating where the symbol μ is the 

unavailability. The unavailability can be ignored by setting μ = 0. 

(8) The unit sizes of distributed generation resources and ES are given. Those unit sizes are 

determined by the existing commercial sizes. Moreover, the unit sizes of diesel generator and 

wind turbine cannot be too large owing to transient stability problems in the power system. 

When a single large generator (like diesel generator and WTG) is in a condition of unplanned 

outage in a small power system, the inertias of the remaining diesel-based synchronous 

generators may be too small to stabilize the system frequency. A common practice to solve this 

problem is to impose a planning constraint on the unit sizes of diesel generators and WTG.  

This issue was also addressed in [3]. 

(9) To simplify the study, only one year data (i.e., 8760 h) are concerned. That is, all powers from 

WTG, PV, ES and diesel generators, as well as loads, have individual 8760 values. The fuel 

cost of diesel generator in one year is evaluated herein. This proposed method may be extended 

to consider the annualized costs for the WTG, PV, ES and diesel generator using suitable life 

expectancy estimation models [13–16]. The replacement cost of ES is also needed to be 

estimated while suitable life expectancy estimation models are concerned. This can be achieved 

by modifying the cost coefficients by considering the net present cost and capital recovery 

factor without changing the proposed algorithm. Some other works also used one-year data 

without considering the lifetime of WTG, PV, ES, and diesel generator (see Table 1 in [16]). 

Table 1. Cumulants of parts of load levels. 

Mean of Load (kW) k1 k2 k3~k8 Standard Deviation (kW) 

10 10 1 0 0.333 
50 50 5 0 1.667 

100 100 10 0 3.333 
150 150 15 0 5.000 

2.2. Optimization 

The studied problem can be formulated as an optimization problem, considering chronological data 

on hourly uncertain load, wind speed and irradiation/temperature. 

2.2.1. Objective Function 

The problem is to minimize the following objective function: 

( ) ( )in in fl
w w w pv pv es es d d d dN C C N C N C N C C C         

 (1)

where Nw, Npv, Nes, and Nd represent the (unknown) numbers of WTG, PV, ES, and diesel generators, 
respectively. wC , pvC , esC  and dC  denote the known costs per unit for the WTG, PV, ES, and diesel 

generator, respectively. in
wC  and in

dC  are the costs per unit for installation of the WTG and the diesel 



Energies 2015, 8 2478 

 

 

generator, respectively. The installation costs of PV and ES are neglected herein because they are 

small compared with those of the WTG and diesel generator. Since the time interval considered in this 
paper is 1 h, the values of power (kW) and energy (kWh) of the ES are the same. fl

dC  is the cost of fuel 

for the diesel generator. Specifically, the fuel cost for diesel generators at hour h can be modeled as a 

quadratic function as follows:  

  2( ) ( ) ( )fl
d d d dC P h a b P h c P h        ($/h) (2) 

where a ($/h), b ($/kWh) and c ($/kW2h) are the known cost coefficients. The symbol “~” denotes 
“probabilistic”. That’s, ( )dP h  denotes the unknown probabilistic kW generation from diesel generators 

at hour h. 

2.2.2. Inequality Constraints 

The superscripts “max” and “min” indicate maximum and minimum limits, respectively.  

The objective should be subject to the following inequality constraints. 

(a) Nw, Npv, Nes and Nd must be smaller than their corresponding maximum limits ( max ,wN  max ,pvN  
max ,esN  and max

dN ), which are determined by the spaces needed for installation of these 

distributed generation resources and ES. 

(b) Reliability limit (loss of load probability): 

LOLP ≤ LOLPmax (3)

(c) Greenhouse gas emission limit: 

CO2 ≤ CO2
max (4)

2 ( ( ))dCO P h  = 2( ) ( )d dd e P h f P h     (kg/h) (5)

(d) State of charge (SOC) in the ES: 

SOCmin ≤ SOC(h) ≤ SOCmax (6)

Another way to enforce green gas emission is consideration of the carbon tax, which can be defined 

by $/ton, $/L or $/kWh depending on the regulations of different countries. Once $/ton, $/L or $/kWh 

are transformed properly to be $/kW, the carbon tax caused by the diesel generation could be appended 

as a term in the objective function. 

Alsema showed that the CO2 emission (20–30 g/kWh) produced from the PV modules in the 

manufacturing stage [23] was found to be much smaller than that produced from the traditional fossil 

fuel. Alsema concluded that the long-term PV systems can contribute significantly to the mitigation of 

CO2 emissions. Therefore, the CO2 emission produced from the PV modules is not considered herein. 

2.3. Estimation of SOC 

The ES is used to charge extra renewable energy and discharge energy to supply demand. The ES 

system should not be fully charged or discharged due to its chemical characteristics. This is characterized 

by its SOC. Before expressing the SOC(h) at hour h, total known chronological/probabilistic kW 
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generations ( )wP h  and ( )pvP h  from the respective WTG and PV and total known probabilistic system 

load ( )LP h  at hour h should be defined first, as follows. 

The probabilistic power generation 1( )P h  from a WTG unit is a function of the wind speed (m/s).  

An anemometer is 15 m high. Wind speed that is measured at this height must be converted to a value 

at 30 m (which is the height of the nacelle of a typical 25 kW WTG using the value of the friction 
coefficient, 0.14, for the ground). The probabilistic power generation 2 ( )P h  by a PV unit depends on 

temperature (°C) and irradiation (W/m2). Historical data were transformed to wind power and PV 

power according to their characteristic curves. For example, for a 25 kW wind turbine, the cut-in  

speed is about 5 m/s and the power generation becomes saturated near 10 m/s. The wind speed is  
high at night in winter; PV power is abundant in the daytime in summer. Let ( )wP h  = Nw × 1( )P h   

and ( )pvP h  = Npv × 2 ( )P h . 

The chronological load profile ( )LP h  of the IEEE Reliability Test System (RTS) [22] for  

h = 1, 2, …, 8760 for a year is utilized in this paper. 

Suppose that the charging/discharging mode of the ES is 1 C with SOCmax = 0.85 and SOCmin = 0.25. 

The charging/discharging rate of a battery is expressed in terms of its total storage capacity in Ah or 

mAh. For example, a rate of 1 C means that an entire 1.6 Ah battery would be discharged in one hour 

at a discharge current of 1.6 A. The rate of 1 C here is commonly used rates nowadays. An ES with  

the rate of 1 C can be utilized to compensate stochastically varying renewable power generations.  

The values of SOCmax and SOCmin herein are referred to [8,24]. 

Let η1 and η2 be the efficiencies of the ES in the charging and discharging modes, respectively.  
The unit size of a battery in the ES is Pb. Let ( )difP h  be ( )wP h  + ( )pvP h  − ( )LP h . Then the SOC can 

be evaluated as follows:  

1

2

85%                                                 ,    0

( )
( ) min ( ( 1) ,85%),     ( ) 0

( )
max ( ( 1) , 25%),    ( ) 0 

dif
dif

es

dif
dif

es

h

P h
SOC h SOC h P h

N Pb

P h
SOC h P h

N Pb


 
     

   









 

(7) 

2.4. Estimation of LOLP and CO2 Emission 

The problem here is to determine the values of Nw, Npv, Nes and Nd for given chronological data, 

including hourly probabilistic load, wind speed and irradiation/temperature over a period, for example 

8760 h. Once these unknowns are evaluated by Genetic Algorithm (GA) herein, the LOLP in  

Equation (3) and the emission of CO2 in Equation (4) can be determined using the chronological data. 
Let r be the index of the loss of load and ( )esP h  be the power generated by the ES at hour h. Figure 1 

shows the flowchart for calculating the dependent variables, i.e., fuel cost, LOLP, and the emission of 
CO2. Specifically, if ( )wP h  + ( )pvP h  > ( )LP h , then the ES is charging ( ( )esP h  < 0); otherwise it is 

discharging ( ( )esP h  > 0). 
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Figure 1. Flowchart of calculating the fuel cost, LOLP and the emission of CO2. 

The start and stop operations as well as the minimum operating powers of diesel generators should 

be considered in an operation problem, e.g., unit commitment and real power scheduling. However,  

in a planning problem, these factors were generally ignored [3,6,7,9,15,16]. In different load conditions, 
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the efficiency of each diesel generator is different because the output power of each diesel generator is 

varied. In the planning stage, this factor can be ignored [3]; however, this issue incorporating with unit 

commitment should be considered in the operation stage. 

3. Proposed Method 

As described in Section 2, intermittent wind/PV and random load are modeled as probabilistic 

(stochastic) distributions in this paper. The steps for solving the problem are not straightforward 

because of the probabilistic/random variables with, for example, normal (Gaussian) or Weibull 

distributions, or discrete probabilities, and so on. Specifically, random variables are added and multiplied 

by convolution. Since convolution involves integration, searching an optimal solution requires 

considerable computational effort. To avoid convolution, this work utilizes cumulants and the  

Gram-Charlier series expansion to model the uncertainties of the renewable energies and loads [24,25]. 

3.1. Moment and Cumulant 

The  -th moment of a continuous random variable x is defined as follows: 

( )  x h x dx







    (8)

where ( )h x  is the probability density function (PDF) of x. If a component cx  of a discrete random 

variable χ has a corresponding probability cp , then the  -th moment of χ is defined as follows: 

1 c cc
p x

 
 

    (9)

The cumulants k  can be derived from the moments using recursion in closed forms as follows. 

1 1k   (10)
2

2 2 1k    (11)
3

3 3 2 1 13 2k        (12)

and so forth. The rest of the cumulants can be found elsewhere [25,26]. The terms 1k  and 2k  are 

defined as the expected value and the variance of the random variable, respectively. k  is generally 

neglected if 9  . 

3.2. Cumulant Effect 

Let kX , k = 1, 2, ..., K, be an independent random variable and kw  be the k-th corresponding 

coefficients. Then the th   cumulant of 
1

K

k kk
w X


  equals the weighted sum of the K 

corresponding th   cumulants for kX , k = 1, 2, ..., K. This equality is called the cumulant effect [27]. 

The cumulant effect is applied to compute the fuel cost in Equation (2) and the emission of CO2  
in Equation (5) without performing any convolution. Accordingly, the cumulants of dP  are calculated 

first. The respective cumulants of fuel cost and the emission of CO2 are then computed using the 

cumulant effect. 
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3.3. Expression of PDF Using Gram-Charlier Series Expansion 

( )wP h , ( )pvP h  and ( )LP h  are given in terms of PDFs. Any dependent variable, such as ( )dP h ,  
fl

dC ( ( )dP h ), ( )esP h , and ( )difP h , should therefore be expressed using PDFs. For example,  

the dependent variable ( )dP h can be expressed by its PDF, as follows: 

8

1
3( )

( ( )) ( ( ) ) ( ) ( ( )) ( ( )) 
d

d d d d d

P h

f P h N P h dP h N P h a H P h


 


  
 

(13)

Equation (13) is the Gram-Charlier series expansion. 1( ( ))dH P h  is the Hermite polynomial [27]. 

The constant a  is the coefficient of the Hermite polynomial. ( ( ))dN P h  signifies the PDF for a normal 

distribution. ( )dP h  is normalized ( )dP h . 

3.4. Cumulative Probability 

When the PDF of a dependent variable is gained using Equation (13), the representative of this 

dependent variable is the one for which the cumulative probability is ξ. This representative can be used 

to check the inequality constraints to evaluate the fuel cost in Equation (2) and to calculate SOC in 

Equation (7). From the viewpoint of statistics, we want to be as confident as possible when a population 

parameter is estimated. This is why confidence levels are generally very high. The most common 

confidence levels are 90%, 95%, and 99%. A 90% confidence interval approximately corresponds to 

the cumulative probability of 0.95 [28]. In this paper, ξ is set to be 0.95. Section 4 will investigate the 

effects of several possible values of ξ. 

3.5. Genetic Algorithm 

Searching the optimal Nw, Npv, Nes and Nd in an autonomous power system is a probabilistic mixed 

integer programming (PMIP) problem. Specifically, the unknown Nw, Npv, Nes, and Nd are integer 

variables and the unknown dependent variables at hour h are probabilistic. Traditional MIP cannot find 

optima [29] because variables and constraints are implicit and nonlinear, as shown in Equations (2)–(7). 

In this paper, the GA is used to solve Equations (1)–(7). The variables Nw, Npv, Nes, and Nd  

are regarded as a chromosome (gene string or individual) acting like independent variables,  

while others are the dependent ones. The lengths of binary bits required to specify Nw, Npv, Nes, and Nd 

are 5, 8, 4, and 3, respectively. The chromosomes undergo crossover and mutation following their 

crossover and mutation rates, respectively [30]. 

3.5.1. Crossover Operation 

The crossover operation is performed by producing a random binary string first. Then select the 

genes from the 1st parent if the corresponding randomized bits are “1”, and select the genes from the 

2nd parent if the corresponding randomized bits are “0”. Finally, a new child is gained by combining 

the selected genes. For example, given Parent_1 (=[a b c d e]) and Parent_2 (=[m n o p q]) are the 

parents and the randomized binary string is [1 0 1 0 1]. Then the child is [a n c p e]. Figure 2 illustrates 

another example for the crossover operation in the studied problem. Parents 1 and 2 have a total of  
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20 binary bits (5 + 8 + 4 + 3) to specify Nw, Npv, Nes and Nd. Parent chromosomes are identified at 

random according to the crossover rate. The randomized binary bits are generated after any two parents 

are identified. Each bit of the child chromosome is gained by examining the bits in the corresponding 

positions of parent 1, the randomized binary string and parent 2. 

 

Figure 2. Crossover operations applied to two parents. 

3.5.2. Mutation Operation 

This work utilized the Gaussian mutation operation. A random number produced from a Gaussian 

distribution is added to an identified binary bit of a chromosome according to the mutation rate.  
The mean and standard deviation of the Gaussian distribution are zero and t , respectively. The latter 

is determined adaptively as follows:  

1 (1 )
max_ iterationt t

t
    

 
(14)

where t is the iteration index. The term “max_iteration” is the estimated maximum number of iterations. 

Once the mutation operation is done, the identified bit is rounded to the nearest 0 or 1. 

3.5.3. Penalty Functions 

This work utilizes the penalty functions that are augmented to Equation (1) to deal with the violated 

inequality constraints for the dependent variables (LOLP and emission of CO2) in the roulette wheel 

selection operation [30]. For example, Equation (15) is the penalty function if Equation (3) is violated: 

 2max
t

NPF LOLP LOLP  (15)

where PF is referred to as the “penalty factor” herein. Equation (15) specifies that the penalty weight 

(PFt/N) has a greater impact on the violated amount after the N-th iteration (where N is a given number) 

than before the N-th iteration. The penalty factor has a positive sign. Consequently, a chromosome 

with a large fitness value owing to an augmented penalty term may have few opportunities to be selected 

in roulette wheel selection. 
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3.6. Steps of Algorithm 

The steps for determining the optimal capacities of distributed generation resources and ES in a 

small autonomous power system considering uncertainty can be summarized as follows: 

Step 1 Specify historical/hourly loads, wind speed, radiation/temperature using their corresponding 

PDFs. Read fuel coefficients and emission coefficients in Equations (2) and (5), respectively. 

Read operational limits, as well as reliability and limits on the emissions of greenhouse gases. 
Step 2 Compute all cumulants of chronological ( )wP h , ( )pvP h  and ( )LP h , h = 1, 2, …, 8760. 

Step 3 Specify the population size (p = 1, 2, …, P), crossover rate and mutation rate in the GA. 

Define Equation (1) as the fitness in the GA. Encode all chromosomes. 

Step 4 Conduct the crossover and mutation operations according to Figure 2 and Equation (14), 

respectively, on all of the chromosomes in the mating pool. 

Step 5 Decode all of the chromosomes and compute their corresponding fitness functions.  

Let p = 1. 
Step 6 Compute all cumulants of hourly ( )dP h , ( )esP h  and ( )difP h . 

Step 7 Execute the steps shown in Figure 1 using the cumulant effect in Section 3.2 and the  

Gram-Charlier series expansion in Section 3.3 to gain the hourly fuel cost and emission of 

CO2. Compute the LOLP. 

Step 8 If emission of CO2 or LOLP violate Equation (3) or Equation (4), respectively, then add the 

corresponding penalty term to the fitness. Let p = p + 1. 

Step 9 If p = P, then conduct the roulette wheel selection based on all fitness values plus their 

corresponding penalty terms to identify better chromosomes for the next generation 

(iteration); otherwise, go to Step 6. 

Step 10 If the termination criterion in GA is fulfilled, then stop; otherwise, go to Step 4. 

4. Simulation Results 

4.1. Test Data 

A small autonomous power system with 150 kW peak load was studied in this paper. The 8760 h 

load profile in the IEEE Reliability Test System (RTS) was used [3,13,22]. Assume that the hourly load 

follows a Gaussian distribution. Table 1 shows the 1st–8th cumulants of four load levels (others are not 

shown). The historical weather data (m/s and W/m2) for Mt. Jade (23°28′12″ N, 120°57′16″ E) in Taiwan 

were modeled by Weibull distribution (f(x) = (κ/c)(x/c) κ−1exp(−(x/c)κ) where x denotes the wind speed 

or radiation, and κ and c represent the scale and shape parameters, respectively [31]. Tables 2 and 3 

show the cumulants of power generated by the PV and wind-turbines that correspond to some parameters κ 

and c, respectively. The first columns in Tables 1–3 are the mean values of power levels. In Table 1,  

the mean value of the Gaussian distribution is the same as k1, while in Tables 2 and 3, the mean value 

of the Weibull distribution differs from k1. 
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Table 2. Cumulants of PV power levels with different values of κ and c. 

Cumulants 

Mean  

Value (kW) 

k1 k2 k3 k4 k5 k6 k7 k8  c 

0 0 0 0 0 0 0 0 0 0 0 

1 1 0.29 0.11 0.03 −0.01 −0.03 −0.01 0.02 1.92 1.13 

2 1.95 1.09 0.52 −0.38 −1.75 −1.47 9.42 38.81 1.92 2.25 

3 2.27 1.98 −0.10 −3.80 1.70 34.97 −40.62 −721.60 1.92 3.38 

4 2.02 2.78 0.47 −10.69 −5.73 187.24 202.24 −7127.65 1.92 4.51 

5 1.65 3.08 2.43 −12.92 −46.77 205.74 1972.06 −5151.88 1.92 5.64 

Table 3. Cumulants of wind power levels with different values of κ and c. 

Cumulants 

Mean  

Value (kW) 

k1 k2 k3 k4 k5 k6 k7 k8  c 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 1.13 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 2.26 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 3.39 

4 0.71 0.13 0.03 0.00 0.00 0.00 0.00 0.00 2.09 4.52 

5 1.96 0.97 0.55 0.14 −0.35 −0.62 0.34 3.80 2.09 5.65 

6 3.55 3.19 3.27 1.47 −6.93 −22.30 21.98 447.33 2.09 6.77 

7 5.69 8.19 13.46 9.69 −73.20 −377.73 588.18 19279.99 2.09 7.90 

8 8.50 18.26 44.07 29.77 −881.21 −9169.61 −42543.18 362872.76 2.09 9.03 

9 11.83 33.43 72.77 −583.69 −9792.04 654.93 2348606.58 27695330.20 2.09 10.16

10 14.66 43.78 5.12 −1972.94 −4199.98 436344.29 2452126.18 −214451973.79 2.09 11.29

11 16.44 46.68 −86.07 −2373.78 18354.16 562769.22 −9865268.34 −278693443.05 2.09 12.42

12 17.43 46.71 −144.73 −2181.18 33451.46 390646.31 −17658764.09 −75117959.02 2.09 13.55

13 17.99 46.18 −177.17 −1921.18 40831.90 209668.99 −20357252.19 109887544.59 2.09 14.68

14 18.30 45.69 −195.17 −1723.07 44353.03 82809.21 −21009161.82 228049326.78 2.09 15.81

15 18.49 45.33 −205.53 −1589.07 46125.72 1104.68 −21029440.75 299107504.35 2.09 16.94

16 18.61 45.09 −211.75 −1500.91 47081.72 −51002.13 −20896556.67 342264715.14 2.09 18.06

17 18.68 44.92 −215.62 −1442.93 47630.29 −4579.68 −20753607.19 369147090.12 2.09 19.19

18 18.73 44.82 −217.92 −1407.30 47938.09 −104946.27 −20645504.59 385087512.06 2.09 20.32

19 18.72 44.82 −217.85 −1408.36 47929.23 −104342.60 −20648939.01 384619064.86 2.09 21.45

20 18.61 45.08 −211.82 −1499.90 47091.81 −51591.81 −20894429.02 342743182.03 2.09 22.58

21 18.28 45.73 −193.77 −1739.94 44098.84 93321.82 −20985139.89 218614684.56 2.09 23.71

22 17.64 46.56 −157.07 −2096.11 36383.05 329057.29 −18877917.19 −9884837.14 2.09 24.84

23 16.65 46.79 −98.23 −2361.63 21566.73 543424.55 −11651899.31 −252122928.12 2.09 25.97

24 15.30 45.21 −24.47 −2206.51 2494.17 529969.56 −939087.82 −283408170.14 2.09 27.10

25 13.68 40.82 41.12 -1497.48 -10327.79 252315.74 4641727.93 −86303510.97 2.09 28.23

The studied unit capacities of the diesel generator, WTG, PV and ES are 25, 25, 5, and 1 kW, 
respectively. Their corresponding max

dN , max ,wN  max ,pvN  and max
esN  are 7, 63, 127, and 31, respectively. 

Table 4 presents the costs of the units, installation and maintenance. The prices of WTG and PV are 

similar to those in [6,14]. More specifically, the cost of ES in Table 4 includes that of the inverter;  



Energies 2015, 8 2486 

 

 

the ratings of one unit of the ES are 104 Ah and 12 V. The ES can run the standalone mode using either 

master control (voltage/frequency) or slave control (real/reactive power control). The fuel coefficients, 

a ($/h), b ($/kWh) and c ($/kW2h), for the diesel generator that are used in Equation (2) are 1.07, 

0.0657 and 0.00006, respectively; the emission coefficients, d (kg/h), e (kg/kWh) and f (kg/kW2h),  

in Equation (5) are 28.144, 1.728 and 0.0017, respectively. 

Table 4. Costs for diesel, WTG, PV, and ES units. 

DG/ES Unit Cost Installation Cost ($/kW) Maintenance Cost 

Diesel 300 $/kW 600 0.02 $/kWh 
WTG 1500 $/kW 600 0.06 $/kW 
PV 8000 $/kW - - 
ES 300 $/kWh - - 

The population size, crossover rate, and mutation rate in the GA are 20, 0.8 and 0.02, respectively. 

A chromosome consists of 20 binary bits (see Figure 2). 

A MATLAB code was developed to implement the algorithm on a PC with an Intel(R) Core(TM) 

i5-2500k CPU@3.3 GHZ, 8 GB RAM. 

4.2. Results without Considering Diesel Generation or Energy Storage 

Due to uncertainty in the power generated by WTG and PV, diesel generators or energy storage are 

needed to maintain reliability. Assume LOLPmax = 0.03 and CO2
max = 50,000 kg/year. The representative 

of a dependent variable is the value whose cumulative probability ξ is 95%. Two strategies were 

explored herein: (i) WTG + PV + ES; (ii) WTG + PV + Diesel. Figure 3 illustrates the numbers of 

WTG, PV, ES and diesel generators. As shown in Table 5, Strategy (i) with ES costs more than 

Strategy (ii) with diesel generators. However, diesel generation emits a large amount of CO2  

(49,821 kg/y). Strategy (i) with ES requires much more CPU time because of required SOC evaluation 

in Equation (7). 

 

Figure 3. Numbers of WTG, PV, ES, and diesel generators considering two different strategies. 
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Table 5. Results obtained by two strategies. 

Strategies Total Cost ($) LOLP CO2 (kg/y) CPU (s) 

WTG + PV + ES 3,699,000 0.030 - 203.50 
WTG + PV + Diesel 2,476,926 0.028 49,821 28.71 

4.3. Impacts of Different LOLP Constraints 

This section investigates the impacts of different values of LOLPmax on cost, emissions of CO2 and 

CPU time. Assume that CO2
max is 50,000 kg/year. Figure 4 illustrates the numbers of WTG, PV,  

ES and diesel generators. Table 6 indicates that a high reliability (small LOLPmax) results in a high 

investment cost. Also, a small LOLPmax requires a short CPU time because the searched solution space 

is small. The wind speed is high at night in winter, while solar irradiation is strong during the day in 

summer. The loss of load happens at different times in the summer and the winter. As LOLPmax declines 

(from 0.03 to 0.01), more diesel generators (from three to five) are needed. It can be found that all CO2 

emissions meet the constraint limits. 

 

Figure 4. Numbers of WTG, PV, ES, and diesel generators considering different LOLPmax. 

Table 6. Result comparison between different LOLP constraints. 

LOLPmax Total Cost ($) LOLP CO2 (kg/y) CPU (s) 

0.01 3,318,728 0.004 49,938 57.8 
0.02 2,859,729 0.015 49,945 73.2 
0.03 2,226,227 0.024 49,882 93.9 

4.4. Impacts of Different CO2 Constraints 

This subsection explores the effects of different values of CO2
max on cost, LOLP and CPU time. 

LOLPmax is fixed at 0.03. Figure 5 illustrates the numbers of WTG, PV, ES and diesel generators. 

Table 7 implies that a small CO2
max results in a high cost because more renewables and fewer diesel 
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Figure 5. Numbers of WTG, PV, ES, and diesel generators considering different CO2
max. 

Table 7. Result comparison between different CO2 constraints. 

CO2
max (kg/year) Total Cost ($) LOLP CO2 (kg/y) CPU (s) 
4 × 104 2,674,314 0.030 39,161 85.0 
5 × 104 2,226,227 0.024 49,882 93.9 
6 × 104 2,033,995 0.029 59,379 137.2 

4.5. Effect of Cumulative Probability 

This section investigates the effects of the cumulative probability ξ (70%, 95% and 100%) on the 

solutions. For comparison, the deterministic solution that considers only the expected values (that is, k1) 

of random variables is also given. LOLPmax and CO2
max are 0.03 and 50,000 kg/y here, respectively. 

Figure 6 illustrates the numbers of WTG, PV, ES and diesel generators. Table 8 reveals that the cost is 
the lowest when ξ = 100% because ξ = 100% maximizes ( )wP h  and ( )pvP h  (Weibull distribution), 

which have a larger effect on ( )wP h  and ( )pvP h  than ( )LP h  (which follows a Gaussian distribution). 

The deterministic solution yields the highest cost because the expected value of the Weibull distribution is 

biased toward the left but that of the Gaussian distribution is centered. The effect of hourly load on 

total cost is, therefore, larger than that of the hourly power generation from renewable sources. 

 

Figure 6. Numbers of WTG, PV, ES, and diesel generators considering deterministic 

method and different cumulative probabilities. 
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Table 8. Result comparison between different cumulative probabilities. 

Cumulative Probabilities Total Cost ($) LOLP CO2 (kg/y) CPU (s) 

ξ = 70% 3,658,728 0.022 49,894 117.0 
ξ = 95% 2,226,227 0.024 49,882 93.9 
ξ = 100% 1,893,731 0.027 49,969 69.0 

deterministic 4,118,731 0.022 49,989 100.3 

4.6. Impacts of Different Initial SOCs 

This subsection examines the impacts of different initial SOCs (50%, 70% and 85%) on the final 

optimal solutions. It is not surprising that final results about the numbers of WTG, PV, ES, and diesel 

generators are the same for these three different initial conditions. The reason is that a rate of 1 C is 

considered as described in Section 2.3. A rate of 1 C means one hour is needed to fully charge the 

battery from an empty state. Thus, if initial SOC = 50%, then it needs only 21 min, which is smaller 

than one hour (time interval in this paper), to charge to its maximum limit (85% herein). Thus, if the 

WTG has surplus energy initially, then the SOC of ES will reach the maximum limit in the initial 

hours. Table 9 shows the result comparison between different initial SOCs. 

Table 9. Result comparison between different initial state-of-charges. 

SOC Total Cost ($) LOLP CO2 (kg/y) CPU (s) 

SOC = 50% 2,227,112 0.023 49,997 95.0 
SOC = 70% 2,226,603 0.024 49,955 94.4 
SOC = 85% 2,226,227 0.024 49,882 93.9 

4.7. Discussions 

The above results support the following comments: 

(1) Energy storage effectively provides an emission-free generation resource that supports reliability 

but is much more costly than diesel generators. 

(2) Strict LOLP and CO2 emission limits require large investments to ensure the supply of high 

quality power and low emissions in a small autonomous power system. 

(3) The CPU times required to perform simulations are approximately 1–3 min if the energy storage 

system is considered. If no energy storage system is considered, then a simulation takes only 

around 30 s. The CPU time that is required by the proposed method is independent of the 

number of buses/lines. 

(4) The required CPU time may increase if more data from more years (two or three) are used to 

increase the accuracy of the evaluation of reliability, meaning that a longer planning horizon is 

considered. In this case, the expected lifetimes of all generation resources and the energy 

storage system should be evaluated. 

(5) The deterministic study yields a pessimistic solution with the largest cost among all approaches. 

A large cumulative probability ξ yields an optimistic solution. The cost ($2,226,227), obtained 

with ξ = 95%, which is widely acceptable, is less than a half of that ($4,118,731) obtained by 

the deterministic study. 
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5. Conclusions 

This paper presents a new method, based on the genetic algorithms, for determining the optimal 

capacities of hybrid wind/PV/diesel generation units and energy storage in a small autonomous power 

system. Historical 8760 h wind speed and solar irradiation data were used along with a forecast load 

profile, all of which were modeled by random variables to determine the optimal capacities of different 

distributed generation and energy storage. The PDF based on the Gram-Charlier series expansion is 

used to express uncertainty of renewables and loads. 

The advantages of the method proposed herein can be summarized as follows. (1) Both 

optimization and reliability are implemented together while the greenhouse gas emission constraint is 

also considered by the inequality constraint. Traditional methods considered either optimization or 

reliabilityonly; (2) The meteorological data and loads were modeled as random variables using the 

Gram-Charlier series expansion, to avoid complex calculation. 

The simulation results reveal that the reliability and greenhouse gas emission limits strongly affect 

the cost of the distributed generation resources and energy storage. The simulation results also indicate 

that the proposed uncertainty-based method yields a more optimistic result with a smaller cost than the 

deterministic method. 

Future studies will consider the annualized costs of the WTG, PV, ES, and diesel generators  

using suitable life expectancy estimation models. The net present cost and capital recovery factor will  

be considered. 
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