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Abstract: Many new demand response strategies are emerging for energy management in smart
grids. Real-Time Energy Pricing (RTP) is one important aspect of consumer Demand Side
Management (DSM), which encourages consumers to participate in load scheduling. This can help
reduce peak demand and improve power system efficiency. The use of Intelligent Decision Support
Systems (IDSSs) for load scheduling has become necessary in order to enable consumers to respond
to the changing economic value of energy across different hours of the day. The type of scheduling
problem encountered by a consumer IDSS is typically NP-hard, which warrants the search for
good heuristics with efficient computational performance and ease of implementation. This paper
presents an extensive evaluation of a heuristic scheduling algorithm for use in a consumer IDSS. A
generic cost model for hourly pricing is utilized, which can be configured for traditional on/off peak
pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and combinations thereof. The
heuristic greedily schedules controllable appliances to minimize smart appliance energy costs and
has a polynomial worst-case computation time. Extensive computational experiments demonstrate
the effectiveness of the algorithm and the obtained results indicate the gaps between the optimal
achievable costs are negligible.

Keywords: demand side management; smart grid; decision support system; heuristic algorithm;
load scheduling

1. Introduction

Smart grids are modern electricity infrastructure networks. They cost-effectively integrate the
actions and behaviors of all the connected users in order to ensure safe, sustainable and reliable
electricity supply [1]. The emerging smart grid, by use of an Advanced Metering Infrastructure
(AMI)—a two way communication infrastructure—can deliver real-time prices of electricity to
consumers and simultaneously send back their consumption data to the utility service companies
for billing and other purposes [2]. This enables consumers to manage energy distribution efficiently
by modifying their consumption behavior in line with the pricing signals. Currently, most household
consumers buy electricity on flat rate tariff and have no demand response incentives to encourage
shifting energy consumption from peak to off peak period. Smart pricing mechanisms such as RTP,
critical time pricing (CPP), and TOUP could lead to cost-reflective consumption, driven by aspects
of the entire supply chain involved in delivering electricity during a certain period of time in a
given quantity at a specific location [3]. However, the major difficulties in utilizing the pricing
incentives are the current lack of automated decision support system, coupled with most users
not being knowledgeable enough (or having enough spare time) to respond to the time varying
electricity prices. Hence, an automated energy management system or Intelligent Decision Support
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System (IDSS) for load scheduling is highly desirable. Even disregarding the technical challenges and
complexities of connecting an IDSS to both an AMI and controllable home appliances, smart home
load scheduling using variable price signals remains a difficult problem to solve computationally.
In most cases the problem is NP-hard and is also affected by uncertainties such as variations in
appliance power profiles. Moreover, an IDSS is ideally also required to be responsive to unexpected
or emergency events, such as specific DSM requests relayed through the AMI following unexpected
events affecting the wider grid. Therefore, we consider a rolling-horizon framework such that regular
re-optimization with updated information regarding the current system state and energy cost updates
provided by the electricity supplier can be implemented. To be of practical use, the optimization
carried out by the IDSS must be able to deliver results of reasonable quality in a short space of time.
In this paper, we present a low-overhead heuristic scheduling algorithm for use in a consumer IDSS
for minimizing smart appliance energy costs.

In the wider context, effective distributed energy generation based upon renewable resources
is a major goal of the smart grid. Such generation can provide clean and sustainable energy and
(potentially) enhance power system capacity and security. In addition to reducing consumer energy
costs, the enhanced DSM support that can potentially be delivered by consumer IDSSs should be able
to help manage the integration of renewable resources, since a large proportion of energy generation
in smart grids is expected to come from non-dispatchable renewable resources such as wind, solar and
wave energy [4]. These renewables are intermittent in nature and it remains an important challenging
factor to manage their output generation with demand fluctuations. However, the potential
coordination of distributed energy generation, energy storage systems and smart home loads will lead
to more robust optimization and corresponding energy cost savings. Utilizing price signals that reflect
the forecasted value of energy during a particular hour—and also its uncertainty—may help to enable
this optimization and coordination. In this paper, we consider a generic and flexible cost function
for hourly energy pricing in our optimizer. This model can be configured for traditional on/off
peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and various combinations
thereof. The heuristic we propose greedily schedules controllable appliances to minimize this cost
function, and has a polynomial worst-case computation time. Extensive computational experiments
demonstrate the effectiveness of the algorithm, and the obtained results indicate the gaps between
the optimal achievable costs are negligible; although some differences in solution structure are
evident in certain cases. The remainder of this paper is structured as follows: Section 2 presents
a review of related work and highlights the contribution of the current paper. Section 3 describes
the models employed, while Section 4 describes the optimization procedure we propose. Sections 5
and 6 describe the simulation studies that have been carried out to investigate the efficiency and
performance of the heuristic algorithm. Section 7 presents our conclusions and outlines areas for
future work.

2. Related Work and Contribution

Extensive demand side management strategies using techniques such as Mixed Integer Linear
Programming (MILP) [5-7], Direct Load Control (DLC) [8], branch and bound algorithms [9,10],
etc., have been presented in the literature as potentially effective solutions for the consumer load
scheduling problem. The fact remains that more work has to be done in practice, as most
existing methods are not readily applicable for scheduling large numbers of appliances and for
real-time implementation in households. Additionally, metaheuristic search algorithms have also
been proposed in the literature over the last two decades for scheduling residential and commercial
loads. Most of the existing metaheuristic such as Particle Swarm Optimization (PSO) [11,12], Ant
Colony Optimization ACO [13], Simulated Annealing (SA) [14], Genetic Algorithm (GA) [15-17],
etc., are inspired by natural phenomenon. These studies explore alternative means of scheduling
and optimizing a power profile at any hour of the day since an optimal deterministic technique is
unrealistic to most customers.
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A significant focus of recent research has also been on heuristic algorithms applicable to
residential and industrial scheduling problems. Heuristic approaches can be efficient in achieving
faster solutions which could be implemented on an embedded system or computer for the purposes
of a consumer decision support system. On the other hand, a “good”, but not necessarily optimal
solution to the optimization problem can only be found, but it will be found in a reasonable time.
In [18], an intelligent Home Energy Management (HEM) algorithm is presented for managing high
power consumption household loads according to a preset priority. Reference [19] proposed a
heuristic algorithm to determine price update interval and step size required for limiting deviation
of power load from a desired load. An aggregator-based residential DR approach for scheduling
residential assets was proposed in [20]. They further designed a heuristic framework to perform
optimization on the profit of the aggregator.

In previous work by the current authors [21,22], an efficient heuristic for scheduling residential
appliances in the presence of RTP was proposed and partially evaluated. The heuristic is based
upon greedy list-processing of smart appliances into a feasible energy schedule, with the aim of
minimizing costs subject to a set of constraints over the appliances. The heuristic, although it
does not guarantee the lowest possible costs, is simple and efficient enough to ensure that regular
re-optimization with updated state information can take place. Initial investigations indicated that
the heuristic was in fact highly competitive against an exact algorithm in terms of achieved cost
reductions in a simulation-based evaluation.

Our contribution in the current paper is first to extend the cost model employed in this heuristic
algorithm, and secondly to further explore its properties under realistic simulation conditions using
a wider range of pricing signals. In particular, for the latter we consider cost-based scheduling of the
smart home appliances in response to RTP, TOUP and 2TP. To the best of the author’s knowledge,
no results related to the performance of such a heuristic in the presence of such cost models have
previously been published in the literature.

3. Optimization Model

This section provides the mathematical formulation of the residential load scheduling problem
and the generic cost model employed. Our focus is to optimize the power (and hence energy) profile
at any given timeslot to minimize costs subject to the given constraints. Figure 1 shows the block
diagram of a demand side management system, which comprises the data and power flow between
a smart meter, decision support system and the smart home appliances. The smart meter receives
external signals (e.g., spot prices of electricity) from the utility service providers. This information
is used by the optimizer to determine a cost effective scheduling of controllable smart appliances.
Residential users can visualize the appliance scheduling and recommendations provided by the
energy management decision support to enable informed decisions on their energy consumption
pattern/usage.
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Figure 1. Block diagram of Residential energy management system.
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3.1. Optimization Overview

We assume that the scheduling /planning horizon is divided into H > 0 uniform time slots; each
time slot is of length T > 0 h. Typically, each slot will be of length T = 1 h, although this does not
necessarily have to be so in the general case. Let the number of appliances be denoted as N, and
the number of stages of appliance i be denoted as n; > 0. The power consumption during stage j of
appliance i is denoted by P; j, i € [1, N], j € [1, n;]. Let the starting time of appliance i be denoted by the
integer variable s; € [1, H]. Then the power consumed by appliance i with start time s; during timeslot
h is given by:

() = {Pi,h_si+1 IF0 < (}f —si+1)<n @
0 : Otherwise

Let the cost of consuming x;, > 0 units of energy during a particular hour / be represented by the
cost function Cp,(x;,) > 0. The optimization problem objective function | can then be formulated as the
sum of the energy costs across each slot in the horizon as follows:

H N
J=>.Cn (T-sz(h)) )
h=1 i=1
The basic form of the optimization problem can then be formulated as follows:
min(/)

with respect to:
sit1<j<N;

subject to: )
sf\ﬂingsigs{‘/f”x,siel:léiéN;
N
Moxilh) < XM 1<h < H; )
i=1

Constraints (3) are the user start time preferences which ensure that each appliance does not
operate outside of the set time preference interval given by s;iMin and s;Mex  Constraints (4) ensure
the maximum power consumption for all the appliances at any time slot 1 does not exceed the
power threshold, where X;,M%* is the threshold at slot k. Typically this will be set by the household
to suit its own specific constraints, such as the maximum power rating of the incoming supply or
consumer unit. In addition, appliance specific constraints can be applied to ensure certain appliances
start or finish before each other. An example is the case of washing machine and dryer where the
latter must not start until the former has completed all of its operation stages. For certain types of
interruptible appliances, it may also be possible to schedule a bounded amount of time-delay between
two consecutive operation stages (e.g., a delay between a rinse cycle and the next wash cycle in a
washing machine). In such cases, the model may be extended by appropriate splitting of the main
appliance into a number of sub-appliances, each with a separately considered start-time; appropriate
constraints relating the start times of each sub-appliance will then model the required behavior. By
appropriate choice of T and H, the model may be configured to a given level of temporal fidelity and
future planning horizon length. In the remainder of the paper we assume that T =1 and H = 24, i.e,,
hourly slots are considered over a planning horizon of one day. In Appendix A, we shown that the
decision version of the problem described above is NP-Complete, and is hence intractable for large
problem sizes unless P = NP. The optimization version of the problem is therefore NP-hard.
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3.2. Generic Cost Model

We assume that the cost of energy during a particular slot & is a generic function Cj(x;,) of the
amount of energy consumed, which is x; units. Typically, the form of C;, will depend heavily upon
pricing of electricity in a day-ahead (spot) market and also any specific DSM initiatives advertised to
the subscribed residents by the supply/distribution company via the smart meter/ AMI. The source
of the energy supply is assumed to be a hybrid generation comprising the conventional forms of
generation (gas, coal etc.) plus distributed renewables (solar, wind, biomass etc.); hence the nature
and form of Cj, can also depend upon the availability of these latter renewables, and have components
linked to balancing (real-time) energy market prices. Two particular cases seem to be of most interest
at the present time for representing costs in the presence of fluctuating costs and DSM signals; in these
cases, costs are represented by a concave/convex combination of two piecewise affine functions:

Cp(xp) = max{ay + byxy,ap + box}, by < by 5)

C(xp) = min{ay + bixp, ax + boxy}, bp < by (6)

In particular, Equation (5) represents a case in which a cover charge (a1 €) plus a base price
(b1 €/kWh) is incurred for energy used up to a certain limit ((a; — a2)/(by — b1) kWh), beyond
which a higher price (b, €/kWh) is incurred for each extra unit consumed. This represents a pricing
model in which increased production costs are reflected as increased consumer costs for increased
consumption, and with the prices and low consumption limit linked to external market conditions.
Equation (6) represents a similar situation except a reduction in cost is incurred for consumption
above the limit, reflecting an economy of scale. Models (5) and (6) can be used to reflect specific cost
incentives encouraging consumers to shift their consumption from peak to off-peak times, with both
base and high consumption prices that can be linked to an underlying pricing plan. The cost functions
Equations (5) and (6) are shown graphically in Figure 2 below.
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Figure 2. [llustration of the piecewise affine price model. (a) Concave (min) configuration, (b) Convex
(max) configuration. Note: In most cases, either the parameter a; or a, will be equal to zero.

By appropriate choice of the parameters a;, a;, by and b, for each hour, such a cost model
is flexible enough to capture the salient features of RTP, TOUP, 2TP and various combinations in
addition to specific DSM incentives. Unlike RTP, TOUPs are more customer friendly due to the
predictable nature of the pricing signals. Adopting TOUP scheme has an effect on load shifting,
which in turns helps to achieve demand response [23]. TOUP mainly consist of two or more tier rates
namely peak, off-peak and in some cases mid-peak prices depending on customers need and load
profile pattern which varies across different countries and locations. However, the more the tiers,
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the more difficult the model would be for customers to participate. Hence, in this paper we will
consider the two tiers pricing to reduce complexity since mid-peak rates only examines the average
costs between the peak and off-peak periods. 2TP is organized such that the rate of tariff paid below
a certain power threshold is lower than the rate paid above it; this to penalize high consumption
in any one hour and encourage even load distribution. However, the effect on demand response
of combining 2TP with RTP—in which a customer may pay a basic unit rate until the threshold is
exceeded, at which time a price linked to the spot price is incurred—has not been investigated fully
in the presence of load scheduling. The simple functions we propose in Equations (5) and (6) allow
such an investigation to be carried out.

Under the assumption that the cost functions Cj(x,) are linear, or piecewise linear and convex,
the optimization problem above can be solved using mixed integer linear programming (MILP)
software such as the IBM ILOG CPLEX and the YALMIP interface to Matlab [24]. Nevertheless,
solving such MILPs efficiently can only be done for relatively small instances of appliances [25].
Algorithms such as cutting plane methods and the branch and bound method [26] can also be used to
reduce the average execution time complexity. In the case that the costs may be arbitrary non-linear
functions—or combinations of even simple convex and concave functions at different hours over the
horizon—then a large number of additional binary variables may need to be introduced to solve the
problem. This may result in unacceptable overhead, even for relatively small numbers of appliances;
in addition, the use of specialized solvers will be impractical and should be avoided on small devices
such as smart meters and an IDSS computer. Therefore, instead we seek to find good—mnot necessarily
optimal—solutions to this problem, in a reasonable time without undue computational overheads.
The heuristic we propose is described in the next Section.

4. Scheduling Algorithms

In this section, we improve the scheduling algorithms (exact and heuristic) that were proposed
in [22] with the addition of the cost models described in the previous Section. The algorithms
use appliance start times s; as the decision variables and search over the future time horizon
(window) H for the start times which minimize the expected electricity cost | subject to the given
constraints. Parameters such as the number of appliances N, length of timeslot T, hourly timeslot
cost functions (Cj(xy)), constraints etc. are assumed given and define the problem instance. In the
sequel, the performance of the proposed heuristic algorithm will be evaluated and compared against
the proposed exact method in simulation studies.

4.1. Exact Method

In principle, exact methods can guarantee an optimal solution to this NP-hard optimization
problem. This can be achieved by searching the timeslots within the set time window exhaustively.
In our proposed exact method—shown in pseudocode below—the algorithm exhaustively searches
appliance start times for the best possible combination of starting times to obtain the minimum costs
which satisfy the constraints. The exact algorithm iterates through each possible combination of start
times in the specified user intervals in turn. In the worst case, each of these intervals will be of length
H timeslots, giving an exponential run-time complexity of O(HN) for the algorithm. During the search
iteration, the exact algorithm updates the best solution whenever a feasible cheaper cost solution is
found. The algorithm could clearly be improved by adding features such as back-tracking of partial
solutions that cannot improve upon the best solution found so far; however, its use in this paper was
principally to obtain optimal solutions for comparative purposes.
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Algorithm 1. Exact Method.

1: Initialization: Set and initialize the N appliances, constraints and cost functions;
2:fori=1to Ndo

3. si=gMin;

4: end for;

5: Cs :=INF;

6:S =],

7: Done := FALSE;

8: while Done == FALSE do

9: if Constraints Satisfied do

10: ] := Evaluate Full Schedule Cost;
11: ifJ<Csdo

12: Cs:=];

13: S:=[s1, 82 ...sN];
14: end if;

15: end if;

16: fori=1to N do
17:si=si+1;

18: if si>sMrdo

19: si = giMin;

20: ifi==N do

21: Done=TRUE;
22: end if;

23: else

24: break;

25: end if;

26: end for;

28: end while;
29: return [Cs, S];

4.2. Heuristic Method

In the proposed heuristic algorithm, appliances are scheduled sequentially based on a greedy
strategy without back-tracking. Appliance start times are scheduled one-by-one, and the cost is
evaluated for each feasible start time and considers only the current appliance and those which
have already been scheduled and their start times fixed. Once the minimum cost for the current
appliance is determined, its start time is fixed and is not subsequently changed once scheduling
continues to the next un-scheduled appliance. All appliances are scheduled in this way. A single loop
over N appliances, considering the start times of each appliance within its specified user interval is
performed. In the worst case, each of these intervals will be of length H timeslots, giving a polynomial
run-time complexity of O(HN) for the heuristic algorithm.

Given the similarity of the heuristic algorithm to the “List Processing” algorithm for
multiprocessor scheduling, and the similarity of the considered appliance scheduling to
multiprocessor scheduling (as demonstrated in the Appendix A), it follows that the heuristic
we propose may inherit some of the known good performance bounds of the “List Processing”
algorithm. Indeed, if appliances are all single-stage and are sorted in non-increasing order of power
requirements, then our heuristic would achieve a cost not greater than a factor of 4/3 - 1/(3H) away
from the optimal cost [27]. For a typical configuration with H = 24, the heuristic cost would never be
larger than 32% more than the optimal cost. In order to investigate the heuristic properties in more
depth, detailed computational experiments now follow.
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Algorithm 2. Heuristic Method.

1: Initialization: Set and initialize the N appliances, constraints and cost functions;
2:Cp:=0;

3:S5:=[];

4:fori=1to N do

5. Cs:=Cp+INF;

6:  for si=sMin to sM= do

7 ] := Evaluate Partial Schedule Cost;
8 if Constraints Satisfied
9: if < Cs

10: Cs:=];

11: SB :=Si;

12: end if;

13: end if;

14: end for;

15: si := sB;

16: end for;

17: S =51, s2, ... SN];
18: return [Cs, S];

5. Simulation Studies

To demonstrate the effectiveness of the proposed algorithms, we present several different
computational experiments. First, to evaluate and compare the minimum cost of appliance schedule
for exact and heuristic algorithms based on RTP; second to evaluate the test result based on TOUP,
combined with 2TP (TOUP/2TP), and to compare the results (exact and heuristic) with the RTP/2TP
test results and the corresponding power distribution for RTP and 2TP across different hours, days,
months and respective seasons of the year. In these first sets of experiments, we consider a single
household with 4 controllable home appliances. We assume two instances where the household user
is subscribed to receive the advertised RTP, 24 h in advance; and a case where the household buys
electricity based on TOUP. The power maximum limit (safety threshold) is assumed to be 5500 w
throughout. Details of the appliance technical specifications are as given below:

5.1. Minimum Cost Evaluation Based on Real-Time Energy Pricing (RTP)

In this experiment, we aim to determine the differences in the cost of scheduling appliances with
the exact and heuristic algorithms respectively. RTP was used for optimization which is carried out
once every 24 h for one simulated year duration, considering the period from 1 December 2013 to 30
November 2014. The scheduling consists of four controllable appliances namely washing machine,
dishwasher, tumble dryer and Electric Vehicle (EV) as indicated in Table 1. In the scheduling,
appliance operation constraints are applied such that the washing machines stages must finish before
the tumble dryer phase starts. The hourly pricing data for the RTP was taken from the Scandinavian
electricity market Nordpoolspot [28] and samples of these prices are shown in Figure 3 below. Note
that the raw (wholesale) costs for electricity were employed; in reality, consumer costs would also
include per-unit taxation and distribution charges which actually form a large proportion of the final
price, and are typically over 50% in the EU. Nevertheless, price variations with the inclusion of these
extra charges are still primarily as a result of wholesale price fluctuations, and our experiments still
give a realistic indication of algorithm behavior.
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Figure 3. Example of the hourly pricing of electricity used in the simulation, showing the plot for 1st
day of every month from December 2013 to November 2014 [28].

Table 1. Data specification of the appliance scheduling.

Devices Power Consumption (Watts) User Time Preference
Washing machine 2100 10:00-20:00
Tumble dryer 1200 10:00-22:00
Dish washer 1900 17:00-23:00
Electric vehicle 1000 1:00-5:00

The simulation results of the total consumption costs for the exact and heuristic algorithms across
the different months of the year used are plotted in Figure 4.

Cost (Eur/kWh)

Cost (Eur/kWh)

Total cost schedule for Dec 2013

o — Exact -
J --------- Heuristic
0.22 Jl I_I_‘—\_I_' |
02 L1
0.18 —I L'l_’_'
0.16
0 240 480 768
Total Cost Schedule for Jan 2014
0.23
Exact
--------- Heuristic
0.21 J
019+ - |
0.17
240 480 768

Figure 4. Cont.



Energies 2016, 9, 6

10 of 21
Total cost scheule for Feb 2014
0.205 ! '
Exact
--------- Heuristic
0.195 .
= . L
=
é —
= 0.185
w
S 0.175 -
0.165 - -
0 240 480 768
Total cost schedule for March 2014
0.19 T
Exact
0185 B | e Heuristic |
= -
E 017 _ fi'l_l---.
= | :
w I
% 016 . —
(o]
o
015 I-— —LI—LI
0] 240 480 768
Total cost schedule for April 2014
T
0191+ Exact u
--------- Heuristic
= 017 ™
= ]
@ 0.15 mms e B
‘g -
0.11
L
0 240 480 768
Total cost schedule for May 2014
0.2
Exact
0.18 FLLL L.' ==mmmmmns Heuyristic ||
= -
—
Z 0161  uuy "1
WL 1
w
w 014 -
o
O
012 1
| mad
0.1
0 240 480 768

Figure 4. Cont.



Energies 2016, 9, 6 11 of 21
Total cost schedule for June 2014
T T
0.19 Exact
--------- Heuristic I""_‘_\_| I
£ 017 I |
S '—l |
<
& 015 -
§ 0.13 r
0.11 e
| 1
0] 240 480 768
Total cost schedule for July 2014
0.21 T .
Exact
--------- Heuristic
=
= 0.19 P
<
5
w
g 0.17 -
0.15 L
240 480 768
Total cost schedule for Aug 2014
0.23
Exact
--------- Heuristic
=) L
= 0.21 -
= it FEET I
3 I_,—a—’_\_
u
e B LJ
0.17
0 240 480 768
Total cost schedule for Sept 2014
T
0235 Exact
ammn
--------- Heunstlc 1
= 0.225 =
E s e ; |..= i
5 0215 — 5 2 i -
o
O 0.205 I—'
0.195 .
1
0 240 480 768

Figure 4. Cont.



Energies 2016, 9, 6 12 of 21

Total cost schedule for Oct 2014

0.22 |
Exact
S e T O™ o B e S S Heuristic | |
0.18

0.14 ‘_I =

Cost (Eur/kWh)

0.12 ' '
0 240 480 768
Total cost schedule for Nov 2014
0.22
Exact
--------- Heuristic ‘_I_'J_\j—\_l_‘_‘_b_’
—_ -
< — L preaai TR
5 l"'|
w
3 014
(@)
0.1
0 240 480 768
Time (Hour)

Figure 4. Total consumption cost solutions obtained with the exact and heuristic algorithms across
12 months for the simulation period from December 2013 to November 2014.

From the results, we can see that the heuristic achieves a near optimal solution across the course
of the whole year. Average monthly consumption costs of €2.1674 were incurred as compared to
€2.1582 obtained by the exact algorithm. Percentage cost difference in these figures confirms that
the proposed heuristic achieves up to (2.1674 — 2.1582)/2.1674 = 0.0042% of the optimal solution
obtained by the exact algorithm. However, both algorithms schedule the same amount of energy in
the household, but the heuristic takes a significantly smaller amount of computation time (0.000704 s)
when compared to the proposed exact algorithm (0.00246 s) which is approximately 71% difference in
the solving time (see [21] for a detailed comparison of CPU execution times for typical configurations).

5.2. Cost Evaluation Based on Two-Tier Pricing (2TP)

This experiment studies the impact of using a 2TP model in conjunction with an RTP model
on both the residential electricity consumption cost and energy consumption profile. In a basic
2TP, the amount of energy consumed above a given power threshold is set as the tier-two price,
and a tier-one is charged for consumption below this threshold. This allows more even balancing
of the electricity used during the overall billing period [29]. Both the tier-one and tier-two prices
could be fixed, follow typical on/off peak periods, or even change hourly. In our study, the 2TP is
modelled such that the basic rate charged follows the hourly RTP (wholesale price as in Section 5.1),
and the high rate—charged for consumption over a fixed threshold—is a multiple (>1) of this base
price. In this simulation, we set the higher price to be 150% of the base price for consumption
exceeding 1500 Wh. This configuration was motivated by the configuration of the British Columbia
hydro two-tier pricing system as shown in Figure 5. We investigate whether the heuristic algorithm
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would be as effective at enabling residential energy consumers to respond to the 2TP/RTP charges
by shifting peak consumption to off-peak period as with the response to the RTP-only charges
reported above.

13 T T T
Tier 2: 11.95 Cents/kWh
11+ f
=
S o :
> Tier 1: 7.91 Cents/kWh
|5
e
S 7 .
o
Threshold
5 - -
3 L L L
0 1 2 3 4

Power consumption (KW)

Figure 5. Example of 2TP model used by the British Columbia Hydro Residential usage charge
updated in 1st April 2015 [29].

In this experiment, the simulation was carried out across four months in 2014—January, April,
July and October, representing samples of the four seasons of the year (winter, spring, summer
and autumn) respectively. Again, the heuristic achieves almost the same result—with respect to
costs—compared with the exact algorithm as seen in Table 2 below. Comparing these results with
those obtained for RTP alone in the previous section, the relative cost between the RTP and RTP/2TP
is approximately a 20% increase for the latter under both the heuristic and exact algorithm solutions.
RTP/2TP being the more expensive of the two schemes is to be expected, however, given the nature
of the cost models.

Table 2. Simulation Result of 2TP/RTP Model across representative seasons of the year.

Months of the Year Heuristic Algorithm Average Exact Algorithm Average Relative Difference in
(2014) Total Cost (Eur/kWh) Total Cost (Eur/kWh) Average Total Cost (%)
January 0.46451 0.46221 0.00495
April 0.36140 0.35502 0.01765
July 0.40928 0.40461 0.00467
October 0.43770 0.43247 0.01195

Furthermore, additional experiments were carried out in which the RTP and 2TP/RTP were
evaluated against a basic TOUP cost model and also a 2TP/TOUP with the same appliance
characteristics. The TOUP model used in this experiment was derived as follows: the highest and
lowest daily rates of the hourly RTP (wholesale price as in previous Section 5.1) were taken as the
fixed prices charged for peak and off-peak periods across the simulation period. The peak period
was defined as the hours between 06:00-08:00 and 17:00-21:00, and the off-peak the remaining hours
of the day. In the 2TP/TOUP cost model, the same procedure was used to set the 2TP base price
during the on-peak and off-peak times, with the higher price again set to be 150% of the base price
for consumption exceeding 1500 Wh. The resulting solutions obtained with both the heuristic and
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exact algorithms for TOUP and 2TP/TOUP are shown in Tables 3 and 4 while the differences in the
average total cost consumption are plotted in Figures 6 and 7 below.

Table 3. Simulation Result of TOUP Model across representative seasons of the year.

Months of the Year Heuristic Algorithm Average Exact Algorithm Average Relative Difference in
(2014) Total Cost (Eur/kWh) Total Cost (Eur/kWh) Average Total Cost (%)
January 0.18635 0.18635 0.00000
April 0.16816 0.16814 0.00011
July 0.16049 0.16049 0.00000
October 0.16028 0.16028 0.00000

Table 4. Simulation Result of 2TP/TOUP Model across representative seasons of the year.

Months of the Year Heuristic Algorithm Average Exact Algorithm Average Relative Difference in Difference with
(2014) Total Cost (Eur/kWh) Total Cost (Eur/kWh) Average Total Cost (%) 2TP/RTP (%)
January 0.43131 0.43130 0.0000023 0.004948
April 0.38822 0.38807 0.0000390 0.17611
July 0.37157 0.37157 0.0000000 0.00467
October 0.37098 0.37098 0.0000000 0.01195
1 .4 T T T
2TP/RTP
12r 2TP/TOUP ||
RTP
1.0 TOUP

0 Jan 2014 April 2014 July 2014 Oct 2014
Month of the year

Figure 6. RTP and RTP/2TP vs. TOUP and 2TP/TOUP cost scheduling solution for heuristic algorithm.
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Figure 7. RTP and RTP/2TP vs. TOUP and 2TP/TOUP cost scheduling solution for exact algorithm.
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Considering Figures 6 and 7 one may observe that the heuristic algorithm achieves almost
identical costs when compared to the exact algorithm over the course of the simulated months.
In terms of consumer costs, better results (in terms of slightly lower billing) are achieved with
2TP/TOUP when compared to the 2TP/RTP model. In summary, the results that have been presented
in these Sections suggest that the proposed heuristic algorithm is very effective across different types
of pricing model when compared to the exact algorithm, in terms of the end consumer costs. In the
next Section, it is evaluated in terms of the achieved power consumption profile.

5.3. Power Consumption for Real-Time Energy Pricing (RTP) and Two-Tier Pricing (2TP) with Heuristic and
Exact Algorithms

The obtained power consumption for the two pricing models is tested with both the exact
and heuristic algorithms to verify the energy distribution across different hours, days, months
and respective seasons of the year. This is displayed in Figures 8-11 below. As can be seen in
these Figures, under the RTP-only model there are several hourly timeslots in which the power
consumption is significantly different between the heuristic and exact algorithm. In particular, there
are 13 situations in which the heuristic consumes over 1.5 kW while the exact algorithm remains
below this level. Whilst this has an almost negligible impact upon cost—as detailed in the previous
Section—it indicates that problem solution is quite sensitive near the optimal cost. Examining the
results obtained for the RTP/2TP pricing model, it can be observed that, although some differences
exist, they are less pronounced under the 2TP extension. In particular, there are now no situations in
which the heuristic consumes over the 1.5 kW thresholds while the exact algorithm remains below it.

25 !
Exact-2TP
Exact-RTP
P T R Heuristic-2TP )
Heuristic-RTP
1.5F |
g
2 1 _
0.5 |
0 y '
0 1 2 3 4 s ° ’

Days of the week

Figure 8. Power distribution across the first week of January 2014, representing winter period.
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Figure 9. Power distribution across the first week of April 2014, representing spring period.
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Figure 10. Power distribution across the first week of July 2014, representing summer period.
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Figure 11. Power distribution across the first week of October 2014, representing autumn period.

This is indicative that the 2TP extension may be more effective at peak power reduction and
load balancing than the basic RTP approach when households employ approximate, near-optimal
scheduling of appliances. The aspects of multiple households with different appliances and
configuration will be investigated in the next section.

6. Cost Evaluation Based on Multiple Household Configurations

In this experiment, we consider multiple households with various appliance configurations and
pricing mechanisms. Parameters such as Time preference Range (H), Length of timeslot (T) and
Total power range (P;;) are the varying inputs that can be set by different household users based
on the consumption pattern, desired comfort level and appliance manufacturer’s constraints. We
assume that each household has configuration (C1~C8), with a particular pricing model (e.g., RTP,
RTP/2TP, TOUP, and TOUP/2TP) and its input parameters (e.g., different start times, timeslot length
operation as well as appliance power rating and assignment). These inputs are selected randomly in
comparison to the recorded data of household appliance technical specification used in [30], and will
determine the changes in energy cost with exact and heuristic algorithms across different households.
Please see Appendix B and Tables Al and A2 for the details of the household configurations used in
these experiments. The pricing data used in this experiment is the same with the previous set of
experiments reported in Section 5. For comparison purposes with the exact algorithm, given that the
problem is NP-hard it is very difficult to obtain extensive exact results for large problem instances,
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so we conducted experiments with five and six appliances, each with four different configurations
and price model. The average yearly simulation results for the eight different configurations were as
found in Table 5.

Table 5. Simulation result for multiple households with five & six appliances with different
configurations and pricing model.

Average Yearly Total Five Appliances with Configurations (C1~C4) Six Appliances with Configurations (C5~C8)
Cost (Eur/kWh) C1 C2 C3 C4 C5 Cé C7 Ccs8
RTP RTP/2TP TOUP TOUP/2TP RTP RTP/2TP TOUP TOUP/2TP
Heuristic algorithm 0.2071 0.4763 0.3043 0.5123 0.2276 0.4829 0.2117 0.4781
Exact algorithm 0.2068 0.4722 0.3037 0.5111 0.2273 0.4790 0.2087 0.4758
% Difference 0.0014 0.0086 0.0019 0.0023 0.0013 0.0080 0.0142 0.0048

The simulation results indicate that our heuristic algorithm with the proposed generic cost model
seems to be effective with different appliance and user preference configurations, and has managed to
bring the final consumption cost close to the optimal results (within 0.15%) across all pricing models
and configurations.

7. Conclusions

This paper has presented details of an extensive study into a heuristic scheduling algorithm for
use in a consumer IDSS for minimizing smart appliance energy costs. A generic and flexible cost
model for hourly pricing has been utilized in the model, which captures the salient characteristics
of traditional on/off peak pricing, RTP, Time of Use Pricing (TOUP), Two-Tier Pricing (2TP) and
combinations thereof. In comparisons with an exact (optimal) scheduling algorithm, the effectiveness
of the algorithm has been evaluated in extensive simulations and computational experiments. The
obtained results indicate that, although the worst-case performance of the algorithm could be
closer to 32%, in representative simulations the gaps between the heuristic cost solutions and the
optimal achievable costs have been found to be much lower and almost negligible. Although the
costs differences observed were negligible, some differences were however observed in the power
consumption profile between the algorithms, especially in the presence of the RTP policy; this
indicates that underlying the appliance scheduling problem is potentially sensitive to small changes
in the decision variables around the optimal achievable costs. In comparison, a combination of RTP
and RTP/2TP was found to be less sensitive than RTP alone, and gave a better distribution of the
power consumption. These issues will be investigated in more depth in our future work.
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Appendix A

Proof of NP-Completeness of the IDSS energy scheduling problem considered in this paper.
Consider the decision version of the optimization model presented in Section 3:

IDSS PROBLEM INSTANCE: An integer H > 0 representing the number of considered time slots,
an integer T > 0 representing the length of each slot, an integer N > 0 representing the number
of appliances, integers n; > 0 representing the number of appliance stages, and real-valued power
consumption values for each stage denoted by P;; > 0,i € [1, N], j € [1, n;], cost function Cj(xp,) > 0
and maximum power consumption thresholds X;,M%* > 0 for each hour of the day, plus user start time
preferences 0 < s;M" < 5;M%* < H for each appliance, and a real-valued cost budget B > 0.
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QUESTION: Is there a set of appliance start times s; such that Constraints (3) and (4) are satisfied,
and the cost calculated using Equations (1) and (2) satisfies | < B?

MULTIPROCESSOR SCHEDULING PROBLEM INSTANCE: Set I' of tasks with cardinality L,
number M > 1 of uniform processors, real-valued length I; > 0 for each task, real-values deadline
D>0.

QUESTION: Does a non-preemptive M-processor schedule for I' exist, ie., a function
fG)ell, ..., M] mapping all L tasks j € I to a processor (without overlap), such that the finish time
for the schedule F:

Fomey 2
fG) =i
jel
Satisfies the constraint that it is less than the deadline, i.e., F < D?
The multiprocessor scheduling problem above is known to be NP-Complete [27], and is in fact

NP-Complete in the strong sense when M > 2. NP-Completeness of the IDSS problem is now shown
by transformation from MULTIPROCESSOR SCHEDULING.

Theorem1 : IDSS is NP-Complete.

Proof : Transformation from the MULTIPROCESSOR SCHEDULING PROBLEM. Given an
instance of the MULTIPROCESSOR SCHEDULING problem, we configure the following instance
of an IDSS problem:

H=M;
T=1,;
N=1L;
sMIN = 1,1 <i<N;
sMax — M <N;

Observe that M timeslots have been created in IDSS, each with unit length, and that L appliances
have been constructed each with a single stage having power requirement /;. By the choice of s;i"
and s;M%%, each appliance is free to be started in any of the M available timeslots and incurs an
economic cost /; regardless of which slot it is assigned to. Given the choice of the budget B, any
assignment of start times satisfies the budget constraint eliminating it from the IDSS problem. It is
clear from this construction, however, that assigning an appliance start time s; = j incurs a power cost
of [; units in timeslot j. The claim is that a feasible schedule to this instance of the IDSS problem exists
if and only if a feasible schedule exists for this instance of the MULTIPROCESSOR SCHEDULING
problem. This is proven by taking the assignment of s; = j as equivalent to the assignment of task i on
processor j, and equivalently it must hold that:

Vh,1<h<H:
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From which it is easy to see that the finish time of the schedule F is equivalent to the maximum

power assigned to any of the H = M timeslots, and since the maximum power constraints are
constructed as X;M%* = D for each timeslot a feasible schedule to MULTIPROCESSOR SCHEDULING
exists if and only if there is a feasible solution to IDSS, proving the claim.o

Appendix B
Table Al. Configuration for five appliance scheduling with dynamic pricing [30].
Devices Input Parameters Household Configuration
C1RTP C2 RTP/2TP C3 TOUP C4 TOUP/2TP
Start time Range 10~20 10~20 10~20 10~20
Washing Machine Timeslot Lenght 136 161 130 154
Power 2249.96 2249.96 2249.96 2149.96
Start time Range 9~23 9~23 9~23 9~23
Dish washer Timeslot Lenght 82 134 78 87
Power 1739.96 1880.96 1740.96 1840.96
Start time Range 13~23 13~23 13~23 13~23
Tumble dryer Timeslot Lenght 90 120 105 70
Power 1200 1200 1500 1200
Start time Range 1~6 1~6 1~6 1~6
Electric vehicle Timeslot Lenght 120 110 150 120
Power 1100 1000 2500 2000
Start time Range 5~20 5~20 5~20 5~20
Water heater Timeslot Lenght 105 60 90 60
Power 950 900 700 1000
Table A2. Configuration for six appliance scheduling with dynamic pricing [30].
Devices Input Parameters Household Configuration
C5 RTP C6 RTP/2TP C7 TOUP C8 TOUP/2TP
Start time Range 10~20 10~20 10~20 10~20
Washing Machine Timeslot Lenght 135 135 155 135
Power 1939.96 1899.96 2249.96 1899.96
Start time Range 9~23 9~23 9~23 9~23
Dish washer Timeslot Lenght 89 88 132 108
Power 1720.96 1700 1960.96 1700
Start time Range 13~23 13~23 13~23 13~23
Tumble dryer Timeslot Lenght 90 90 90 90
Power 1100 1000 1100 1000
Start time Range 1~6 1~6 1~6 1~6
Electric vehicle Timeslot Lenght 120 120 120 110
Power 1500 1200 1000 1300
Start time Range 5~20 5~20 5~20 5~20
Water heater Timeslot Lenght 90 90 90 90
Power 900 900 900 900
Start time Range 6~22 6~22 6~22 6~22
Electric cooker Timeslot Lenght 75 75 75 75
Power 600 600 600 600
References
1. ERGEG (European Regulators’” Group for Electricity and Gas). Position Paper on Smart Grids. An

ERGEG Conclusions Paper. Ref: E10-EQS-38-05. Available online: http://www.energy-regulators.eu/
portal/page/portal/EER_HOME/EER_PUBLICATIONS/CEER_PAPERS/Electricity /2010/
E10-EQS-38-05 _SmartGrids_Conclusions_10-Jun-2010_Corrigendum.pdf (accessed on 12 June 2013).
Khomani, H.P; Javidi, M.H. An efficient home energy management system for automated residential
demand response. In Proceedings of the 13th International Conference on Environmental and Electrical
Engineering, Wroclaw, Poland, 1-3 November 2013; pp. 307-313.



Energies 2016, 9, 6 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic
optimization. IEEE Trans. Smart Grid 2012, 3, 1244-1252. [CrossRef]

Conejo, A.].; Morales, ].M.; Baringo, L. Real-time demand response model. IEEE Trans. Smart Grid 2012, 1,
236-242. [CrossRef]

Bradac, Z.; Kaczmarczyk, V.; Fiedler, P. Optimal scheduling of domestic appliances via MILP. Energies 2014,
8,217-232. [CrossRef]

Agnetis, A.; de Pascale, G.; Detti, P; Vicino, P.A. Load scheduling for household energy consumption
optimization. IEEE Trans. Smart Grid 2013, 4, 2364-2373. [CrossRef]

Rothberg, E. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS J.
Comput. 2010, 19, 534-541. [CrossRef]

Ng, K.; Shebl¢, G. Direct load control—A profit based load management using linear programming.
IEEE Trans. Power Syst. 1998, 13, 688-694. [CrossRef]

Somol, P; Pudil, P; Kittler, J. Fast branch and bound algorithms for optimal feature selection. IEEE Trans.
Pattern Anal. Mach. Intel. 2004, 26, 900-912. [CrossRef] [PubMed]

Fisher, N.; Baker, T.P,; Baruah, S. Algorithms for determining the demand-based load of a sporadic task
system. In Proceedings of the 2006 12th IEEE International conference on Embedded and Real Time
Computing Systems and Applications, Sydney, Australia, 16-18 August 2006; pp. 135-146.

Pedrasa, M.A.A.; Spooner, T.D.; Macgill, L.LE. Coordinated scheduling of residential distributed energy
resources to optimize smart home energy services. IEEE Trans. Smart Grid 2010, 1, 1244-1252. [CrossRef]
Ting, T.O.; Rao, M.V,; Loo, K.C. A novel approach for unit commitment problem via an effective hybrid
particle swarm optimization. IEEE Trans. Power Syst. 2006, 21, 411-418. [CrossRef]

Shah, A.; Kotecha, K. Scheduling algorithm for real-time operating system using ACO. In Proceedings
of the 2010 IEEE Computation Intelligence and Communication Networks (CICN), Bhopal, India, 26-28
November 2010; pp. 617-621.

Ferreira, FA.; Lemos, FA.B. Unbalanced electrical distribution network reconfiguration using simulated
annealing. In Proceedings of the 2010 IEEE /PES Transmission and Distribution Conference and Exposition:
Latin America (T&D-LA), Sao Paulo, Brazil, 8-10 November 2010; pp. 732-737.

Rudolf, A.; Bayrleithner, R. A genetic algorithm for solving the unit commitment problem of a
hydro-thermal power system. IEEE Trans. Power Syst. 1999, 14, 1460-1468. [CrossRef]

Ko, M.J.; Kim, Y.S.; Chung, M.H.; Jeon, H.C. Multi-objective design for a hybrid energy system using genetic
algorithm. Energies 2015, 8, 2924-2949. [CrossRef]

Agrawal, P; Rao, S. Energy-aware scheduling of distributed systems. IEEE Trans. Autom. Sci. Eng. 2014, 11,
1163-1175. [CrossRef]

Pipattanasomporn, M.; Kuzlu, M.; Rahman, S. An algorithm for intelligent home energy management and
demand response analysis. IEEE Trans. Smart Grid 2012, 3, 2166-2173. [CrossRef]

Kong, PY. Effects of communication network performance on dynamic pricing in smart power grid.
IEEE Syst. ]. 2014, 8, 533-541. [CrossRef]

Hansen, T.M.; Roche, R.; Suryanarayanan, S.; Maciejewski, A.; Siegel, H.J. Heuristic optimization for
an aggregator-based resource allocation in the smart grid. IEEE Trans. Smart Grid 2015, 6, 1785-1794.
[CrossRef]

Ogwumike, C.; Short, M.; Denai, M. Near-optimal scheduling of residential smart home appliances using
a heuristic approach. In Proceedings of the 2015 IEEE Conference on Industrial Technology, Seville, Spain,
17-19 March 2015; pp. 3128-3133.

Ogwumike, C.; Short, M. Evaluation of heuristic approach for efficient scheduling of residential smart home
appliances. In Proceedings of the IEEE 15th International Conference on Environmental and Electrical
Engineering, Rome, Italy, 10-13 June 2015.

Yang, L.; Zhihua, W. The implementation of peak and valley time price for electricity and the response of
large industries. Autom. Electr. Power Syst. 2001, 25, 45-48.

C simPLEX CPLEX Optimization, Inc. Using the CPLEX Callable Library and CPLEX Mixed Integer; Incline
Village: Washoe County, NV, USA, 2007.

Cheong Sou, K.; Weimer, J.; Sandberg, H.; Johansson, K.H. Scheduling smart home appliances using mixed
integer linear programming. In Proceedings of the 50th IEEE Conference on Decision Control and European
Control Conference, Orlando, FL, USA, 12-15 December 2011; pp. 5144-5149.


http://dx.doi.org/10.1109/TSG.2012.2195686
http://dx.doi.org/10.1109/TSG.2010.2078843
http://dx.doi.org/10.3390/en8010217
http://dx.doi.org/10.1109/TSG.2013.2254506
http://dx.doi.org/10.1287/ijoc.1060.0189
http://dx.doi.org/10.1109/59.667401
http://dx.doi.org/10.1109/TPAMI.2004.28
http://www.ncbi.nlm.nih.gov/pubmed/18579948
http://dx.doi.org/10.1109/TSG.2010.2053053
http://dx.doi.org/10.1109/TPWRS.2005.860907
http://dx.doi.org/10.1109/59.801929
http://dx.doi.org/10.3390/en8042924
http://dx.doi.org/10.1109/TASE.2014.2308955
http://dx.doi.org/10.1109/TSG.2012.2201182
http://dx.doi.org/10.1109/JSYST.2013.2260913
http://dx.doi.org/10.1109/TSG.2015.2399359

Energies 2016, 9, 6 21 of 21

26.

27.

28.
29.

30.

Thakoor, N.; Gao, J. Branch and bound for model selection and its computational complexity. IEEE Trans.
Knowl. Data Eng. 2010, 23, 655-668. [CrossRef]

Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H.
Freeman and Company: New York, NY, USA, 1979.

Nordpool Spot Prices. Available online: http://www.nordpoolspot.com/ (accessed on 10 May 2015).
British Columbia Hydro Residential Usage Charge. Available online: https://www.bchydro.com/news/
conservation/2012/kilowatt-hour-explained.html (accessed on 3 June 2015).

Cheng Sou, K.; Kordel, M.; Wu, J.; Sandberg, H.; Johansson, K.H. Energy and CO; efficient scheduling of
smart home appliances. In Proceedings of European Control Conference (ECC), Zurich, Switzerland, 17-19
July 2013; pp. 4051-4058.

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
@ \ access article distributed under the terms and conditions of the Creative Commons by

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TKDE.2010.156

	Introduction 
	Related Work and Contribution 
	Optimization Model 
	Optimization Overview 
	Generic Cost Model 

	Scheduling Algorithms 
	Exact Method 
	Heuristic Method 

	Simulation Studies 
	Minimum Cost Evaluation Based on Real-Time Energy Pricing (RTP) 
	Cost Evaluation Based on Two-Tier Pricing (2TP) 
	Power Consumption for Real-Time Energy Pricing (RTP) and Two-Tier Pricing (2TP) with Heuristic and Exact Algorithms 

	Cost Evaluation Based on Multiple Household Configurations 
	Conclusions 

