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Abstract: The extended Stochastic Impacts by Regression on Population, Affluence and Technology
(STIRPAT) model has been applied to analyzing the relationship between CO2 emissions from power
industry and the influential factors for the period from 1997 to 2020. The two groups found through
partial least square (PLS) regularity test show two important areas for CO2 emissions reduction from
the power industry: economic activity and low-carbon electric technology. Moreover, considering
seven influential factors (economic activity, population, urbanization level, industrial structure,
electricity intensity, generation structure, and energy intensity) that affect the power CO2 emissions
and the practical situation in the power sector, possible development scenarios for the 13th Five-Year
Plan period were designed, and the corresponding CO2 emissions from the power sector for different
scenarios were estimated. Through scenario analysis, the potential mitigation of emissions from
power industry can be determined. Moreover, the CO2 emissions reduction rates in the different
scenarios indicate the possible low-carbon development directions and policies for the power industry
during the period of the 13th Five Year Plan.
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1. Introduction

It is considered that global warming and its subsequent effects, the most serious climate threat to
human existence, is due to greenhouse gas (GHG) emissions, with 90% probability [1]. According to
trend analysis, the concentration of GHGs will increase from the present 430 ppm to over 550 ppm in
2050, which will continue to cause a temperature increase of over 2 ◦C, with a likelihood of 99% [2].
Current research shows that energy-related CO2 emissions have caused over two-thirds of greenhouse
effects and will continue to increase in the future [3,4]. The electric power industry is a significant
energy-related CO2 emitter. Its global emissions share has increased from 36% in 1990 to 41% in 2009,
and is projected to increase to 45% in 2030 [1,5].

In China, the situation is even more serious. Since the beginning of reform and opening-up
policy in the late 1970s, China has experienced unprecedented economic development with an average
annual growth rate of 10% [6]. The installed capacity and electricity generation needed to increase
quickly to catch up with the booming economic growth. From 1980 to 2014, the yearly installed
capacity had increased from 65.9 million kilowatts (kW) to 1360.19 million kW, while the electricity
net generation had increased from 285.5 billion kilowatt hours (kWh) to 5649.58 billion kWh [7].
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For a long time, because of the neglect of environmental protection and the dependence on energy
resource endowments, China’s power generation sector relies heavily on coal and its products, the most
carbon-intensive fossil fuels [8]. In 2014, China’s coal-fired power plants consumed 1760.98 million
tons of coal, accounting for 42.78% of the country’s total, and generated 4268.65 billion kWh electricity,
accounting for 75.56% of the country’s total [9,10]. Due to the considerable coal consumption,
the electric power industry has become the largest CO2 emitter of all the industrial sectors, contributing
to over 40% of China’s total [11].

When the Kyoto Protocol was adopted in 1997, as a developing country and also because of
the inconspicuous emissions share, China was not listed in “Annex I”—those who should take the
responsibility of CO2 emissions control [12]. However, over the subsequent dozen years, China’s
GDP output and CO2 emissions have increased greatly. Since 2007, China has become the largest
CO2 emitter in the world, accounting for as much as 28% of the world’s total in 2013 [13]. Many
“Annex I” emitters felt the situation unfair and a few of them even withdrew from the Kyoto Protocol.
As a remedial measure, the Doha amendment to the Kyoto Protocol clearly specified that “developing
countries contribute adequately according to their responsibilities and respective capabilities” as one
of the premises for many “Annex I” emitters to continue to fulfill their commitments [14]. Therefore,
China’s CO2 emissions control has become one of the key factors to further maintain the global CO2

mitigation system. As introduced before, controlling the CO2 emissions from the electric power
industry is the key issue.

Quantitatively analyzing the relationship between CO2 emissions from the electric power
industry and its driving force factors is one of the important bases for adjusting the relevant policies.
The Log-mean Divasia index (LMDI) [5,15] and Laspeyres index [16] decomposition models can
quantitatively decompose the change of CO2 emissions from the electric power industry into the
contributions of each driving-force factor. These two models have similar functions, but each has
its own merits. The former is better than the latter in theoretical foundation, adaptability, and result
interpretation; whereas the latter is better for easy comparison between different decomposed
objects [17]. However, these models all need an identity with multiple forms at the beginning
of decomposition. Limited by this unique identity structure, the considered influence factors are
difficult to add.

In 1970s, Ehrlich and Holdren [18,19] were the first to advance the IPAT (Impact, Population,
Affluence and Technology) model, known as I = PAT to quantitatively decompose the impact (I) on
environment of human activities to population (P), affluence (A), and technology (T). As a follow-up
study, Waggoner and Ausubel [20] further decomposed technology (T) in IPAT into different forms in
different research fields. Their model was hence written as I = PACT and named ImPACT. IPAT and
ImPACT, with no essential difference, have been widely used in analyzing the influencing factors of
CO2 emissions [21–23]. However, as a common premise, the aforementioned models assume that each
factor has the same influence to the decomposed impact. This premise has been considered as the
fatal limitation of these models [24,25]. To overcome this, Dietz and Rosa [24] advanced the Stochastic
Impacts by Regression on Population, Affluence and Technology (STIRPAT) model which is written
as I = aPbAcTd. This model has been successfully utilized to statistically model non-proportionate
impacts of variables on the environment. Not only that, the equation structure of the STIRPAT model
also makes it easy to add explanatory variables. That is, more influencing factors of CO2 emissions
from the electric power industry can possibly be considered to build the extended STIRPAT model.

In practical applications, to estimate the parameters by ordinary least squares (OLS) algorithm,
the STIRPAT model is usually rewritten as a linear form by taking the logarithm. The CO2 emissions
from the electric power industry are usually influenced by many social and economic factors, named
independent variables. When simulating the relationship between power-generation CO2 emissions
and the influencing factors, the independent variables in linear STIRPAT model often exhibit extreme
multicollinearity. This will directly cause the instability of regression parameters and indirectly lead to
many inevitable consequences. To solve this problem, Wold et al. [26] advanced the partial least squares
(PLS) method. Many literatures have proved that the PLS algorithm has the ability to find the stable
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regression parameters using few observations with multicollinearity [4,27]. The PLS algorithm can also
be used to estimate the parameters of the linear log equation form of the extended STIRPAT model.

The remainder of this paper is organized as follows. Section 2 describes the methodologies used:
the extended STIRPAT model, the PLS theory, the outlier test, and the data sources. Section 3 tests the
extent of multicollinearity, examines China’s power industry historical data from 1997 to 2014 to obtain
the log linear model, and demonstrates model validity. The tested outliers may reveal two reasonable
areas for the power industry’s emissions reduction. Section 4 designs possible scenarios for the power
industry during the period of the 13th Five-Year Plan and estimates the future CO2 emissions for
different scenarios so as to measure the mitigation potential in the power sector. Section 5 provides the
summary and conclusions based on the results of the previous analysis.

2. Methodologies and Data

2.1. Influencing Factors and the Extended STIRPAT Model

According to the idea of the IPAT theory, the potential factors influencing CO2 emissions from
the power industry are grouped into three categories. The first is population and urbanization level.
The urbanization level is quantified as the proportion of urban population to the total population.
The second is affluence, which is typically operationalized as per capita gross domestic product (GDP).
The third is technology, represented by industrial structure, electricity intensity, generation structure,
and energy (fuel) intensity of power generation. In our work, the proportion of the second industry
output to total GDP is used to indicate the industrial structure. The electricity intensity is defined as
electricity generation required per unit of GDP. The generation structure is quantified by the electricity
generation share of thermal power plants to the gross generation. The energy (fuel) intensity means
the energy consumption per kWh. We chose the net equivalent coal consumption rate of power
supply electricity, instead of the net equivalent coal consumption rate of power generation electricity,
to demonstrate the energy intensity indicator. The reason is as follows.

In power plants, various auxiliary equipment (pumps, fans, dust collectors, coal mills, etc.)
consume a certain proportion of electricity. The actual on-grid electricity energy should deduct the
electricity consumption for auxiliary equipment, which is called “power supply electricity”. Thus the
auxiliary power ratio can also reflect the economy of the generation process. We herein adopt the net
equivalent coal consumption rate of power supply electricity as a comprehensive indicator since it
shows the combined effect of the net equivalent coal consumption rate of thermal power generation
and the auxiliary power ratio together. The definitions of all influential factors are shown in Table 1.

Table 1. The definitions for factors used in extended Stochastic Impacts by Regression on Population,
Affluence and Technology (STIRPAT) model.

Factors Notation Definitions for Variables Unit

Pressure on environment I CO2 emissions from power industry 104 tons
Population P Total population 104 people

Urbanization level U The proportion of urban population to total population %
Economic activity A GDP per capita 104 RMB

Industrial structure SI The proportion of the second industry output to total GDP %
Electricity intensity EI Electricity generation required per unit of GDP kWh/RMB

Generation structure GS The share of thermal power generation in total electricity generation %
Energy (fuel) intensity FI The net equivalent coal consumption rate of power supply gce/kWh

Accordingly, the STIRPAT model can be further rewritten as follows after extension.

lnIt = lna + b1lnPt + b2lnUt + clnAt + d1lnSIt + d2lnEIt + d3lnGSt + d4lnFIt (1)

where the subscript t represents t year, It is the CO2 emissions from the power industry, Pt is the
population, Ut is the urbanization level, At is GDP per capita, SIt is the industrial structure, EIt is the
electricity intensity, GSt is the generation structure, and FIt is the energy (fuel) intensity.
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2.2. Multicollinearity Test

Multicollinearity is a statistical phenomenon in which two or more variables in a multiple
regression model are highly correlated. Affected by common social and economic environment,
variables in Equation (1) usually change with similar regularities. That is to say, multicollinearity is
common in this kind of model. Correlation coefficient is a simple method to test the multicollinearity
between independent variables, but it is only suitable for two vectors. The F test is another effective
method to measure the linear relationship between dependent and independent variables. If we select
a variable as the dependent one and other variables as independent ones, the F statistic has the ability
to test the multicollinearity. The equation of F test is written as follows.

F =
ESS/(p − 1)
RSS/(n − p)

∼ F(p − 1, n − p) (2)

where ESS is the explained sum of squares; RSS is the residual sum of squares; p is the number of
independent variables in Equation (1), and here it is 7; and n is the number of samples.

2.3. Partial Least Squares (PLS)

PLS is a widely used regression technique in many fields. It constructs new predictor variables,
known as components, as linear combinations of the original predictor variables. PLS constructs these
components while considering the observed response values, leading to a parsimonious model with
reliable predictive power. One advantage of the PLS is that it can avoid the effect of multicollinearity in
the estimation of regression parameters. The other advantage is that the PLS can solve the regression
modeling issue under the condition where the number of sample points is less than that of variables.
Due to one dependent variable in our work, a brief mathematical description of the PLS is provided.

The standardization process for original data X(Y) is required, and then the first component (t1) is
extracted. Let t1 be a variable that explains X(Y). If the result of regression equation shows satisfactory
accuracy, the extraction process terminates; otherwise, the procedure extends iteratively in a natural
way to give components t1, t2, . . . , th, where each component is determined from the residuals of
regressions on the preceding component until the termination criterion is met. In the following section,
we will establish the extended STIRPAT model with CO2 emissions from the power industry and
estimate the regression parameters based on the aforementioned PLS method.

2.4. Outlier Test Algorithm

The regression line which is obtained by PLS is determined by historical data. If the influence of
a data point is greater than others, it will be considered as an outlier. In other words, the outlier data
point is considered as something unusual that must have happened in that year. Analysis of the outliers
will offer many useful possibilities for controlling China’s CO2 emissions from the power industry.

The contribution rate of the ith sample to all components is written as:

T2
i =

1
(n − 1)

m

∑
h=1

t2
hi

var (th)
(3)

where thi is the ith value in the hth extracted component (vector) in PLS modeling; m is the number of
extracted components; and n is the number of samples.

The value T2
i reflects the influence of the ith sample. If it is bigger than the threshold, the impact

of the ith sample on the regression curve is considerable, and the ith sample is then called an outlier.
To test the outliers by statistics, Tracy et al. [28] constructed an F test statistic:

n2 (n − m)

m (n2 − 1)
T2

i ∼ F (m, n − m) (4)
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If

T2
i ≥

m
(
n2 − 1

)
n2 (n − m)

Fa (m, n − m) (5)

then the ith sample is considered an outlier at a confidence level of (1 − α). If there are two components
(m = 2), Equation (3) is further written as follows:

T2
i =

1
(n − 1)

(
t2
1i

var (t1)
+

t2
2i

var (t2)

)
(6)

And Equation (5) is written as:(
t2
1i

s2
1
+

t2
2i

s2
2

)
≥

2 (n − 1)
(
n2 − 1

)
n2 (n − 2)

Fa (2, n − 2) (7)

If the equal sign in Equation (7) holds true, the boundary line of the outliers is an ellipse. Using t1

and t2 as axes, we draw the ellipse and points for each sample on a two-dimensional surface. According
to Equation (7), samples outside the ellipse are considered outliers.

2.5. Data Sources

CO2 emissions from the power industry can be calculated through Equation (8).

It = Et × Ft × 2.6308 (8)

where It is the CO2 emissions from the power generation sector in t year; Et is the electricity generation
in t year, Ft is the standard coal consumption per kWh in t year. The CO2 emission coefficient per
unit of standard coal adopted in our work is 2.6308 ton-CO2/tce, which is recommended by Energy
Research Institute (ERI) of the National Development and Reform Commission (NDRC). The data
on electricity generation were obtained from China Electric Power Yearbook [29]. The data on GDP
(1995 constant price), population, urbanization, and secondary industry output value were collected
from various issues of China Statistical Yearbook [6]. The electricity intensity data were extracted
from China Energy Statistical Yearbook [9]. The energy (fuel) intensity of power generation data (only
considering power plants with more than 6 MW capacity) and the generation structure data also came
from China Electric Power Yearbook [29]. In our work, the time span covered by the samples is from
1997 to 2014.

3. Results and Discussion

3.1. Multicollinearity and OLS Parameters

To test the extent of multicollinearity, independent variables are selected as the dependent variable
one by one to construct the linear model by the OLS method. Using Equation (2), the F test values for
each independent variable are shown in Table 2.

Table 2. F test values for each independent variable.

Dependent Variable ln(P) ln(U) ln(A) ln(SI) ln(EI) ln(GS) ln(FI)

F 5462.4 4675.0 3811.6 20.2 43.7 8.6 1606.1

According to the F distribution table, F(6, 11) = 2.39, which is less than each value in Table 2,
therefore multicollinearity exists for each independent variable. As introduced before, this will cause
the instability of regression parameters and have many other inevitable consequences. In fact, if the
samples of the odd years are selected to estimate the parameters of Equation (1), the coefficient vector
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is (−19.14, 2.17, −0.33, −0.19, 0.23, 0.01, 0.36); if the even years are selected, the result is (−59.76, 6.28,
−1.08, −0.23, −0.29, 0.29, −0.17). The difference between the two results is obvious.

3.2. PLS Modeling

In this section, to avoid the multicollinearity among the independent variables, the PLS estimation
technique is applied to establishing the extended STIRPAT model. The first three components were
extracted one by one and the corresponding cross-validation indicators Q2

h were calculated, as listed in
Table 3.

Table 3. Extracted components and the corresponding cross-validation.

h th Q2
h

1 −2.69, −2.62, −2.45, −1.92, −1.66, −1.63, −1.25, −0.73, −0.76, −0.38, 0.55, 0.76, 1.48, 2.16, 2.63, 2.56, 2.74, 3.19 -
2 −0.86, 0.50, 1.54, 0.17, 0.16, 0.28, −1.10, −1.04, 1.05, 0.04, −1.45, −0.18, −0.15, −0.75, −1.22, 1.23, 0.88, 0.90 0.3273
3 −0.55, −0.36, 0.46, 1.04, 1.26, 0.14, −0.12, −0.16, −0.99, −1.33, −0.44, −0.19, 0.61, 0.90, 0.22, 0.53, −0.70, −0.31 −0.2226

According to the statistical experience, when Q2
h ≥ 0.0975, the extracted component h is necessary;

otherwise, the component h is not considered. As Q2
2 > 0.0975 and Q2

3 < 0.0975, the first two
components (t1, t2) are enough. In other words, the first two components (t1, t2) could provide enough
information to interpret F0. Excessive follow-up components will destroy the realization of statistical
trends. Along with the inverse operation of standardization and component extraction process, the
regression equation of the extended STIRPAT model can be obtained.

lnI = −54.893 + 3.1905 × lnP + 0.5928 × lnU + 1.062 × lnA + 1.5161 × lnSI
+1.0787 × lnEI + 0.3519 × lnGS + 1.1022 × lnFI

(9)

3.3. Model Validity

In our work, the predicted data points and the errors for PLS modeling from 1997 to 2014 have
been conducted to validate the model’s performance. Table 4 shows the predicted data obtained
through Equation (9) and the corresponding errors for each year.

Table 4. Forecasting results and errors (%) (data in LN form).

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

Actual Data 6.9119 6.9270 6.9768 7.0576 7.1293 7.2371 7.3785 7.5040 7.6131
Predicted Data 6.5332 6.5417 6.6101 6.7543 6.8427 6.9638 7.2524 7.4450 7.7245

Relative Error (%) 0.0548 0.0556 0.0526 0.0430 0.0402 0.0378 0.0171 0.0079 0.0146
Year 2006 2007 2008 2009 2010 2011 2012 2013 2014

Historical Data 8.0061 7.9074 7.8219 7.6801 8.0388 8.1394 8.1856 8.2603 8.2910
Predicted Data 8.0006 8.1986 8.2906 8.3601 8.5560 8.7570 8.8249 8.8912 8.9079

Relative Error (%) 0.0007 0.0368 0.0599 0.0885 0.0643 0.0759 0.0781 0.0764 0.0744

We used two common-use accuracy measures, including mean average percentage error (MAPE)
and average absolute error (AAE), to assess the model’s validity. These error criterion indicators are
expressed as Equations (10) and (11).

MAPE =
1
N

N

∑
t=1

∣∣∣∣∣yt −
_
y t

yt

∣∣∣∣∣× 100, t = 1, 2, · · · , N (10)

AAE =
1
N

N

∑
t=1

∣∣∣yt −
_
y t

∣∣∣
1
N

N
∑

t=1
yt

, t = 1, 2, · · · , N (11)
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where yt is the power emissions value in the tth year (t = 1997, 1998, . . . , 2014);
_
y t represents its

simulating (or predicted) result for the same period; and N is the number of data.
The non-scaled error metric, MAPE, is the mean of the absolute percentage errors of forecasts,

providing the errors in terms of percentage. It can avoid the problem of positive and negative errors
canceling each other out. AAE is a more comprehensive indicator since it can assess the deviation of
individual absolute errors from the average value of actual data. The total “deviation” is divided by N,
thus obtaining an AAE value.

Through calculating, the MAPE and AAE are 0.04881 and 0.049302. For annual data forecasting,
the error range [−5%, +5%] is considered as a satisfactory and practical error boundary. It is obvious
that the MAPE and AAE values are within the error range. Therefore, the PLS model has good
simulation ability and is reasonable for future scenario design.

3.4. Outlier Analysis

Even if the fitted values shown in Equation (9) are obtained through the PLS algorithm, not all
samples follow the regularity perfectly. The outliers may have a significant effect on the quality of the
model since the PLS algorithm is sensitive to inhomogeneous points in the dataset. Finding the outliers
and analyzing the events that happened in corresponding years may offer some effective measures to
control China’s CO2 emissions from electric power industry.

Using t1 and t2 as axes, the sample points and ellipses are drawn in a two-dimensional plane
(Figure 1). The confidence level α for outer ellipse is 0.1, and the confidence level for the inner one
is 0.2. It is possible to increase the value of α, where (1 − α) represents the fraction of outliers [30].
According to Equation (7), four samples (1997, 2011, 2012, and 2014) outside the ellipse were detected
as obvious outliers with the confidence level α = 0.2, which were divided into two groups: 1997 and
2011, 2012, 2014. Figure 1 shows that the yearly point 2013 is very close to outliers, which is included
in the second group. The causes for the outliers are elaborated in the following paragraphs to reveal
some useful policy tips for scenario design to control the electric industry CO2 emissions.
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Figure 1. Distribution of outliers with different confidence levels (α).

Since the Southeast Asia financial crisis started in 1997, the abnormal economic development
data appeared. From 1995 to 1997, the growth rate of total import and export volume experienced
a sudden drop from 15.3% to 2.7%; especially from 1997 to 1998, when the total import and export
volume decreased from 2696.72 billion Yuan to 2684.97 billion Yuan [9]. In the same period, the growth
rate of electric power consumption driven by economy fell from 18% to 7% [10]. Thus, the point for
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1997 becomes the first outlier. Then, it was followed by financial crisis that swept like a brush fire to
most Asian countries, and the depressed growth rate of economy and electric power consumption
continued into late 1990s with tightening national economic policy. Another important tip for policy
formation is that the irregularity in 1997 can serve as a warning of the bubble economies characterized
by extreme economic overheating. One important area to control China’s CO2 emissions from electric
power industry is to make CO2 emissions closely relevant to import and export volume, which may be
the omen of the fluctuation of emissions.

In China’s 12th Five-year plan, the Chinese government had decided to reconsider and adjust its
policies on economic and energy development because of the pressure of CO2 emissions and fossil
fuel energy consumption. In 2014, China deposited an acceptance document of the Doha Amendment
to the Kyoto Protocol, and the Chinese government has announced a 40%–45% reduction of the 2005
levels of CO2 intensity by 2020. Therefore, the 12th Five-Year plan was a new period of low-carbon
development, which aimed at optimizing the structure of energy resources, advocating low-carbon
consumption, and reducing GHG emissions. For the power industry, several effective measures
have been taken for low-carbon development. The National Development and Reform Commission
(NDRC) endorsed a plan to accelerate the closure of the nation’s smaller coal-fired power plants in 2007.
Small thermal power plants with installed capacity below 100,000 kW each totaled 115 million kW,
accounting for about 30% of the installed thermal power capacity in China. During the period of
the 11th Five-year plan, half of the smaller coal-fired power plants were closed, which were replaced
with large-capacity and high-parameter units. During the 12th Five-year plan, a series of plans on
renewable energy development, nuclear power development, hydropower development, wind power,
solar power development, and the Smart Grid Program Plan were published successively. In the
following years, the power sector made even greater efforts to pursue low-carbon development. These
low-carbon policies and technologies bring the yearly points 2011, 2012, 2013, and 2014 close to the
boundary or cause them to become the outliers, shown in Figure 1.

In summary, the analysis of outliers reveals two important areas for controlling CO2 emissions
from power sector: economy development mode and low-carbon electricity technology.

4. Scenarios of Emissions from Power Sector during 2016–2020

Next, possible development scenarios for the electricity industry development in China for the
period 2016–2020 are designed and the associated emissions are calculated for each development mode.
There are some reasonable facts considered in our work.

(A) Since the adoption of reform and opening-up policy in 1978, China’s economy has experienced
a period of remarkable development with annual growth rate of almost 10% over 20 years. It is no
doubt that such supernormal development is based on a large amount of the energy consumption,
especially electricity consumption. Electricity is considered the backbone for Chinese economy’s
prosperity and progress, which plays a crucial role in socioeconomic development. The electricity
consumption increased from 14,723.46 ten million kWh in 2001 to 56,383.69 ten million kWh in
2014, with an average annual growth rate of 10.88%.

(B) Coal combustion is generally more carbon-intensive than burning any other kind of energy.
In China, half of the coal resources are used for electricity generation, making the power
industry the largest source of greenhouse emissions. The CO2 emissions from the power industry,
accounting for more than 40% of the total national emissions, are larger than that of the world (37%
of energy-related CO2 emissions and 27% of all CO2 emissions). From 2001 to 2014, its average
annual increase rate was 8.65%, and the CO2 emissions from China’s power sector surpassed that
of the total U.S. power industry to become the largest emitter of the world.

(C) The period of 2016–2020 covers China’s 13th Five-Year Plan. The coordinated development of
the power industry and environmental system will be one of the most important goals. China
will reduce CO2 emissions from major pollutants in the power sector by 60% by 2020, and annual
CO2 emissions from coal-fired power generation by 180 million tonnes by 2020. The designed
scenarios may provide reasonable future development modes applied to China’s power industry.
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There has been no sign in recent years that the Chinese government will significantly change
its population policy. Therefore, China’s population will increase in accordance with its past trend.
In our work, a grey forecasting model is adopted for future yearly population data prediction, which is
shown as Equation (12).

x(0)(k + 1) = 12.4406 × exp(−0.0056 × k) (12)

Let k = 19–23, the predicted results of Equation (12) for the period of 2016–2020 can be obtained,
which are shown in Table 5.

Table 5. Predicted results of populations (108 person) and urbanization (%) for 2016–2020.

Year 2016 2017 2018 2019 2020

P 14.0185 14.0966 14.1751 14.2541 14.3335
U 60.96 61.85 62.70 63.51 64.29

Observing the data of China’s urbanization change since the policy of reform and opening up to
the outside world, China’s urbanization development can be treated as a nonlinear process. According
to the growth curve theory provided by Ray M. Northam in 1975, an American urban geographer,
the logistic growth (Verhulst) model is suitable to describe the track of the urbanization process in the
countries of the world. Therefore, we applied the Verhulst model to forecasting China’s urbanization
trend during the period of 2016–2020. Using the historical urbanization data and Verhulst model,
we can obtain the urbanization forecasting equation shown as Equation (13); the corresponding
predicted results are shown in Table 5.

y(0)(k + 1) =
76.3536

1 + 1.3928e−0.07423k (13)

4.1. Business as Usual Scenario (BAU)

The BAU scenario takes place in our nation to maintain open economic relations. That means
all the driving factors in Equation (1) keep at a constant change rate in the research period. In this
scenario, Chinese government will keep relatively steady economic development with constant annual
growth rate during the period of 2016–2020. At the same time, other factors SI, EI, GS, and FI are
considered to maintain a steady average annual decrease rate as before.

4.2. Single-Aspect Driving Scenarios Design

In this part, we select A, macro structure aspect (SI and EI) and electric energy efficiency aspect
(GS and FI) as driving factors, respectively, to design the next scenarios, shown as follows.

4.2.1. Economy-Driven Scenarios (ED)

In this kind of scenario, the economic factor, represented by GDP per capita, is designed as the
main driving force. Since China is not bound by any international treaty to reduce its emissions,
the Chinese government can keep the increasing speed of GDP per capita. SI and EI maintain their
average annual decrease rate in 1997–2014; GS and FI maintain 80% of their average annual decrease
rate in 1997–2014. This scenario is abbreviated as ED1. In ED2, SI and EI maintain 80% of their average
annual decrease rate, and GS and FI maintain the average annual decrease rate in the research period.

In ED3 and ED4 scenarios, the Chinese government tries to lower the increasing speed of annual
per-unit GDP with 80% growth rate as before because of increased attention paid to the environmental
pressure and pursuit of high-quality economy development mode. The design of other factors is
similar to ED1 and ED2, shown in Table 6.
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Table 6. Growth rate (%) assumptions under different scenarios and predicted emissions.

Scenarios
Relative Change Rate (%) Absolute Change Value

A SI, EI GS, FI A SI, EI GS, FI

BAU 100% 100% 100% 8.76 −0.52, 0.37 −0.42, −1.46
ED1 100% 100% 80% 8.76 −0.52, 0.37 −0.336,−1.168
ED2 100% 80% 100% 8.76 −0.416, 0.296 −0.42, −1.46
ED3 80% 100% 80% 7.01 −0.52, 0.37 −0.336,−1.168
ED4 80% 80% 100% 7.01 −0.416, 0.296 −0.42, −1.46

ESD1 100% 120% 80% 8.76 −0.624, 4.44 −0.336, −1.168
ESD2 80% 120% 100% 7.01 −0.624, 4.44 −0.42, −1.46
EED1 100% 80% 120% 8.76 −0.416, 0.296 −0.504, −1.752
EED2 80% 100% 120% 7.01 −0.52, 0.37 −0.504, −1.752

EESD1 100% 120% 80% 8.76 −0.624, 4.44 −0.336, −1.168
EESD2 100% 120% 100% 8.76 −0.624, 4.44 −0.42, −1.46
EEED1 100% 80% 120% 8.76 −0.416, 0.296 −0.504, −1.752
EEED2 100% 100% 120% 8.76 −0.52, 0.37 −0.504, −1.752

ESEED1 80% 120% 120% 7.01 −0.624, 4.44 −0.504, −1.752
ESEED2 100% 120% 120% 8.76 −0.624, 4.44 −0.504, −1.752

4.2.2. Economic Structure-Driven Scenarios (ESD)

In our work, EI and SI are considered to have manifest relevance. To a large extent, EI could
directly reflect the degree of industrial development of a country. The greater the decrease in electricity
consumption in industrial sectors in comparison to total electricity consumption, the more pronounced
the shift that occurs from the highly electricity-intensive industrial sector to the sector with less
electricity intensity, and therefore the less the electricity intensity of GDP. Therefore, these two factors
are put together, called macroeconomic structure-driven (short for ESD). In ESD scenarios, the EI and
SI maintain 120% of their average annual decrease rate in 1997–2014. At the same time, GDP per capita
maintains 100% and 80% of its average annual growth rate in ESD1 and ESD2, respectively; GS and FI
maintain 80% and 100% of their average annual decrease rate in 1997–2014.

4.2.3. Energy Efficiency-Driven Scenarios (EED)

Energy efficiency-driven scenarios include the design of GS and FI. These two indicators reflect
the power generation structure adjustment and technology improvement in power industry. China is
under increasing pressure from the power industry, the largest source of CO2 emissions sector in the
country. As a result, the Chinese government will pursue a series of programs to lower the increase of
the power sector’s emissions. In EED scenarios, GS and FI are designed together to maintain 120% of
their average annual decrease rate in 1997–2014. In EED1, GDP per capita maintains its average annual
growth rate; EI and GS keep 80% of their average annual decrease rate. While in EED2, GDP per
capita maintains 80% of its average annual growth rate; EI and GS keep 100% of their average annual
decrease rate.

4.3. Double-Aspects Driven Scenarios Design

Next, we consider two kinds of aspects to design power industry development scenarios.

4.3.1. Economy and Economic Structure-driven scenarios (EESD)

In EESD scenarios, GDP per capita, SI and EI are combined to act as driving factors. GDP per
capita maintains its average annual growth rate in 1997–2014; SI and EI maintain 120% of their average
annual decrease rate. GS and FI maintain 80% and 100% of their average annual decrease rate in EESD1
and EESD2, respectively.
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4.3.2. Economy and Energy Efficiency-Driven Scenarios (EEED)

In EEED scenarios, GDP per capita, GS, and FI are the main driving factors. GDP per capita
maintains its average annual growth rate in 1997–2014; GS and FI maintain 120% of their average
annual decrease rate. SI and EI maintain 80% and 100% of their average annual decrease rate in EEED1
and EEED2, respectively.

4.3.3. Economic Structure and Energy Efficiency-Driven Scenarios (ESEED)

The Chinese government will pay more attention to the national emissions, especially the
emissions from the power industry. The government will take sterner measures to adjust industrial
structure, to improve industrial electric productivity, to develop large and high-efficiency units,
to develop renewable generation, and so forth. Therefore, SI, EI, GS, and FI maintain 120% of their
average annual decrease rate; meanwhile, GDP per capita maintains 80% and 100% of its annual
growth rate in ESEED1 and ESEED2 scenarios, respectively.

The detailed settings of parameters, including the relative change rate and the absolute change
values, are shown in Table 6. According to the parameters’ settings in different scenarios, the CO2

emissions from China’s power industry under different scenarios can be obtained according to
Equation (9), shown in Table 7.

Table 7. CO2 emissions from the power industry under different scenarios (unit: Mt).

No. CO2 Emissions 2016 2017 2018 2019 2020

0 BAU 4221.46 4600.12 5010.20 5454.29 5935.47
1 ED1 4251.60 4649.49 5082.02 5552.19 6063.55
2 ED2 4241.64 4633.15 5058.23 5519.73 6021.02
3 ED3 4107.45 4415.04 4743.24 5093.46 5467.46
4 ED4 4097.82 4399.53 4721.04 5063.68 5429.11
5 ESD1 4231.35 4616.31 5033.72 5486.31 5977.31
6 ESD2 4058.90 4336.99 4631.77 4944.28 5275.86
7 EED1 4211.48 4583.83 4986.56 5422.13 5893.50
8 EED2 4049.33 4321.65 4609.95 4915.18 5238.62
9 EESD1 4231.35 4616.31 5033.72 5486.31 5977.31
10 EESD2 4201.35 4567.29 4962.59 5389.57 5851.06
11 EEED1 4211.48 4583.83 4986.56 5422.13 5893.50
12 EEED2 4191.44 4551.15 4939.21 5357.85 5809.76
13 ESEED1 4030.04 4290.81 4566.14 4856.86 5164.12
14 ESEED2 4171.47 4518.67 4892.27 5294.28 5727.13

4.4. Carbon Mitigation Potential in Power Industry

The designed possible scenarios in Table 7 show that the CO2 emissions from China’s power
industry will increase during the 13th Five-Year period. In the BAU scenario, the CO2 emissions will
increase to 4315.70 Mt in 2016 and 6960.32 Mt in 2020, respectively. Taking the emissions of BAU
scenario as the baseline, the relative change rate of emissions for the other scenarios can be calculated
according to Equation (14).

R =
yit − y(BAU)t

y(BAU)t
(14)

where yit represents the emissions for tth period (t = 2016–2020) in ith scenario (i = 1–14), and y(BAU)t
is the emissions for tth period in BAU scenario. The values of relative change rate from 2016 to 2020
for the designed scenarios are listed in Table 8.
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Table 8. Values of relative reduction rate for different scenarios (2016–2020) (%).

No. Reduction Percentage (%) 2016 2017 2018 2019 2020

1 ED1 0.714 1.073 1.433 1.795 2.158
2 ED2 0.478 0.718 0.959 1.2 1.441
3 ED3 −2.701 −4.023 −5.328 −6.616 −7.885
4 ED4 −2.929 −4.361 −5.771 −7.162 −8.531
5 ESD1 0.234 0.352 0.469 0.587 0.705
6 ESD2 −3.851 −5.72 −7.553 −9.351 −11.113
7 EED1 −0.236 −0.354 −0.472 −0.59 −0.707
8 EED2 −4.077 −6.054 −7.989 −9.884 −11.74
9 EESD1 0.234 0.352 0.469 0.587 0.705

10 EESD2 −0.476 −0.714 −0.95 −1.187 −1.422
11 EEED1 −0.236 −0.354 −0.472 −0.59 −0.707
12 EEED2 −0.711 −1.065 −1.417 −1.768 −2.118
13 ESEED1 −4.534 −6.724 −8.863 −10.953 −12.996
14 ESEED2 −1.184 −1.771 −2.354 −2.934 −3.51

To display the results more clearly and analyze reasonably, the relative reduction rates for all the
scenarios in 2016 and 2020 are plotted in histogram, shown in Figure 2. From the emissions reduction
rates shown in Table 8 and the histogram in Figure 2, several facts are concluded as follows.

(1) It is found that the most significant factor is the economic activity (A), as shown in the above
results. The top five scenarios with the highest emissions reduction rates are the ones in which the
GDP per capita is designed with 80% of its average annual growth rate in 1997–2015 (see ESEED1,
EED2, ESD2, ED4, and ED3). Even though the other factors (SI, EI, GS, FI) keep the same change
rate, the emissions reduction of the scenarios with higher economic development rate is lower
than the ones with lower economic development rate. For example, the reduction rate of scenario
ESEED2 with 100% of economic average annual growth rate is 1.184% for year 2016 and 3.51% for
year 2020; yet the reduction rate of scenario ESEED1 with 80% of economic average annual growth
rate is 4.534% for year 2016 and 12.663% for year 2020. This conclusive result is consistent with
China’s present development situation and the previous research [15,31,32]. The changes of CO2

emissions from power sector stem from the sheer magnitude of China’s economic growth since
electricity, the backbone for Chinese economy’s prosperity and progress, which plays a crucial
role in socioeconomic development. This means that the massive increment of emissions from
the power industry is mainly due to the high growth rate of electricity consumption promoted
by economic development. Therefore, to develop a low-carbon power industry, it is necessary
to control the economic growth rate and develop a low-carbon economy mode to cope with
the emissions.

(2) With the same economic development rate, the changes of GS and FI have more effect on the
emissions reduction than SI and EI do. In EED2 and ESD2 scenarios, the GDP per capita maintains
80% of its average annual growth rate; SI and EI maintain 100% and 120% of their average annual
decrease rate, respectively; and GS and FI maintain 120% and 100% of their average annual
decrease rate for the same period. The emissions reduction rates for EED2 are 4.077% and 11.740%
for year 2016 and 2020, respectively, while the reduction rates for ESD2 are 3.851% and 11.113%
for the same year. Therefore, generation structure optimization and fuel intensity improvement
are the sustainable ways for power industry to control its emissions continuously.

(3) The decrease in SI, EI, GS, and FI plays a long-term effect on emissions in the power industry.
Taking ESEEDD1 scenario as an example, the emissions reduction percentage for year 2016
is 4.534% and 12.96% for year 2020. That means the Chinese government should take
long-term measures not only in industry structure adjustment but also in low-carbon power
industry enforcement.
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(4) If the economy maintains the past average annual growth rate, any technological factor (SI, EI,
GS, and FI) with 80% of their average annual decrease rate will result in higher emissions than
BAU scenario.
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The predictive results of scenarios analysis show that the CO2 mitigation potential in the power
industry exists in the following aspects.

First, it is necessary to control the economic growth rate and improve the carbon productivity.
The Chinese government has changed the economic growth pattern in order to reduce energy and
electricity consumption to pursue a more efficient economic mode with higher carbon productivity.
In addition, the Chinese government needs to further adjust industrial structure and decrease the
electricity intensity, which means shifting away from electricity-intensive and low-added industrial
subsectors to electricity-efficient and high-added sectors, improving electricity efficiency in industries.

Second, China will take the most effective measures to improve the carbon efficiency of China's
coal-fired power plants. 1© Continue to phase out small thermal power plants. It is reported
that China would cut at least 90 million tons of raw coal consumption, 220 million tons of CO2,
and 1.8 million tons of SO2 discharge, if the existing small coal-fired power plants are replaced by large,
energy-efficient thermal power plants; 2© Construct supercritical (SC) units and ultra-supercritical
(USC) units while phasing out small thermal power plants. The Chinese government should continue
to replace small units with large ones. Small-scale thermal power-generating units with capacity
of 1000 megawatts (MW) and units up to 2000 MW that are coming to the end of their design life
have been eliminated during the 12th Five-Year Plan. In the fossil fuel-dominated power industry,
supercritical/ultra-supercritical power plants with higher cycle efficiency offer the best opportunity
for CO2 mitigation and combating climate change. In short, China’s future growth in generation
capacity is centered on evolving from 300 MW and 600 MW subcritical boilers to larger and more
efficient SC and USC boilers ranging in size from 600 MW to 1000 MW. The high-efficient units
with 600 MW or (and) 1000 MW will become the backbone of the electricity industry in the future;

3© Optimize the development of coal-based generation plants, which includes implementing integrated
gasification combined cycle (IGCC), combined heat and power (CHP), and carbon capture and storage
(CCS), speeding up the construction of large-scale coal bases, promoting clean coal power generation
technology; 4© Lower auxiliary power rate (APR). A recent study has tested that the generation
structure, power plant size, and annual utilization hours of power equipment are important factors
affecting APR [33]. It is regarded that the APR of thermal power plants is higher than any other form
of power plants, and the larger the installed capacity for power plants, the lower APR is. Therefore,
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to phase out small thermal power units and promote large-capacity and high-parameter units are the
two effective measures to lower the APR, thus decreasing the energy intensity, and hence the CO2

emissions, from power plants.
Third, it is sustainable to optimize the generation structure, including developing wind-, solar-,

biomass-, and geothermal-power generation, and especially developing hydropower and nuclear
power. China has a strong commitment to renewable energy development, shown in the 2006
Renewable Energy Law, which provides economic incentives for renewable energy generation. China’s
hydropower resource is abundant but underutilized. After the construction during the 12th and 13th
Five-Year Plan, the installed capacity of hydropower generation will reach 3300 GW, utilizing 82% of
national hydropower resources. Nuclear power is one of the important green resources with better
economic feasibility and large-scale development. The installed capacity of nuclear power generation
will reach 90 GW at the end of 2020.

Finally, to utilize substitutable energy can also effectively control the emissions from the power
industry. Developing distributed generation (DG) and natural gas generation according to practical
situations can manifest effect. In the “New Energy Industry Develop Plan” of the State Council, DG is
a key development direction. In April 2010, the Energy Bureau of the NDRC released an instruction
for developing DG. The instruction indicates that 1000 DG plants will be built in China during the
13th Five-Year Plan period, and DG capacity in China will increase to 50 GW by 2020.

5. Conclusions

It is no doubt that the emissions control in the power industry plays a significant role in national
low-carbon development. Year 2016 is the first year of the 13th Five-Year Plan (2016–2020) in which
the Chinese government will strengthen the low-carbon development in the power industry. In our
study, the extended STIRPAT model was adopted to establish the relationship between emissions and
the influencing factors within power industry. After calculating the regression coefficients by using
the PLS technique, which can effectively avoid the multicollinearity among variables, the definite
linear log equation form of extended STIRPAT was determined. The detailed analysis of outliers
reveals two important aspects to reduce emissions from power industry: the economic activity and
low-carbon electric technology. Considering the reality and development in the electric power industry,
we designed the possible scenarios for the period of the 13th Five-Year Plan. The predicted emissions
for different development scenarios could be used to measure the effect of emissions reduction and
find the emissions mitigation potential in power industry. The main conclusions obtained through
scenarios’ design and emissions prediction involve improving carbon productivity and electricity
intensity, improving electric carbon efficiency in coal power plants, optimizing generation structure,
and utilizing substitutable energy generation forms.
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