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Abstract: In this work, we propose a Realistic Scheduling Mechanism (RSM) to reduce user
frustration and enhance appliance utility by classifying appliances with respective constraints and
their time of use effectively. Algorithms are proposed regarding functioning of home appliances.
A 24 hour time slot is divided into four logical sub-time slots, each composed of 360 min or 6
h. In these sub-time slots, only desired appliances (with respect to appliance classification) are
scheduled to raise appliance utility, restricting power consumption by a dynamically modelled
power usage limiter that does not only take the electricity consumer into account but also the
electricity supplier. Once appliance, time and power usage limiter modelling is done, we use a
nature-inspired heuristic algorithm, Binary Particle Swarm Optimization (BPSO), optimally to form
schedules with given constraints representing each sub-time slot. These schedules tend to achieve
an equilibrium amongst appliance utility and cost effectiveness. For validation of the proposed
RSM, we provide a comparative analysis amongst unscheduled electrical load usage, scheduled
directly by BPSO and RSM, reflecting user comfort, which is based upon cost effectiveness and
appliance utility.

Keywords: Home Energy Management System (HEMS); appliance scheduling; Binary Particle
Swarm Optimization (BPSO); user comfort; appliance classification; Demand Response (DR)
programs; time of use pricing; Demand Side Management (DSM)

1. Introduction

Electricity is becoming an integral part of life. It is a scare resource that needs to be utilized
resourcefully. Peaks created due to electricity usage are not only disruptive for power grids but also
cause high electricity bills. For a normal home whose electricity consumptions is doubled, line losses
increase by a factor of four. A reduction of one kilowatt behaves differently if the upper bound
and lower bound is different. Electric power cost savings by lessening consumption from 5 KW to
4 KW is much lower than reducing from 50 KW to 49 KW. Line losses make the major difference [1].
Normalizing electricity consumption to avoid PC peaks is a vital solution for preserving electric
power and ultimately reducing its cost.
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With the advent of smart grids, there happens a two way communication between electrical
entities that makes it possible to reduce peaks utilizing different programs. Confining only to RUs or
homes, this two way communication needs a little attention from the consumer to enjoy the liberty
of lowering electricity prices. Balanced demand and supply of eclectic power results in stable grid
infrastructure. Electricity consumers cannot play with the grid side mechanisms. However, they can
manipulate with their own demands to minimize peaks in order to minimize electricity bills that is
beneficial to the power company as well. Such manipulation of electricity demand at user premises is
termed as HEMS or DSM in literature. DSM deals with any entity that needs to optimize its electricity
consumption, while HEMS convents with RU’s energy management as the name indicates. Major
objectives of a HEMS are: (i) PAR: Normalization of electric load within a given time frame, (ii) system
overload prevention: Minimizing risk of system overload, (iii) resourcefulness: Managing resources
effectively to yield maximum results out of minimum resources, and (iv) monetary benefits: Most
attractive aspect for end user; minimize electricity bills, etc.

To achieve these objectives, different strategies are adopted. Scheduling electrical appliances
with respect to price of respective time slot or hour is an emerging issue amongst researchers
and engineering industries of respective domain. Numerous approaches are designed to schedule
appliances for optimum electricity consumption. ToUP, RTP, IBR and CPP are major pricing models
that are studied widely to schedule electrical appliances [2], keeping certain objectives, mainly
to reduce electricity cost and shave PC peaks on critical hours. The scheduling of appliances
directly deal with electricity tariff and consumption pattern. Generally, the pricing scheme under
consideration decides the nature of scheduling. Keeping pricing mechanisms in view, we define
scheduling techniques in the following two categories:

• Reactive scheduling: Electricity tariff dynamically changes and should be dealt with instantly.
Schedule Appliances by forecasting electricity price at TU of appliance and

• Proactive scheduling: Day ahead electricity tariff is known well before time and schedule is
made a day ahead.

The former approach deals with the current pricing and makes schedules of electric load
accordingly. Different AI methods and ML approaches can be utilized to forecast the price of any
desired time slot. According to the price, the power consumption schedule of that specific time slot
is developed.

In the later approach, consumers are aware of per hour price of the next day. The hourly price is
published by electricity producing or distributing companies well before time and users can benefit
from this information accordingly. Companies enjoy stability of grid while users feel comfortable by
saving on electricity bills.

Table 1 lists the abbreviations used in this work and Table 2 tabulates the variables and
mathematical notations used.

The rest of the paper is organized as: Section 2 reflects the existing literature on the said
problem along with critical comments. Section 3 discusses the proposed RSM with subsections of
appliance, Time, Threshold and Power utilization framework followed with problem formulation.
Section 4 explains PSO and its version BPSO, which is utilized to schedule electrical appliances
within respective sub-time slots. In Section 5 simulation results are presented. Initially we find
schedules for four sub-time slots deliberating power and cost efficiency proving validity of concept of
limiting the scheduling window. Section 6 gives comparative analysis and policy findings regarding
unscheduled, scheduled using BPSO and RSM techniques. Moreover, UC is modeled considering the
said approaches to use electric load in Subsection 6.3, while system return of investment is modeled
in Subsection 6.4. The conclusion is presented in Section 7, which concludes this paper.
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Table 1. Nomenclature.

Number of appliances in home n Classes of appliances 3 (ADA, ODA, OIA)
Time slot (Hours) 24 Sub-time slot (Hours) 6
Number of sub-time slots 4 (T1, T2, T3, T4) Appliances used in Ti TiAPP= (n− k)
Current time tcurrent Desired sub-time slot tdesired−slot
Home occupancy sensor HOSENSOR User activity UA
User preferred time UPtime Max. threshold for this hour thmax

current

Min. Threshold for this hour thmin
current

Max. energy consumption in max.ECAPPan hour
Min. energy consumption in min.ECAPP

Range of power usage during
Thtime−slot

houran hour an hour
Range of power usage during Thtime−slot

range
Power used by a appliances

PKW ph
aa sub-time slot during an hour

Scheduling time of Ti Tschi Power used during Ti PTiAPP

sub-time slot Cost of Ti CTTi
(n−k)

Sub-time Slot Finish Time Tf 1 −− > Tf 4T1−− > T4
Sub-time slot Start Time Ts1 −− > Ts4

Current time instance and next tBPSO and tBPSO + 1T1−− > T4 time instance.

Required Temperature RTemp
Minimum Temperature set Tempminby user

Maximum Temperature set Tempmax Charge on Power Bank PBChargeby user

Required power to consume PCreq
Number of Active Appliances A.APPin time slot

Current position of particle. Xid(tBPSO) Current velocity of particle. Vid(tBPSO)
Inertia weight. W(tBPSO) Max number of iterations. Tmax
Local best solution. Pid Global best solution. Pgd
Cognition parameter set usually C1 Social parameter set at 2.0. C2as 2.0
Positive integer between 0.0 r1; r2 User Comfort UCto 1.0
Appliance Utility UAPP Cost Effectiveness Ecost
Average Delay Davg Cost Savings Csaving
Delay of an appliance DAPP

Table 2. Abbreviations.

Realistic Scheduling RSM Particle Swarm Optimization PSO Binary Particle BPSOMechanism Swarm Optimization

Kilo Watt KW Kilo Watt per Hour KW ph Home Energy HEMSManagement System
Real Time Pricing RTP Inclined Block Rate IBR Critical Peak Pricing CPP
Demand Side Management DSM Artificial Intelligence AI Machine Learning ML
Electric Vehicle EV Operation Time Interval OTI Desired Time Range DTR
Photo Voltaic PV Renewable Energy RE Activity Dependent Appliances ADA
Occupancy ODA Occupancy OIA Time of Use TUDependent Appliances Independent Appliances

Power Consumption PC Occupants Activity OA Residential Unit (Apartment of RUa building)
Home Occupancy HO On State ONS Off State OFS
Waiting State WS Charging State CS Discharging State DS
User Activity UA Microwave Oven MO Electric Water Heater EWH
Power Bank PB Refrigerator REF Cloth Dryer CD
Washing Machine WM Iron IR Television TV
Heating Ventilating HVAC Water Pump WP Micro Grid MGAir Conditioning
Wind Power Generation WPG Combine Heat and Power CHP Multi-Team PSO MTPSO
Wind Driven Optimization WDO Knapsack WDO K-WDO Knapsack PSO K-PSO
Mixed Integer MILP Energy Management System EMS Demand Response DRLinear Programming

Energy Storage System ESS Bee Colony Optimization BCO Enhanced−Bee EBCOColony Optimization
Home Area Network HAN Load Management LM Appliance Waiting Time AWT

Peak to Average Ratio PAR Mixed Integer
non-Linear Programming MInLP Real Time Pricing RTP

Two Tier Pricing 2tp Residential Energy
Management System REMS Discrete Time DT

Genetic Algorithm GA Time of Use Pricing ToUP Energy Management Model EMM
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2. Related work

Many researchers have scheduled a range of appliances or a single appliance based on
pre-established demand charts. Most of the related literature speaks of minimizing the cost,
minimizing carbon emissions and finding impact of RE/MGs on pricing and smart grid [4]. Table 3
gives a brief insight of recent trends of research in SG, DSM and Scheduling of appliances.

Further reading for recent trends in DSM , DR programs and HEMS are suggested as [5–7].
In [5], the authors provided a compact survey in terms of HEMS. They discussed challenges in
HEMS initially and then presented insight on existing literature regarding modelling of DR programs,
multi-objectivity and uncertainty followed by communication infrastructure modelling. Finally they
discussed existing research work conducted in response to scheduling and computational complexity.
The authors of [6] gave an extensive survey with respect to load management strategies developed
in recent years. Authors discussed strategies to meet different objectives relating to the concept
of SG. They gave brief literature review regarding power transmission aspect of SG followed with
communication protocols regarding communication between SG and RUs for HANs or NANs. After
words, various strategies regarding PC peak shavings are elaborated giving insight of existing work
done on models like Incentive Based DLC and Dynamic Pricing Based Scheduling Schemes. The
authors finally provided a brief comparative evaluation of LM techniques and major challenges
contemplating LM in SG.

The authors pointed out a consideration regarding impact of DR programs on load patterns
of house hold in [8]. Also they introduced an issue that has not been given proper attention in
the literature yet, i.e., sizing of PV and ESS. In this paper the authors gave their insight, reflecting
the economic impact of continuous incrementing of PVs and ESSs. An MILP model is developed
contemplating HEMS and techno-economical sizing.

Researchers in [21,22] focused on scheduling home electrical appliances keeping the objective
function to minimize electricity bills or electricity consumption. Mixed integer programming
optimization technique is utilized to schedule house hold electrical appliances in [23] having a PV
system installed at home. Installing a micro-grid does not only promise cheaper bills but surplus
electricity can be sold to the grid. However, installing a micro-grid may not be feasible financially for
the majority of individuals/electricity consumers.

Incorporating WSN for HEMS, the authors in [20] presented a fuzzy logic based residential
energy management system that is more efficient in comparison with [24] and [25]. The authors
proposed a user feedback module that helps in increased UC having one fixed power threshold for
only four smart appliances, i.e., WM, CD, DW and coffee maker. Number of appliances decides
the complexity of the scheduling problem along with many other factors. Threshold level can be
optimized to enhance UC along with PAR reductions or normalizing load over a 24 hour time span.

Erol-Kantarci et al. [24] uses Wireless Sensor Networks in HAN to trigger electrical appliances
developing an effective HEMS. If we classify home electrical appliances intelligently, we can achieve
the objectives that maximize UC and minimize electricity usage.

The authors in [26] gave a detailed comparative analysis contemplating three different types
of renewable energy generations, i.e., PV systems, solar thermal and wind electricity generation
techniques. The authors suggested wind electricity generation as the cheapest mode while solar
thermal stands at second place. Qela. B et al. [27] introduced an ML algorithm for finding efficient
schedule considering a single appliance, i.e., HVAC. In this paper, the authors proposed an algorithm
that first observes and learns the timings and user patterns of appliances for a certain amount of time
and then schedules it accordingly.
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Table 3. Recent Trends: State of the art work.

Technique Domain Feature Achievement/ Finding Comments

Thermal dynamic
model [9]

Scheduling HVAC
and EV

Exploitation of EVs as dynamic
storage facility

Financial gains achieved by
utilizing proposed model

Cater only two types of appliances
in HEMS

MInLP [10] REMS Minimize cost by integrating RE
sources with SG Minimize cost considering UC

OTI interval is much larger than
DTI interval,Installation, Ops. and
maint. cost neglected

Gradient- based
PSO [11]

HEMS for electricity
cost minimization

Better solution w.r.t commercial
based CPLEX system

Minimized computational costs
along with cost of electricity

Impact of UC w.r.t appliance utility
is not considered

MTPSO [12] Integrating Multiple
MGs with SG

Better solution search ability for
minimizing electricity bills

Minimized operation cost of MG
and Electricity cost

Tackle operation cost and neglected
maintenance cost

K-WDO [13] Analysis of EMMs Minimizing RU′s electricity bills
and shorten AWT

Comparative analysis of KPSO and
KWDO is done. AWT is formulated

Proposed AWT is like a hard
threshold, may lead to unwanted
PC peaks

Game theory [14] EMS as
Cooperative game

Two dimensional energy trading
using EVs between RU and
energy provider

Optimal reduction of energy cost at
both ends

Using EV as transportation of
energy is not UC aware

Cloud based EMS [15] EMS by
forecasting load

Using power in an islanded mode,
i.e., no give no take of power from
smart grid is objective

Solves MILP periodically to achieve
objectives to minimize energy cost
and/or reaching islanded mode

Near to optimal solution w.r.t
cost saving

GA based G-DSM [16] HEMS minimizing
energy cost

Devised EMS for 20 homes and
single home w.r.t PC peak shavings
and cost minimization

Achieved significant improvement
in PAR and Cost saving

Trade-off between AWT and
cost effectiveness

EBCO, MILP [17] Stand alone and
integrated MG/SG

Minimizing MG operational cost
using MILP modelled constraints

Comparative analysis of GA, PSO,
BCO and EBCO

Useful for industrial areas as
compared with RUs

Greedy Algorithm [18] HEMS Reducing electricity cost using
cloud based smart meter

Minimized Computational load
enough to be utilized in smart meter UC not discussed

Fuzzy logic [19] Residential energy
schedule Formulation

Performance of WN and load
peak minimization

BlueTooth stands best in WN for
Smart Grid, UC achieved to a level

Hard Power limiter threshold, can
be optimized further

BPSO [20] HEMS Minimize Cost by
scheduling appliances

Mapped BPSO to minimize
electricity cost UC is compromised

Heuristic
modelling [21]

HEMs reflecting
different pricing models

PC schedules based on
pricing schemes

Combination of RTP and 2tp
provides less PC Appliance utility not explicitly dealt
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In this work, a day ahead hourly RTP model is utilized that is published daily by the electricity
supplier. Normally, all the n appliances are not needed around the clock, there are many devices
that are switched off or are not in use during that time. Moreover, occupancy of the home hugely
impacts upon scheduling electrical devices for a day contemplating UC. Applying any optimization
technique, be it a nature inspired heuristic algorithm or linear/non-linear optimization model, may
result in reduced electricity consumption and shave high demand peaks during high priced hours
without considering appliance utility. Applying these algorithms directly results in two options;
either a user tries to manage his appliance usage time according to prescribed schedule or pay higher
electricity bills. The latter option is not beneficial for eithre electricity suppliers or users.

Keeping these constraints in view, we classify appliances as well as time (24 h of a day) carefully.
On the basis of this time and appliance framework, a Realistic Scheduling Mechanism is formulated
that incorporates human presence, human activity and time to schedule appliance reflecting UC and
electricity consumption peak shavings.

Problem Statement and Contribution

Scheduling home appliances in such a way that eliminates power demand peaks, intensifies UC
and minimizes electricity bills having dynamic hourly electricity tariff is a basic problem. In literature,
nature inspired heuristic algorithms are used widely to produce schedules that minimize electricity
cost; however, achieving cost minimization by using such techniques often results in compromised
appliance usage timings. This is because the scheduling horizon is vast and the algorithm has the
liberty to schedule appliances within a 24 hour time span, raising user frustration. What if all
RUs assemble their electric load on low price hours to save their electricity bills? The probability
of increased demand with respect to supply will be higher, proceeding with higher probability of
stifling the grid. Depicting UC, we define it as a state of equilibrium when the user has to pay lower
electricity bills without effecting appliance utility or frustration level. Appliance utility refers to the
use of electrical appliance within the desired range of time.

Therefore, the objective to achieve is to develop a balance between cost effectiveness and
appliance utility up to user satisfaction level along with designing a dynamic power usage limiter
that is also beneficial to electricity consumers and suppliers.

To achieve these goals, four major aspects are taken under deliberation; home occupancy, desired
time of use of appliances, electricity price at time of use of appliance, and appliance utility with
their specific constraints. Based on these parameters, we formulate RSM that classifies household
electrical appliances and scheduling window, reducing electricity cost and elevating appliance utility.
Scheduling window refers to the time span in which a set of appliances are meant to be scheduled.
For each scheduling window, RSM uses BPSO keeping objective of cost minimization.

RSM is composed of algorithms regarding appliance functioning and operability that are utilized
by a time modelling algorithm. Appliance classification is depleted by considering utility timings,
nature of appliance and human presence. One long time slot (24 h) is divided into four logical
sub-time slots that limit scheduling horizon. Each sub-time slot has six mini-time slots of one hour
each. In limited scheduling horizon (sub-time slot), only one set of appliances is scheduled, raising
appliance utility up to user satisfaction level (to ensure appliance utility part of UC).

For scheduling purposes, we apply BPSO keeping the objective function of minimizing cost for
each sub-time slot contemplating electricity price, set of appliances to be scheduled and dynamic
power threshold range deliberating PC during each respective sub-time slot. Although computational
load increases, it also provides effective scheduling that takes care of user frustration as well as
cost effectiveness. Our major contributions in formulating RSM are: (i) appliance classification
and functioning algorithms with effective constraints, (ii) packet formats regarding all classes of
appliances, (iii) dynamic power limiting threshold range with respect to electricity tariff, and (iv)
optimizing scheduling horizon.
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One cannot achieve an ideal condition in solving any complex problem. In our proposed scheme,
we have to pay a price in terms of computational load. However, this cost is negligible considering
the benefits that are achieved. Electricity consumers can have a dedicated processor for scheduling
rather than relying on the processing power of a smart meter.

3. System Model: RSM

To develop an efficient HEMS, four entities, i.e., the price at time, the TU, UA in RU and the
nature of appliance are key players. A complete system model is defined as in Figure 1 that takes
care of said parameters. We consider a home having single occupancy with 10 smart appliances,
that can be scheduled. We assume that every appliance is a smart appliance and has a built in
sensor for different operations. Moreover, there is a network of sensors that sense different attributes
regarding water tank for WP, water temperature for EWH, environmental temperature for HVAC
and HO sensors. These sensors communicate their sensed value to control unit. Each appliance
establishes its profile in form of a control/advertisement packet, that is transmitted to a scheduler.
This advertisement packet has eight fields and is composed of 10 bits as shown in Figure 1 and
explicitly in Figure 2.

The first field is of appliance ID composed of three bits. In next three bits, it is determined that
the appliance belongs to ADA, ODA or OIA class (explained in Subsection 3.1). The fifth field informs
us if the appliance is to be scheduled in this sub-time slot as per the user’s preferred time or not. The
next field in the advertisement packet is responsible for determining whether the appliance needs
a continuous operation without any deferment or not. The seventh field suggests that the device is
interruptible or not, while last bit decides an opportunity of a force start regardless of time and final
schedule made. The time frame, 24 hour time span, is divided into four equal sized sub-time slots,
reducing scheduling window size.

These profiles are gathered at aggregator modules of the control unit. An aggregator module
collects these profiles, make sets of appliances regarding respective sub-time slots and verifies
appliance threshold for the TU of appliance. These grouped profiles (for four different sub-time
slots) are finally fed to the scheduler module of control unit. Prior to these profiles, the scheduler
module has two more inputs, i.e., the day ahead price signal from electricity supplier and sensory
data regarding environment (temperature outside and inside RU), water temperature in tank and
HO. The schedular module also applies the sub-time slot threshold range to normalize the PC peaks.
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Figure 1. System Model: Realistic Scheduling Mechanism (RSM) Block Diagram.
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Figure 2. Advertisement packet format: ADA, ODA and OIA classes.

Once appliance, time, threshold and PC modeling is done, we apply BPSO on each sub-time
slot to get appliance schedule as Figure 3 representing operability of RSM explains. Considering flow
chart illustrated in Figure 3, initially tcurrent and UPtime is compared and a sub-time slot is found. Then
a set of appliances for that sub-time slot is formulated by using appliance classification algorithms and
profiles of each appliance. A power normalizing threshold for each appliance (using Equation (5))
plays an important role for selecting TAPP along with UPtime. Afterwards, PC limiter is applied using
Equation (9) for the whole of the sub-time slot. This maintains the PC balance for both electricity user
and provider. Finally, to achieve the objective of minimizing electricity bills, objective functions are
fed to BPSO anticipating respective constraints to provide schedules that are user as well as supplier
friendly. In this work we have not dealt with efficiency of communication protocol which is used
between smart appliances and control unit. We assume that communication protocol works ideally.
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3.1. Appliance Modelling

Classifying appliances, reflecting the said problem, is a complex task. Classification of appliances
deals directly with appliance utility as well as cost effectiveness. Regarding appliance modeling,
TU, PC and OA are focused parameters. Based on these parameters, RU’s electrical appliances are
classified as

• ADA: This class belongs to those appliances that not only require home presence but also need
some activity performed on them. MO, IR, TV, etc., fall in this class.

• ODA: These appliances are the ones that need human presence in RU to be operated. Such
devices that are operable only if a home is occupied, fall in this class. For instance, what need
is there for HVAC if home is vacant? It is also not necessary to switch on HVAC just on finding
a low price hour without considering environmental temperature. Lights, EWH, etc., are the
examples of this class.

• OIA: The appliances that can be operable without home presence belong to this class. These
appliances are delay tolerant and are meant to be scheduled at low price hours. WM, CD, PB,
DW, WP, etc., are some examples of this class which are taken under consideration in this work.

With respect to described parameters and classification of electrical appliances, we can define
each appliance separately. It is observed that, low PC appliances do not contribute significantly in
high peaks of electricity demand. High PC devices play a vital role in generating peaks of electricity
consumption. This is the reason that we take more high PC appliances as a prototype with respect to
low PC devices.

Figure 4 depicts the algorithms that are designed for appliance workability raising appliance
utility. Each appliance define its class in advertisement packet. The user also defines desired TU
of that appliance. It is obvious that all appliances are not needed all together at the same instance.
Moreover, an appliance may work multiple times in 24 h span as HVAC, MO and Ls, etc. Algorithms
for each class are explained in following subsections.

Start
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UP       &&UA
Back Off

Mini-slot time

 PC Th     

Switch on 
Appliance

OPS end

Switch off 
Appliance

End

ADA 
Operational

PB  60%

Yes
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No

Yes

Yes

No

Yes

No

No

No

max

current

time

(a)

Start
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 PC Th

Switch on 
appliance

Sensor Input

Switch off 
Appliance

End

PB  60%

Back Off
mini-slot time

ODA 
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Yes
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No
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Yes
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(b)

Start

PC  Th

Switch on 
Appliance

Ops End

Switch off 
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End
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Back Off

 mini-slot time

Thermostat 
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Operational
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No
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No

Yes

No
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current

(c)

Figure 4. Appliance functioning algorithms. (a) ADA class; (b) ODA class; (c) OIA class.
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3.1.1. ADA Modelling

The most important class of appliances that plays vital role in user frustration or comfort is ADA.
These appliances as the name indicates needs home presence as well as respective activity performed
on that appliances.

Reflecting Figure 4a there are four major thresholds, i.e., HO, desired TU, UA and a PC limit
(using Equation (5)). Analysing the algorithm for ADA class, it initializes and checks human presence
if, occupancy sensor defines home presence, it will further proceed, otherwise, it will initialize again
after a random back off time. If HO is verified, algorithm checks the desired TU and UA of this
device. After passing these checks, an algorithm will check PC threshold, otherwise, an algorithm
will be set to initialize again after a random back off period. Considering PC threshold check, it
checks the overall PC at that specific instance. If it is below the predefined limit (Subsection 3.3),
then the appliance will be switched on. If PC, at that instance is higher than power usage limit, the
appliance will switch on using PB considering charge on its batteries. These are the conditions which
are common amongst the whole appliance range of ADA class. However, each device may have
some of its own constraints which are elaborated in a periodic control packet. These limitations tend
to raise UC and efficiency in terms of electricity usage.

Normally, a home is occupied for the evening, night and morning time. Electricity appliances of
this class are needed mostly in the morning when the user has to prepare for the office and evening
when the user comes back from the office. Focusing MO as a vital appliance of ADA, it can remain in
ONS, OFS and WS while, state 00 refers to OFS, 10 is WS and 11 defines ONS.

At a given instance of time, MO can be in any of above mentioned state. To register in WS or
ONS (Equation (1)), the following constraints must be analyzed.

SetMO == [11, 10] (1)

Conditions :

1: MO← 00
2: if HOSENSOR == 1 && UA← 1 && Tcurrent ε Tdesireds lot then
3: MO← 11
4: if PC ≤ ThMax

current then
5: MO← 11
6: end if
7: if PC ≥ ThMax

current &&PB ≥ 60% then
8: MO← 11
9: PB← 10

10: end if
11: if ForceStart == 1 then
12: MO← 11
13: else
14: if ForceStart 6= 1 && PB ≤ 30% then
15: MO← 10
16: end if
17: end if
18: if MO == 11 then
19: x < TEMP < y
20: MO==10
21: end if
22: D ≤ 12omin
23: end if

Line 1 expresses the 00 state of microwave oven and it will shift to 11 state if the home occupancy
sensor senses presence in the home, and current time slot is the desired time slot. Moreover, some
user activity is planned in this time slot as depicted in line 2. In this document, 1stands for yes or
on, while 0 represents no or off. State 11 shifts to state 10 if, power consumption is lower than the
threshold of that particular mini-time slot. Considering line 8, if power consumption of the mini-time
slot is exceeding the threshold limit, then PB will be consulted. If charge in PB is greater than 60% MO
will set in state 10 while PB is shifted to state 10. There is another check, regarding switching to 10
state, i.e., if in advertisement packet or if the option of force start is on, the appliance will be set to 10
state at the prescribed time regardless of PC (line 12). However, if force start option is not set on, and
PB charge is less than 30%, MO will remain in 11 state until PC threshold is satisfied (line 15). Mostly,
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food is cooked by giving proper attention. The higher the temperature setting of MO is, the higher
will be the power consumption resulting in higher power demand. Line 20 limits the temperature
range into an upper and lower bound of temperatures, where x and y are the desired limits of MO set
by the user. The delay for this appliance is set as 120 min.

3.1.2. ODA Modeling

These are the devices which are needed only when a home is occupied, as the name indicates.
Many appliances may fall in this class like HVAC, EWH, Ls, etc. Figure 4b narrates ODA class of
appliances, it deals with only three thresholds, i.e., checks the HO, UPtime and PC at that instance.
This algorithm follows the same procedure as that of ADA class, the only difference is, that it does
not precisely follow the user preferred time during respective sub-time slot. It checks different
parameters depicted by environmental and temperature sensors. As discussed earlier, these are
general conditions that are valid on every ODA. There can be some other constraints on a device
level to further optimize the solution.

Let us anticipate that EWH belongs to ODA class, i.e., EWH ⊂ ODA. Performance of EWH
depends on hot water storage tank. We assume that tank can contain x litres of water and can keep
water warm for T minutes. Moreover, EWH warms x litres of water in HT time, consuming KW/hr
power. EWH can be in OFS, ONS or WS where 00 represents OFS, 10 shows WS of appliance and 11
stands for ONS of Appliance.

Framework of EWH is presented in Equation (2):

SetEWH == [11, 10] (2)

Conditions :

1: EWH ← 00
2: if HOSENSOR == 1 && Tcurrent ε Tdesireds lot then
3: EWH ← 11
4: if Tempmin ≤ RTemp ≤ Tempmax then
5: EWH ← 11
6: end if
7: if Tempmin ≥ RTemp ≥ Tempmax && PC ≤ ThMax

current then
8: EWH ← 11
9: end if

10: if PC ≥ ThMax
current &&PB ≥ 60% then

11: EWH ← 11
12: PB← 10
13: end if
14: if ForceStart == 1 then
15: EWH ← 11
16: else
17: if ForceStart 6= 1 && PB ≤ 30% then
18: EWH ← 10
19: end if
20: end if
21: if EWH == 11 then
22: Tempmin ≤ RTemp ≤ Tempmax
23: EWH ← 10
24: end if
25: D ≤ 18omin
26: end if

Anticipating EWH that belongs to ODA, the initial state is 00 will shift to 11 state if the HO sensor
is positive and current sub-time slot is the desired time slot. To shift to state 10, water temperature
range is verified as in line 4. If current water temperature rests within the range, state 11 will continue
otherwise, as depicted in line 8 to 16, PC threshold is checked, PB state of charge is verified and force
start option is checked as being to set to state 10. If force start option is not set on while charge on PB is
less then 30%, EWH will remain in WS until above mentioned constraints are fulfilled. Delay is set to
180 min for this appliance (within 6 h of sub-time slot) as ODA class does not require urgent attention
and can be utilized to minimize electricity bills without effecting appliance utility. It is assumed that
water tank has the ability to keep water warm for 5 h and comfortably usable for 3 h. Hence, it can be
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switched on 180 min prior to usage time. This is the time limit where water remains usable without
any discomfort. Focusing EWH, it is required only in morning time, hence, it can be scheduled at
times such that line 27 is satisfied. In the same way, appliances that lie in ODA class will have almost
the same constraints, given that they may have different tolerance levels and comfort zones, i.e., for
HVAC, there will some different range of temperature to be set and have to analyse outside along
with inside temperature of RU. Figure 2 illustrates advertisement packet format representing ODA
class as well.

3.1.3. OIA Modelling

OIA class of appliances are independent of human presence. All they require are certain control
signals to become operational without any human interference. OIA class as illustrated in Figure 4c
checks only power threshold value. If there is a room for said device to switch on, the algorithm
turns that appliance on. This class of appliances mainly shaves electricity demand peaks and resolve
different conflicts of TUs regarding other two classes.

We take PB as prototype for this class of appliances. This device can be in three states, i.e., 00
states its OFS, 01 represents CS while 10 refers to its DS.

If PB is in 00 state, it means that normal operation is ongoing. Electricity from supplier is utilized
and PB is in OFS. 01 state informs CS of PB. It reflects the time, when batteries are charging i.e., that
must be a low pricing hour. Moreover, this is an OIA, hence it can be operational at any instance, once
given constraints are fulfilled. 10 state represents DS. Discharging of batteries happen only when it
is necessary to use electricity while the electricity price offered from the supplier is high, or needed
electric load is exceeding PC limit. During peak pricing hours or peak demand hours, the probability
of DS considering PB is maximal than CS. PB framework is presented in Equation (3):

SetPB == [00, 01, 10] (3)

Conditions :

1: PB← 00
2: if PC ≤ ThMax

current && PBCharge ≥ 60% then
3: PB← 00
4: end if
5: if PCreq ≥ ThMax

current && PBCharge ≥ 60% then
6: PB← 10
7: end if
8: if PCCharge ≤ 30% && PC ≤ ThMax

current && TcurrentεTdesired−slot then
9: PB← 01

10: end if

The initial state of PB is 00 which will remain if the PC of the mini-time slot is less than the
PC threshold and charge on PB is greater than or equal to 60% as in line 2. Line 5 expresses that
if PC exceeds the threshold and PBcharge is greater than or equal to 60%, PB state is set to 10 i.e.,
discharging state. This means, to remain under threshold level, some of the appliances will start
consuming power from PB to minimize grid billing at high load hour. PB is a dual natured appliance,
it serves as a mini MG while in 10 state and acts as an ordinary appliance during 01 state. The user
defines its operational time (01 state) for charging. If the charge on PB is less than 30% along with
PC is under threshold, the state of PB will shift to 01. This OIA needs high electric power to operate;
however, it also gives relief to the user in high price and load hours. HEMS may shift some of the
load on batteries to ensure appliance utility, PC peaks reduction and lower bills. We assume that RU
is equipped with an RE source. This RE scourge charges PB along with two hours of further charging
by using electricity provided by the supplier. In this way it is capable of storing 35% of the consumed
power and helps in lowering electricity consumption/ billing at high pricing hours. Modelling RE
expenditures (Power storage system, installation cost of RE source/s and maintenance around its life
cycle) will be dealt with in future works.
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3.2. Time Modelling

Scheduling horizon plays an important role in appliance utility and cost minimization. It has a
direct influence: as the scheduling horizon is widened, cost will decrease proportionally. However,
appliance utility is compromised likewise. Limiting scheduling horizon may lead to less cost
effectiveness but it will raise the appliance utility. To include cost effectiveness in limited scheduling
horizon, effective appliance grouping representing each logical sub-time slot, will lead to minimized
electricity bills.

We, in this work, divide 24 hour time into four prominent sub-time slots i.e., from 00:00 to 06:00
as T1, from 06:00 to 12:00 as T2, 12:00 to 18:00 as T3 and 18:00 to 00:00 as T4. We categorize these
sub-time slots in accordance with daily routine pattern commonly observed at a normal RU. Each
sub-time slot is further decomposed into six equal sized mini-time slots of one hour each. Scheduling
window is minimized to a sub-time slot. Hence, there are four scheduling windows within time
frame of 24 h.

During any specific interval of time, all the n appliances are not needed. There may be a group of
appliances that is operational. Moreover, limiting scheduling window along with precisely developed
set of appliances to be used in this sub-time slot, results in more effective scheduling. It is not
necessary that an appliance that ∈ n works only in one sub-time slot. It may be utilized time and
again, such as MO or HVAC. For the said reason, we state that, there are "n" appliances in an RU.
During T1, a set of T1App = (n− a) appliances are to be scheduled. While in T2 , T2App = (n− b)
are in use, similarly T3App = (n − c) and T4App = (n − d) are operational in T3 and T4 sub-time
slots respectively. Where T1App ∈ n, T2App ∈ n, T3App ∈ n and T4App ∈ n. Subset a is set of
those appliances, that are elected to be in OFS for sub-time slot T1. Likewise, sets (b), (c), (d) are
sub sets of appliances that belongs to super set n of all electrical smart devices but not lie in T2APP,
T3APP and T4APP respectively. These subsets are formed by appliance profiles and UPtime. Sets of
appliances for sub-time slots are made focusing UPtime, appliance profiles and appliance threshold,
without considering classification of appliances.

Resident of the home inputs his UPtime and duration of use reflecting any specific appliance. A
set of appliances that is to be used in certain sub-time slot (i.e., T1App) is based upon the appliance
classification mechanism as discussed in Section 3. Mathematically we can state as in Equation (4):

UPtime ⊂ T, where, T = 24h (4)

such that

UPtimei ⊂ Ti&&TiAPP == (n− k) (4a)

where,

set(a)TU /∈ UPtime1, set(b)TU /∈ UPtime2, set(c)TU /∈ UPtime3&set(d)TU /∈ UPtime4 (4b)

where Ti = T1 + T2 + T3 + T4. UPtime defines the sub-time slot of appliances within 24 h time
frame. set(a)TU is time of use of appliances that exists in set(a). These sets are formed on checking TU
with respect to the next sub-time slot and are variable so that any appliance can work in more then
one sub-time slots as per user requirement. Considering any set of appliances, i.e., T1APP − T4APP,
appliances can deviate within respective mini-slot times of one sub-time slot; however, they are not
supposed to shift their sub-tim slot, to avoid user discomfort.

3.3. Power Threshold Framework

Limiting power usage and creating a threshold is one of the most critical parts of an effective
HEMS. Threshold if modeled carefully, plays an important role in maintaining an equilibrium that
not only is beneficial to electricity consumer, but also for power suppliers by stabilizing the smart
grid. The grid is vulnerable on high price hours as well as low price hours. It is obvious that at high
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price or load hours, the grid may choke. While, if consumers shift their electric loads collectively on
low pricing hours, this again will result in choking of electricity supplying company. To tackle these
two extremes, an efficient power threshold mechanism is needed that regulates electricity usage.

To accomplish this, we devise two types of thresholds, i.e., appliance threshold and sub-time slot
threshold range. For appliance threshold, that is required while switching on any electrical device,
we calculate it on the basis of unit price of electricity at that certain hour. This threshold changes
as the price of hour changes. Hence, it regulates high demand curves at low or high price hours
dynamically, as shown in Equation (5):

ThMax
current = (

max.ECcurrent
A.APP

Ct
)× x (5)

ThMax
current stands for the threshold calculated for the current hour. max.ECAPP is consumption

of electricity (in KW ph) by all electricity appliances that are to be scheduled in that sub-time slot.
Whereas Ct depicts the electricity cost of respective hour issued by electricity supplier. x is a variable
that can be changed according to needs of electricity consumer. This increases the threshold value
of power consumption per hour as per need. We define x as 1.5 in this work. ThMax

current is utilized in
algorithms that define functionality and operability of electrical appliances (Subsection 3.1).

To calculate maximum electricity consumption, we use Equation (6):

max.ECcurrent
A.APP =

A.APP

∑
a=1

(PKW ph
a ) (6)

Equation (6) gives the sum of PC by all active appliances in specific mini-time slot. Where
PKW ph

a stands for the kilowatt per hour PC by an appliance and TAPP is number of appliances that are
determined for that specific mini-time slot.

The lower boundary of threshold is represented as ThMin
current and can be calculated as in

Equation (7):

ThMin
current = (

min.ECcurrent
A.APP

Ct
)× x (7)

where:

min.ECcurrent
A.APP =

1
2
(

A.APP

∑
a=1

PKW ph
a ) (8)

PC range for an hour can be calculated as the difference between max.ECAPP and min.ECAPP.
Mathematically it can be represented as in Equation (9):

ThTime−slot
hour = PC

∣∣∣∣ThMax
current

ThMin
current

(9)

Equation (9) gives PC range of specific hour that deviates between min.ECAPP and max.ECAPP.
Per hour maximum and minimum thresholds are defined in Equation (5) and Equation (7)
respectively. We use Equation (5) in appliance modelling (Section 3 for switching on an appliance).
However, during a sub-time slot, it is not necessary that every hour of the sub-time slot must be
occupied even if there is no need to utilize any appliance. For that we need a maximum and minimum
threshold value for whole sub-time slot, i.e., six mini-time slots. During these 6 h (mini-time slots),
there may be hours where the state of "no electricity consumption" can be achieved without generating
PC peaks in other mini-slot times of respective sub-time slot.



Energies 2016, 9, 202 15 of 28

Hence for sub-time slot threshold, we calculate minimum and maximum electricity to be utilized
in whole sub-time slot (Equation (11) and Equation (12) respectively). That defines the threshold
range for specific sub-time slot as in Equation (10):

ThTime−slot
Range = PC

∣∣∣∣ThMax
range

ThMin
range

(10)

where,

ThMin
range =

6

∑
t=1

(
min.ECt

A.APP
Ct

)× x (11)

and

ThMax
range =

6

∑
t=1

(
max.ECt

A.APP
Ct

)× x (12)

Ct(avg) represents the avarage price during sub-time slot. To calculate maximum and minimum
range of PC during a sub-time slot, we use Equation (13) and Equation (14) respectively.

max.ECt
A.APP =

A.APP

∑
a=1

(PKW ph
a ) (13)

min.ECt
A.APP =

1
2

A.APP

∑
a=1

(PKW ph
a ) (14)

3.4. Power Utilization Framework

The day ahead RTP model is utilized that is published online day ahead. As said earlier, there
are many devices that may switched off or are not in use with respect to that sub-time slot. Also, an
appliance may be needed at multiple times during a day and occupancy of RU impacts directly on
scheduling electrical devices. On the basis of presented modeling of electrical appliances, sub-time
slots and power threshold range, we devise PC cost profiles for each sub-time slot in following
subsections.

PC Cost During the Allocated Sub Time Slots

T1 sub time slot refers to fist 6 h of the day where T1s = 00:00 and T1 f = 06:00 having six
mini-time slots of 1 hour each. During this sub-time slot, appliances under attention belongs to T1APP.
Scheduling time for T1APP can be stated as in Equation (15):

Tsch1 = T1 f − T1s (15)

The amount of power that is consumed during T1 by T1APP set of appliances is represented in a
vector form as:

PT1APP = [pT1s
i→(n−a), pT1s+1

i→(n−a), pT1s+2
i→(n−a)......p

T1 f
i→(n−a)] (16)

where , i → (n− a) is the range of appliances that can be switched on during T1x hour of T1. While,
T1s to T1 f refers to six mini-time slots of T1 . Sum of all the fields of vector (Equation (16)) yields PC
of all appliances during T1.

Equation (17) ensures that a certain range of power is permissible to be used. It gives maximum
and minimum PC limit of T1APP appliances during T1 time span.

ThT1
00−06 = PC

∣∣∣∣ThMax
00−06

ThMin
00−06

(17)
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And we can say that:
ThMin

00−06 ≤ PT1APP ≤ ThMax
00−06 (18)

As prices can vary every hour and are known to scheduler in advance, total PC cost during T1
is stated as:

CTT1
(n−a) =

T1 f

∑
t=T1s

(n−a)

∑
n=1

PT1App(t,n)CT1(t) (19)

We follow the same model as presented for T1 in rest of the sub time slots; T2, T3, and T4.

3.5. Problem Formulation

Accumulative objective function for 24 hour time span "T" is expressed in Equation (20):

obj = min
(
(CTT1

(n−a)) + (CTT2
(n−b)) + (CTT3

(n−c)) + (CTT4
(n−d))

)
(20)

Such that;

(Tsi ≤ UPtime ≤ Tf i) ∀ T ∈ {T1, T2, T3, T4}, (20a)

(n− k) ∈ TiApp ∀ T ∈ {T1, T2, T3, T4}, (20b)

ThMin
m−n ≤ PTiAPP ≤ ThMax

m−n ∀ T ∈ {T1, T2, T3, T4} (20c)

PrT
x = (1− ρ) + Pmax

20a ∀a ∈ n, ∀ T (20d)

Constraint ’a’ represents the user preferred time for whole day logically dividing 24 hour into
4 equal sized time slots to enhance appliance utility (i ∈ {1, 2, 3, 4}). The set of appliances formed for
each sub-time slot is bound to be operational within respective sub-time slot as depicted in constraint
’b’, where, k = a if i = 1, k = 2 if i = 2, k = c if i = 3, and k = d if i = 4. A dynamic power limiting
range is designed which is based upon HO, UA and price at time of use, enforces certain amount
of PC during respective sub-time slot in constraint ’c’. In constraint c, m = 00 and n = 06 if i = 1,
m = 06 and n = 12 if i = 2, m = 12 and n = 18 if i = 3, and m = 18 and n = 00 if i = 4. Whereas,
constraint ’d’ tackles the probability of force start option of any appliance.

4. PSO

The PSO algorithm is dependent upon two major functions, i.e., velocity update function and
position update function [28]. On every iteration, each particle is subject to move towards a previous
best position or global best position. Hence, every new iteration brings new velocity of each particle
along with distance of the global best position. This new velocity value is calculated to find next
position in n dimensional search space s. Iterations keep repeating until the required solution is
achieved. The velocity of a particle is obtained by using the Equation (21):

Vid(tBPSO + 1) = WVid(tBPSO) + c1r1(tBPSO)(pid(TBPSO)− xid(tBPSO))−
c2r2(tBPSO)(pgd(tBPSO)− xid(tBPSO)) (21)

where

W = (Tmax − Tmin)
(0.9− 0.4)

Tmax
+ 0.4 (22)

And for position update function, we use the Equation (23):

Xid(tBPSO + 1) = Xid(tBPSO) + Vid(tBPSO + 1) (23)
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BPSO for RSM

BPSO is a variant of PSO, with the only difference that, decision variables are binary, i.e., zero
and one. The objective function is fed to BPSO that develops schedule for respective sub-time slot
considering UC focusing appliances usability and cost of electricity at time of use.

In BPSO, particles are initialized for binary positions randomly.

xi = [xi1, xi2, xi3......xin]∀xi ∈ (0.1) (24)

Position of each particle is defined by:

xid = fx =

{
1; if rand ≥ 0

0; otherwise

Table 4 represents the simulation control parameters of BPSO for scheduling home appliances.

Table 4. Control setting for Binary Particle Swarm Optimization (BPSO) simulation.

Parameter c1 and c2 r1 and r2 i f

Value 2.0 rand (0,1) 1.0 0.4
Parameter Swarm Vmax Vmin No. of Iterations

Value 10 4 −4 500

Scheduling smart home’s electrical appliances by applying nature inspired heuristic algorithms
is emerging topic amongst researchers and engineering industries. Vast literature exists that presents
recent trends of using and modifying PSO, GA and ANN techniques for the said purpose, i.e.,
scheduling home appliances for cheaper electricity bills.

5. Simulated Results and Discussions

We consider an RU of a residential building, however, our proposed scheme can be implemented
on any home or residential apartment. This RU has single occupancy, one bedroom, one living room,
a kitchen and a washroom. For validation of our proposed system, we take assumption of an RU
having 10 smart appliances. These appliances are connected to HEMS, while we have knowledge of
hourly electricity tariff a day ahead.

Table 5 shows the appliances that belong to a specified class (user defined), duration of operation
in 24 h time (user defined), duration of operation in specific sub-time slot (user defined based upon
UPtime) and their power rating as watt per hour (manufacturer rating). We take these listed appliances
for scheduling, aiming to reduce user frustration and maximize appliance utility cost effectively, as
discussed in above sections. In all of the mentioned appliances, role of PB is vital. We, in these
experiments, include it as another device when it is required to be charged. For DS we calculate
its impact which is vital. However, we do not include its technical specifications and assume that, if
fully charged with the support of PV system, it can provide 35% of the load. Considering DR program
type, we use day ahead dynamic hourly pricing scheme which is published by electricity company
day ahead. In this section, 0 stands for the OFS of appliance while 1 respond to ONS of appliances
due to the binary nature of applied optimization technique.



Energies 2016, 9, 202 18 of 28

Table 5. Appliance power rating and desired time of operation.

Class Appliance Ops in T (24 h) Ops in T1 Ops in T2 Ops in T3 Ops in T4 Power (Wph)

ADA Microwave Oven 2 h 0 h 1h 0h 1h 4000
ADA Lights 12 h 1 h 3 h 2 h 6 h 500
ODA Water Pump 2 h 0h 0h 1h 1h 4000
ODA HVAC 9 h 4 h 1h 0h 4 h 4000
ODA EWH 3 h 2 h 0h 0h 1h 4000
OIA Refrigerator 21 h 6 h 5 h 5 h 5 h 3000
OIA Clothes Dryer 1h 0h 1h 0h 0h 2000
OIA Dish Washer 2 h 1h 0h 1h 0h 500
OIA Power Bank 2 h 0h 0h 2 h 0h 4000
OIA Washing Machine 2 h 0h 2 h 0h 0h 4000

5.1. Scheduling Sub-time Slots

In the following subsections, results reflecting each sub-time slot are presented to analyze impact
of RSM with respect to unscheduled. In the experiments, we also analyzed the role of PB in RSM
which gives near to optimum results. In the following Subsections, we compared unscheduled, RSM
without PB and RSM with PB for each sub-time slot.

5.1.1. Scheduling T1

T1 represents the time between 24:00 to 06:00. This is the time when home is occupied and
occupants are normally taking their sleep. Hence, ODA class of appliances is dominant in T1APP in
accordance with UPtime and electricity cost per respective hour. EWH, REF and HVAC, etc. do not
require special attention, but require HO. For EWH, user require 2 h of operation: one near midnight
before going to bed and one right before getting out of bed. REF needs to be run continuously,
however, it can be deferred for a maximum of one hour, if load is crossing the threshold. Hence,
during this time span, Equation (25) expresses T1APP set of appliances.

T1APP = (EWH, REF, HVAC, L, DW) (25)

Figure 5a depicts the hourly price advertised for T1. Figure 5b represents the PC pattern
considering three approaches, i.e., scheduling with the help of proposed mechanism (with and
without PB) and unscheduled. We induced the impact of PB on electricity cost savings. As we can
see in Figure 5b,c, during the high price timings, electricity consumption was lower and during low
pricing hours, electricity consumption was higher with respect to proposed scheme. However, using
PB as a helping source of power at high cost timings, billing is minimum.
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Figure 5. Comparative analysis: RSM and unscheduled cases during T1. (a) Hourly Price During T1;
(b) Consumption Comparison; (c) Cost Comparison.
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5.1.2. Scheduling T2

T2 represents the time between 06:00 to 12:00. During the first half of the time, the home is
occupied as the user gets up, and prepares to reach his work space. After 09:00 the home remains
vacant. During the latter half, OIA is major class representing T2APP to ensure UC.

The price per hour of this sub-time slot can be seen in Figure 6a. For the initial three hours,
i.e., from 06:00 to 09:00 the price is higher and afterwards, it is 6PKR per kilowatt for the rest of this
sub-time slot. PC and cost comparison between scheduled load by RSM without PB, unscheduled
load and scheduled by RSM with the support of PB is shown in Figure 6b,c respectively. Without
RSM, electricity consumption is higher at high price timings which is lower in scheduled load. At the
time when prices are low, scheduled load is higher.

T2APP = (MO, CD, WM, HVAC, REF, L) (26)

Equation (26) represents appliances in T2APP set.
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Figure 6. Comparative analysis: Realistic Scheduling Mechanism (RSM) and unscheduled cases
during T2. (a) Hourly Price During T2; (b) Consumption Comparison; (c) Cost Comparison.

5.1.3. Scheduling T3

T3 sub-time slot represents the time between 12:00 to 18:00. At this sub-time slot, OIA class of
appliances is meant to be scheduled. Normally, office timings are 09:00 to 17:00 and so, the user may
reach home after 17:00 ±1 h. During this time slot, T3APP set based upon appliance profiles and
UPtime is given in Equation (27):

T3APP = (DW, REF, PB, WP, L) (27)

Figure 7a anticipates the tariff of this sub-time slot. From 12:00 to 15:00 tariff is 6PKR while from
15:00 to 18:00 the price is 14PKR and then 18PKR per kilowatt for last two hours. During high peak
hours, minimum load is scheduled by RSM keeping in view that the home is vacant and maximum
load is shifted to low price hours to preserve electricity. T2APP set is formulated considering appliance
classification and UPtime maximizing appliance utility as well as cost savings. On the other side,
unscheduled load consume electric power regardless of electricity pricing as shown in Figure 7b.
Figure 7c presents the price comparisons between scheduled with RSM, Scheduled RSM with PB and
unscheduled load. During high price hours, price is minimal with respect to unscheduled load.
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Figure 7. Comparative analysis: RSM and unscheduled cases during T3. (a) Hourly Price During T3;
(b) Consumption Comparison; (c) Cost Comparison.

5.1.4. Scheduling T4

T4 represents 18:00 to 24:00. This sub-time slot can be termed as most active sub-time slot of all,
as user is available and can turn on any appliance according to his need. Hence appliances from all
classes, i.e., OIA, ODA and ADA classes are prominent members of set T4APP as Equation (28) shows:

T4APP = (HVAC, REF, EWH, DW, L, MO, WP) (28)

Figure 8a depicts the price hours of this sub-time slot. Initial hours are the peak pricing hours
whereas price is lower after 22:00. If we analyse PC in this sub-time slot, Figure 8b states that during
high pricing hours scheduled load tends to decline however at cheap hours, the load is maximum.
Observing unscheduled load, it raises to almost 9KW ph during high price hours as can be seen in
Figure 8c. Likewise if we compare pricing of these two approaches, Figure 8c clearly states that
scheduled cost is much lower than unscheduled cost.
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Figure 8. Comparative analysis: RSM and unscheduled cases during T4. (a) Hourly Price During T4;
(b) Consumption Comparison; (c) Cost Comparison.

6. Comparative analysis and policy findings

The major aim of any HEMS is to ensure efficient energy consumption. If energy consumption/
electricity bill reduction is focused, appliance utility is compromised. This means that electricity bills
are indirectly proportional to appliance utility. Whereas, as discussed earlier, UC is dependent upon
both of these objectives, i.e., bill reduction as well as elevated appliance utility. To achieve appliance
utility aspect of UC we formulate appliance modeling schemes that ensures operation of an appliance
within respective time slot along with different checks and limitations as discussed in Subsection 3.1.
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Once appliances are modeled, each respective set of appliances are scheduled within respective
sub-time slots by using a nature inspired heuristic algorithm BPSO keeping objective to minimize
electricity cost (Subsection 3.2). In the following sub sections we discussed benefits of using proposed
scheme focusing both aspects of UC.

6.1. Appliance Utility

Taking account of appliance utility that ultimately effects user frustration, RSM gives better
result with respect to unscheduled and BPSO to schedule home appliances in maximizing appliance
utility with respect to cost effectiveness. For this comparison, we chose five high PC appliances,
which are HVAC, EWH, MO, WP, and CD. Selection of appliance is made in such a way that all
classes are represented. HVAC and EWH represents ODA class, MO belongs to ADA class while WP
and CD rest in OIA class of appliances. Figure 9a shows the desired time of use for the appliance.
This gives maximum appliance utility; however, electricity cost is compromised. Figure 9b gives the
optimized schedule of these appliances applying BPSO. Whereas Figure 9c represents schedules of
said appliances by applying proposed RSM.
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Figure 9. Analysing appliance utility (a) Desired Ops Time; (b) OPS time using BPSO; (c) OPS time
using RSM.

If we compare results of HVAC that belongs to ODA class of appliances, (depicted from Figure 9)
it is desired to be operational in night timings. BPSO schedules it in the hours where price is minimal
and PC threshold is satisfied. RSM (Figure 9c) schedules HVAC optimally due to limited scheduling
horizon with limited set of appliances. Focusing last part of day, i.e., in T4, HVAC is not scheduled
according to desire however, it was not operational in the times when home is vacant in contrast with
BPSO as seen in Figure 9b.

Observing MO that represents ADA class of appliances, it is desired to be used at about 08:00
in morning and 20:00 in evening. BPSO schedules it at 09:00 in morning which is affordable and the
electricity consumer can bear this change; however, for evening time, it was set operational at 16:00.
This time schedule is of no use and cannot be followed (Figure 9) as the home is vacant at that time.
RSM takes care of the appliance class and has a limited scheduling window, which gives a schedule
that does not completely turn an appliance utility into a void. It schedules MO at 07:00 in morning
and 19:00 in evening (Figure 9c). The user can cope with these timings and the utility of appliance is
not much compromised.

CD as OIA is scheduled by BPSO and RSM in almost the same range where it was desirable.



Energies 2016, 9, 202 22 of 28

6.2. Cost and Consumption Effectiveness

Subsection 6.2 presents the usability of RSM in terms of appliance utility. In this section, we will
compare cost and consumption effectiveness of proposed RSM.

Figure 10a–e represents the electricity usage efficiency anticipating different mechanisms. Power
load is 100KW ph for 24 hour time span that remains fixed, while the price per hour is variant that
makes the major difference in electricity bills. During T1, PC by proposed RSM is 27KW ph and in the
rest of the sub-time slots, PC is 15KW ph, 22KW ph and 36KW ph, in accordance with the formation
of T1APP, T2APP, T3APP and T4APP respectively. Figure 10a–d represents cost difference of four
sub-time slots amongst unscheduled load, RSM without PB and RSM with PB. Observing Figure 10a,
we achieve savings of 10% by using RSM without PB and 65% with PB in T1. Comparing unscheduled
usage of electricity appliances, Figure 10b depicts the price comparison amongst proposed and
unscheduled load and the price benefit to electricity user reaches 30% and 69% by applying RSM
without PB and with PB respectively during T2. RSM manages to use its PB at high price hours.
Effective appliance classification and set formation representing each sub-time slot result in operation
of appliances in desirable manner, as can be observed in Figure 9. The overall price benefit to user in
T3 is 55% if PB is not included while with PB price benefit reaches to 69% as Figure 10c depicts. In T4
price benefit to user is 33% (Figure 10d) by using RSM without PB and achieve cost savings of 52%
with PB capability. Table 6 reflects electricity bills for unscheduled, RSM with PB, RSM without PB
and BPSO mechanisms.
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Figure 10. Financial aspects: Unscheduled, RSM and BPSO. (a) Savings in T1; (b) Savings in T2;
(c) Savings in T3; (d) Savings in T4; (e) Cost Comparison: 24 h Time.
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Table 6. Electricity bills: unscheduled vs. BPSO vs. RSM.

Time Unscheduled RSM without PB RSM with PB BPSO

T1 193PKR 175PKR 68PKR
T2 130PKR 90PKR 34PKR
T3 340PKR 130PKR 88PKR
T4 595PKR 365PKR 265PKR
T 1258PKR 760PKR 498PKR 739PKR

Comparing cost offered by unscheduled usage, BPSO and RSM with and without PB
(Figure 10e), there is a vital difference between the three methods. Without scheduling, cost is
maximum, i.e., 1258PKR, scheduling with BPSO directly reduces the cost to 739PKR, attaining 42%
savings. It is proposed that RSM tends to classify electrical appliances in a desirable fashion along
with multiple scheduling windows of small time frames, which offer almost same savings as by using
BPSO, i.e., 39% if compared with unscheduled load usage. BPSO performs 3% better then proposed
RSM which is negligible anticipating UC achieved. However, electricity bill by applying RSM with
PB reduces enormously, providing 65% savings in comparison with unscheduled load usage which
is 32% more efficient then BPSO.

Figure 11 represents the PC pattern in 24 h. Focusing on an unscheduled pattern, there are seven
peaks where electricity consumption is more than 8KW ph. Moreover, out of seven, four peaks are
at those hours where electricity is most expensive. The ultimate goal is to reduce these peaks to
minimize load on the grid as well as bills for electricity consumer. If we schedule appliances using
BPSO directly, peaks are trimmed off from those hours where electricity price is high. Instead, BPSO
shifts most of the load at the hours where the electricity tariff is cheaper. BPSO shaved electricity
consumption peaks from high priced hours, but it uses much more electricity at low priced hours,
generating even bigger peaks. The reason behind this is the unrealistic threshold value for 24 h time
span. As the electricity tariff declines, threshold increases proportionally and that results in huge
amounts of power consumption at low priced hours. This trend also leads to minimizing appliance
utility, as discussed in the above sections. Following the behaviour of RSM, equipped with power
bank, effective appliance classification and limited scheduling horizon, it trims off the peaks and
utilizes electric power in a balanced way. This balance is achieved by having a dynamic power
threshold range defining lower and upper boundaries of power consumption during a sub-time
slot. This also plays a role in raising appliance utility and reducing user frustration. RSM schedules
appliances according to their utility and trim consumptions peaks as well.

Time (Hour)

0 5 10 15 20 25

Lo
ad

 (
K

W
P

H
)

0

5

10

15

20
Unscheduled

RSM w/o PB

RSM with PB

BPSO

ToU Pricing

Figure 11. Power consumption comparison: RSM, BPSO and unscheduled.

Table 7 reflects the major properties regarding unscheduled, BPSO and RSM approaches for
electrical appliance usage.
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Table 7. Unscheduled vs. BPSO vs. RSM.

Properties Unscheduled BPSO RSM

Scheduling Window No Window 1 × 24 = 24 h 4 × 6 = 24 h
Power Limiting Threshold No Threshold Constant Dynamic Range
Appliance Classification No No Yes
Load Balancing No Load shift to off peak Hours Regulating load w.r.t need and price

Appliance Utility Maximum Do not Care Tends to create equilibrium between
utility and cost

Shave Cost Peaks No Yes Yes
User Comfort Compromised Compromised Achieve a level of User Satisfaction
Home Occupancy Considered Yes No Yes

Take Care of Electricity producer No Only at user premises Tends to accommodate both ends, i.e.,
user and provider

Cost and Electricity Effectiveness No good RSM with PB gives max.
Computational Cost No Yes Maximum

6.3. User Comfort Achieved

As stated earlier, UC achieves a balance between appliance utility and cost of using electricity.
We assume that appliance utility carries 60% of total UC while cost saving adds the remaining 40%.
UC range lies within 0 and 1. In an ideal case, UC should be 1.

UC = UAPP + Ecost (29)

considering unscheduled load scenario when electricity is used without considering electricity cost
at time of use hour, the UC achieved is 0.6, i.e., appliance utility is at its maximum while electricity
cost hour is totally neglected. However, BPSO takes care of electricity price at time of use without
considering appliance utility and gives UC by finding values of appliance utility (UAPP) and cost
effectiveness (Ecost) as in Equation (29). PBSO is 42% cost effective in comparison with unscheduled
load cost. Considering Ecost its value is 0.16. Finding the value of appliance utility function (Equation
(31)), we find average delay (Davg) by Equation (30). It can be observed that average delay is 3 h
considering BPSO scheduling.

Davg =
∑n

APP=1 DAPP

n
(30)

UAPP = α−
Davg

T
(31)

Ecost = β× (
Csavings

100
) (32)

where α is 0.6 and β is 0.4. Solving Equation (29) we find that UC achieved by using BPSO at 0.636
while with unscheduled load pattern it was 0.600. UC gain by using BPSO is 0.636− 0.600 = 0.036.
Considering RSM with PB, average delay of appliances is 1.8 h. This yields an appliance utility
value of 0.525. Considering cost analysis, RSM with PB saves 65% of unscheduled electricity bills.
Hence, considering cost effectiveness, its value is 0.26. The UC was achieved by using RSM with BP
is 0.525+ 0.26 = 0.785. The total UC gain achieved with respect to unscheduled electric load is 0.785−
0.6 = 0.185 which is 0.104 units higher then UC achieved by BPSO scheduling. Figure 12 represents
comparative analysis of UC gain amongst unscheduled electric load usage, BPSO scheduling, RSM
scheduling and RSM with PB scheduling.
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Figure 12. User Comfort Gain: Unscheduled, BPSO, RSM and RSM with PB scheduling.

Impact of Sub-time slots on UC

Scheduling window of T time span allows appliance to be scheduled within 24 hour time. If
we apply constraints then it is possible that load shifting can be limited to some period of time
with respect to desired operational time of appliance. However, if this T hour time span is divided
into some logical partitions, having a specific group of appliances to be operational at each logical
sub-time slot, this limits the delay automatically. Hence, the resizing scheduling window changes the
pricing and appliance utility pattern, i.e., effects over all user comfort. For that purpose, we divide
T time span into two, three, four and six sub-time slots, respectively. The results of variations
regarding sub-time slots are expressed in Figure 13. Figure 13a refers to electricity bill comparison of
RSM with two, three, four and six equal sized sub-times slots within T time span, whereas, Figure
13b expresses impact of variations in sub-time slots by using RSM with PB.
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Figure 13. Impact of variation in sub-time slot size on electricity cost. (a) Cost analysis of RSM:
two, three, four and six sub-time slots; (b) Cost analysis of RSM with PB: two, three, four and six
sub-time slots.

Most economical is RSM having two sub-time slots as can be seen in Table 8. The longer the
scheduling window is, the lower the appliance utility will be. Mathematically, it can be stated
that scheduling window size and appliance utility are indirectly proportional to each other, i.e.,
schedulingwindowsize = 1/applianceutility The cost difference of RSM with three and four sub time
slots is minimal. The same is the case with the appliance utility function. However, logical division
of T into four sub-time slots gives a little more benefit on appliance utility which takes 60% of user
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comfort function. Calculating user comfort regarding two, three, four and six sub-time slots, we find
it to be 0.768, 0.762, 0.785 and 0.775 respectively. RSM(PB) with six sub-time slots and RSM(PB) with
four sub-time slots give a similar level of user comfort. Although there is a cost difference , keeping
weight of appliance utility as 60% gives minimal user comfort difference amongst the two. Taking a
parameter of maximum comfort gain, logical division of T time span into four equal sized sub-time
slots prove its worth with respect to two, three and six sub-time slots. Hence, to ensure optimal user
comfort value, we suggest a logical partition of T time span into four equal sized sub-time slots, each
having its own set of appliances to be scheduled. Moreover, if we further increase number of sub-time
slots, this will result in almost unscheduled load usage pattern.

Table 8. Analysing cost effectiveness of different sub-time slots ε T.

No of sub-Time Slots Size of sub-Time Slot RSM without PB RSM with PB User Comfort (With PB)

2 12 h 605PKR 433PKR 0.768
3 8 h 681PKR 445PKR 0.762
4 6 h 760PKR 498PKR 0.785
6 4 h 817PKR 548PKR 0.775

6.4. Installation costs and financial benefits

RSM is formulated focusing on minimal installation costs. This mechanism needs a group of
sensors, i.e., water level sensor for water tank, water temperature sensor for EWH, motion sensors for
HO and environmental temperature sensors for HVAC along with a processing unit that is capable
of generating schedules besides PB and PV generation system. The prices of the sensory parts are
negligible with respect to a PB and PV system. PB is an array of rechargeable batteries along with
a small scale PV system, therefore it is a major expense in the proposed scheme. Solar generation
systems have taken a keen interest in engineering industries in recent years. Massive production
of PV panels across the globe reduced the installation cost of such systems at the rate of about 45%
per year [29]. The installation cost of a 2KW PV system ranges between 150, 000 PKR to 200, 000
PKR, with a warranty of life time (20–25 years) offered by different vendors. To analyze investment
benefits, there is a widely accepted financial valuation technique, i.e., Cost Benefit Analysis (CBA).
The authors in [30] use Equation (33) to calculate Net Present Worth (NPW).

NPW =
K

∑
t=0

Ct

(1 + r)t (33)

where Ct refers to cash flow at time t, r stands for the discounted value while K is the life time of
installed PV system. [30] gives a brief overview of CBA regarding PV system ranging from 1KW to
3.50KW. PV module producers grantees 85% of the initial performance for 20 years, with a derating
factor of 0.5% per year for initial 8 years while 1.0% for next 12 years. [30] states that a system
comprises of 2.25 KW PV power generation suits optimally for residential purposes and offers better
NPW. Overall, the aggregated cost of sensory equipment ranges between 20, 000 PKR to 40, 000 PKR.
Using RSM without PB gives 39% cost benefits with respect to unscheduled load usage. Return of
investment will be in approximately 2.5 years considering upper bound of investment. RSM with PB
(that has capability of sharing 35% of the load) has a PV system of 2KWH along with two rechargeable
batteries (Vmaxslr125 [31]) connected in parallel. Batteries store power from PV during day time or
from a power producing company at low pricing hours if needed. Overall, the PB system including
inverter, batteries and PV panels ranges between 280, 000 PKR to 340, 000 PKR. RSM with PB offers
savings of 65% and at this rate of savings, the return of investment, taking upper bound of price, is
expected to be within approximately 2.4 years.
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7. Conclusion and Future Work

Energy consumption in such a manner that not only saves electricity cost but also elevates
appliance utility is the major concern in this work. To create a balance amongst cost effectiveness and
appliance utility, RSM with PB is proposed that gives UC gain of 0.185 with respect to unscheduled
load and 0.149 with respect to BPSO on a scale of 0 to 1. Dynamic threshold range for each mini-time
slot and sub-time slot is formulated that normalizes load during T time span. Such results are
achieved by classifying appliances effectively within their respective sub-time slot to raise appliance
utility and to minimize cost. These sub-time slots are scheduled with the respective set of appliances,
keeping cost minimization as an objective.

In this work, we assume that communication between control unit and smart appliances is
ideal, which in reality cannot be the case. In the future, we will use IEEE 802.15.4 standard for data
transmission.
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