Supplementary Materials: Zinc Porphyrins Possessing Three *p*-Carboxyphenyl Groups: Effect of the Donor Strength of Push-Groups on the Efficiency of Dye-Sensitized Solar Cells

Ram B. Ambre, Sandeep B. Mane and Chen-Hsiung Hung

Figure S1. Cyclic voltamograms of studied porphyrins ZN₁TH₃A, Zn₁TC₃A, Zn₁BC₃A, Zn₁OD₃A, Zn₁OH₃A, Zn₁NP₃A, Zn₁NH₃A, Zn₁NN₃A and Zn₁NN₃A.

1. Synthesis of 1D-π-3A Porphyrin Sensitizers.

The zinc porphyrins used in this study Zn₁TH₃A, Zn₁TC₃A, Zn₁BC₃A, Zn₁OD₃A, Zn₁OH₃A, Zn₁NP₃A, Zn₁NH₃A, Zn₁NN₃A, and Zn₁ND₃A were synthesized in three steps: (I) mixed condensation; (II) zinc metalation; and (III) base hydrolysis. The synthesis and characterization data of Zn₁NH₃A and Zn₁ND₃A is reported elsewhere. For detail synthetic procedures please follow our previous articles.

1.1. Mixed Condensation

Condensation of pyrrole, methyl 4-formylbenzoate, and the required aldehyde under Lindsey's conditions catalyzed by boron trifluoride-diethyl etherate followed by subsequent oxidation by DDQ afforded the triester derivatives of porphyrins in good yield along with mixture of five other porphyrins. The yields of the triester derivatives porphyrins 1TH3E, 1TC3E, 1BC3E, 1OD3E, 1OH3E, 1NP3E, and 1NN3E obtained from each separate reaction are reported in Table S1.

Product	R	Yield(%)	Product	R	Yield(%)
1TH3E	S C ₆ H ₁₃	2.26	10H3E	-C-OC ₆ H ₁₃	5.43
1TC3E	S-N tBu	4.96	1NP3E	C ₃ H ₇	6.65
1BC3E	-C-N tBu	5.31	1NN3E	C ₉ H ₁₉	3.50
10D3E	C ₁₂ H ₂₅ O O C ₁₂ H ₂₅	5.72			

1.2. Zn Metalation

The subsequent step of zinc metalation has been readily achieved in high yields by reacting free base porphyrin with zinc acetate. The yields of the zinc(II) porphyrins Zn₁TH₃E, Zn₁TC₃E, Zn₁BC₃E, Zn₁OD₃E, Zn₁OH₃E, Zn₁OH₃E, and Zn₁NN₃E are listed in Table S2. The success of zinc metalation of all the porphyrin was confirmed through the complete disappearance of the NMR resonance of inner NH with slight upfield shifts for all remaining protons. In ultraviolet visible (UV/Vis) spectra the zinc porphyrins shows single strong Soret band and two moderate Q bands.

Product	R	Yield(%)	Product	R	Yield(%)
Zn1TH3E	S C ₆ H ₁₃	83	Zn1OH3E	OC ₆ H ₁₃	81
Zn1TC3E	S-N tBu	97	Zn1NP3E		87
Zn1BC3E	-C-N tBu	97	Zn1NN3E	C ₉ H ₁₉	93
Zn1OD3E	C ₁₂ H ₂₅	90			

1.3. Hydrolysis

Hydrolysis of metal complexes has been achieved straightforwardly by reacting metal complexes in a mixture solution of THF and methanol with excess aqueous KOH. The yields of final hydrolyzed products Zn₁TH₃A, Zn₁TC₃A, Zn₁BC₃A, Zn₁OD₃A, Zn₁OH₃A, Zn₁NP₃A, and Zn₁NN₃A are listed in Table S3. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra of final acid products show shifting of carbonyl peaks in the range of 1675–1700 cm⁻¹ because of intermolecular hydrogen bonding. All of the porphyrins were fully characterized by optical spectroscopy, ATR-FTIR, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry.

Dye	R	Yield(%)	Dye	R	Yield(%)
Zn1TH3A	S C ₆ H ₁₃	99	Zn10H3A	OC ₆ H ₁₃	98
Zn1TC3A	S-N tBu	90	Zn1NP3A		99
Zn1BC3A	-C-N tBu	93	Zn1NN3A	C ₉ H ₁₉	97
Zn10D3A	C ₁₂ H ₂₅ O C ₁₂ H ₂₅	98			

2. Syntheses and Characterization Data

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-hexyl-2-thienyl)porphyrin (1TH3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.17 (d, *J* = 4.12 Hz, 2H), 8.79 (m, 6H), 8.44 (d, *J* = 7.7 Hz, 6H), 8.29 (d, *J* = 7.7 Hz, 6H), 7.71 (d, *J* = 3.2 Hz, 1H), 7.17 (d, *J* = 3.3 Hz, 1H), 4.11 (s, 9H), 3.12 (t, *J* = 7.6 Hz, 2H), 1.95 (*p*, *J* = 7.4 Hz, 2H), 1.61–1.59 (m, 2H), 1.48–1.40 (m, 4 H), 0.97 (t, *J* = 6.3 Hz, 3H), –2.73 (s, 2H); IR (Neat, cm⁻¹): 3315, 1719, 1606, 1434, 1270, 1177, 1099, 979, 962, 950, 796; λ _{abs}/nm (CH₂Cl₂): 422, 518, 556, 594, 648; HRMS-ESI calcd for C₅₄H₄₆N₄O₆S ([M+H]⁺): 879.3216, found 879.3269.

5,10,15-tris(4-methoxycarbonylphenyl)20-(3,6-di-tert-butyl-9-(thiophen-2-yl)-9H-carbazole)porphyrin (1TC3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.33 (d, *J* = 4.8 Hz, 2H), 8.92 (d, *J* = 4.8, 2H), 8.84 (s, 4H), 8.50–8.46 (m, 6H), 8.35–8.31 (m, 6H), 8.23 (d, *J* = 1.7 Hz, 2H), 7.97 (d, *J* = 3.6 Hz, 1H), 7.87 (d, *J* = 8.64 Hz, 2H), 7.69–7.66 (m, 2H), 7.61 (d, *J* = 3.6 Hz, 1H), 4.14 (s, 6H), 4.11 (s, 3H), 1.55 (s, 18H) –2.67 (s, 2H); IR (Neat, cm⁻¹): 3319, 1722, 1608, 1550, 1481, 1363, 1274, 1263, 1180, 1110, 975, 918, 875, 800, 763, 750; λ abs/nm (CH₂Cl₂): 421, 517, 554, 591, 650; HRMS-ESI calcd for C₆₈H₅₇N₅O₆S ([M+H]⁺): 1072.4108, found 1072.4142.

5,10,15-tris(4-methoxycarbonylphenyl)20-(3,6-di-tert-butyl-9-phenyl-9H-carbazole)porphyrin (1BC3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.04 (d, *J* = 4.8 Hz, 2H), 8.89 (d, *J* = 4.8, 2H), 8.84 (s, 4H), 8.48–8.46 (m, 6H), 8.42 (d, J = 8.2 Hz, 2H), 8.34–8.30 (m, 6H), 8.27 (d, J = 1.6 Hz, 2H), 8.00 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.65–7.62 (m, 2H), 4.13 (s, 9H), 1.55 (s, 18H), –2.73 (s, 2H); IR (Neat, cm⁻¹): 3314, 1721, 1609, 1517, 1467, 1370, 1271, 1103, 1056, 1029, 1019, 799, 762, 731; λ_{abs} /nm (CH₂Cl₂): 420, 516, 551, 591, 648; HRMS-ESI calcd for C₇₀H₅₉N₅O₆ ([M+H]⁺): 1066.4544, found 1066.4584.

5,10,15-tris(4-methoxycarbonylphenyl)20-(2,5-di-O-dodecyl phenyl) porphyrin (1OD3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.86 (d, *J* = 5.2 Hz, 2H), 8.81 (s, 4H), 8.75(d, *J* = 4.1 Hz,2H), 8.47–8.44 (m, 6H), 8.33–8.30 (m, 6H), 7.69 (t, *J* = 8.4Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H) 4.12 (s, 9H), 3.84 (t, *J* = 6.4 Hz,4H) 1.19–1.15 (m, 4H), 1.06–0.98 (m, 8H), 0.96–0.90 (m, 8H), 0.87–0.80 (m, 10H) 0.71–0.64 (m, 4H), 0.59–0.51 (m, 4H), 0.39–0.31 (m, 8H) –2.69 (s, 2H); IR (Neat, cm⁻¹): 3307, 1718, 1604, 1433, 1269, 1142, 1174, 1099, 1018, 9664, 796, 734; λ abs/nm (CH₂Cl₂): 420, 516, 551, 591, 640; HRMS-ESI calcd for C₇₄H₈₄N₄O₈ ([M+H]⁺): 1157.6367, found 1157.6366.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-O-hexyl phenyl) porphyrin (1OH3E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.92 (d, *J* = 4.8 Hz, 2H), 8.81–8.79 (m, 6H), 8.44 (d, *J* = 4.0 Hz, 6H), 8.31–8.29 (m, 6H) 8.10 (d, *J* = 8.4 Hz, 2H) 7.28 (*J* = 8.4 Hz, 2H), 4.25 (t, *J* = 6.4 Hz, 2H), 4.14 (s, 9H), 2.02–1.95 (m, 2H), 1.65–1.60 (m, 2H), 1.47–1.45 (m, 2H), 1.34–1.26 (m, 2H), 1.01–0.97 (m, 2 H), –2.77 (s, 2H); IR (Neat, cm⁻¹): 3307, 1718, 1604, 1433, 1269, 1142, 1174, 1099, 1018, 9664, 796, 734; λ abs/nm (CH₂Cl₂): 420, 516, 551, 591, 650; HRMS-ESI calcd for C₅₆H₄₈N₄O₇ ([M]⁺): 888.3523, found 888.3517.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-*N,N***-dipropylaniline) porphyrin (1NP3E).** mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.04 (d, *J* = 4.8 Hz, 2H), 8.78–8.75 (m, 6H), 8.45–8.24 (m, 6H) 8.31–8.28 (m, 6H) 8.03 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 4.13 (s, 6H), 4.11 (s, 3H), 3.50 (t, *J* = 7.6 Hz, 4H), 1.90–1.84 (m, 4H), 1.10–1.07 (m, 6H), –2.69 (s, 2H) ; IR (Neat, cm⁻¹): 3309, 1720, 1602, 1512, 1433, 1272, 1184, 1097, 1018, 960, 796, 734; λ _{abs}/nm (CH₂Cl₂): 415, 517, 571, 656; HRMS-ESI calcd for C₅₆H₄₉N₅O₆ ([M]⁺): 887.3683, found 887.3677.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-*N,N***-dinonylaniline) porphyrin (1NN3E).** 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.07 (d, *J* = 4.8 Hz, 2H), 8.80–8.79 (m, 6H), 8.47–8.46 (m, 6H), 8.33–8.30 (m, 6H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 4.13 (s, 6H), 4.12 (s, 3H), 3.52 (t, *J* = 7.6 Hz, 4H), 1.86 (m, 4H), 1.57–1.26 (m, 24H) 0.93–0.90 (m, 6H) –2.66 (s, 2H); IR (Neat, cm⁻¹): 3315, 1718, 1604, 1515, 1433, 1272, 1190, 1099, 1018, 962, 796, 736; λ _{abs}/nm (CH₂Cl₂): 415, 519, 572, 654; HRMS-ESI calcd for C₆₈H₇₃N₅O₆ ([M]⁺): 1055.5561, found 1055.5555.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-hexyl-2-thienyl)porphyrinato zinc(II) (Zn₁TH₃E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.27 (d, *J* = 4.7 Hz, 2H), 8.90 (d, *J* = 4.7 Hz, 2H), 8.88 (s, 2H), 8.41–8.38 (m, 6H), 8.29–8.27 (m, 6H), 7.70 (d, *J* = 3.3 Hz, 2H), 7.16 (d, *J* = 3.2 Hz, 2H), 4.07 (s, 6H), 3.12 (s, 3H), 3.12 (t, *J* = 7.6 Hz, 2H), 1.95 (*p*, *J* = 7.4 Hz, 2H), 1.59 (*p*, *J* = 7.2 Hz, 2H), 1.48–1.42 (m, 4 H), 0.96 (t, *J* = 6.3 Hz, 3H); IR (Neat, cm⁻¹): 1721, 1699, 1605, 1434, 1268, 1193, 1179, 1112, 1100, 997, 978; λ_{abs}/nm (CH₂Cl₂): 424, 552, 590 HRMS-MALDI-TOF calcd for C₅₄H₄₄N₄O₆₅Zn ([M+H]⁺): 941.2351, found 941.2350.

5,10,15-tris(4-methoxycarbonylphenyl)20-(3,6-di-tert-butyl-9-(thiophen-2-yl)-9H-

carbazole)porphyrinato zinc(II) (Zn₁TC₃E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.39 (d, *J* = 4.8 Hz, 2H), 8.97 (d, *J* = 4.8, 2H), 8.89 (s, 4H), 8.37–8.33 (m, 6H), 8.31–8.8.26 (m, 6H), 8.19 (d, *J* = 1.7 Hz, 2H), 7.96 (d, *J* = 3.5 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.62–7.59 (m, 2H), 7.59 (d, *J* = 3.6 Hz, 1H), 4.02 (s, 6H), 4.00 (s, 3H), 1.50 (s, 18H) ; IR (Neat, cm⁻¹): 1722, 1697, 1606, 1552, 1475, 1363, 1271, 1176, 1114, 1101, 1073, 995, 975, 910, 877, 808, 792, 761; λ_{abs} /nm (CH₂Cl₂): 424, 552, 595; HRMS-FAB calcd for C₆₈H₅₅N₅O₆SZn ([M+H]⁺): 1134.3243, found 1134.3274.

5,10,15-tris(4-methoxycarbonylphenyl)20-(3,6-di-tert-butyl-9-phenyl-9H-carbazole)porphyrinato zinc(II) (Zn₁BC₃E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.13 (d, *J* = 4.6 Hz, 2H), 8.98 (d, *J* = 4.7, 2H), 8.92 (s, 4H), 8.42 (d, *J* = 8.1 Hz, 2H), 8.40–8.36 (m, 6H), 8.33–8.29 (m, 6H), 8.26 (d, *J* = 1.4 Hz, 2H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.62–7.60 (m, 2H), 4.04 (s, 6H), 4.04 (s, 3H), 1.54 (s, 18H); IR (Neat, cm⁻¹): 1721, 1698, 1609, 1462, 1265, 1105, 1056, 998, 809, 762, 757; λ _{abs}/nm (CH₂Cl₂): 422, 549, 587; HRMS-FAB calcd for C₇₀H₅₇N₅O₆Zn ([M+H]⁺): 1128.3679, found 1128.3723. **5,10,15-tris(4-methoxycarbonylphenyl)20-(2,5-di-O-dodecyl phenyl) porphyrinato zinc (II)** (**Zn**₁**OD**₃**E**). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.93 (d, *J* = 4.8 Hz, 2H), 8.88 (s, 4H), 8.82(d, *J* = 4.4 Hz, 2H), 8.41–8.39 (m, 6H), 8.31–8.27 (m, 6H), 7.68 t (*J* = 8.4 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 4.08 (s, 6H), 4.07 (s, 3H), 3.83 (t, *J* = 6.4 Hz, 4H), 1.18–1.12 (m, 4H), 1.04–0.98 (m, 4H), 0.94–0.93 (m, 8H), 0.81–0.74 (m, 6H) 0.73–0.69 (m, 4H), 0.60–0.53 (m, 4H), 0.47–0.36 (m, 8H) 0.29–0.21 (m, 8H) ; IR (Neat, cm⁻¹): 1787, 1602, 1515, 1403, 1263, 1193, 990, 785, 762; λ abs/nm (CH₂Cl₂): 422, 550, 592; HRMS-ESI calcd for C₇₄H₈2N₄O₈Zn ([M]⁺): 1218.5424, found 1218.5424.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-O-hexyl phenyl) porphyrinato zinc (II) (Zn₁OH₃E). mp > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.02 (d, *J* = 4.8 Hz, 2H), 8.89–8.88 (m, 6H), 8.40 (d, *J* = 8.0 Hz, 6H), 8.30–8.28 (m, 6H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 4.8 Hz, 2H), 4.24 (t, *J* = 6.8 Hz, 2H), 4.07 (s, 9H), 2.01–1.94 (m, 2H), 1.67–1.59 (m, 4H), 1.00–0.97 (m, 3H), IR (Neat, cm⁻¹): 1722, 1604, 1433, 1271, 1176, 1099, 995, 819, 761, 713; λ_{abs} /nm (CH₂Cl₂): 422, 548, 588; HRMS-ESI calcd for C₅₆H₄₆N₄O₇Zn ([M]⁺): 950.2658, found 950.2652.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-*N,N***-dipropylaniline)** porphyrinato zinc (II) (Zn₁NP₃E). 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.14 (d, *J* = 4.8 Hz, 2H), 8.78–8.86 (m, 6H), 8.55–8.23 (m, 6H) 8.41–8.318 (m, 6H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 4.23 (s, 6H), 4.21 (s, 3H), 3.60 (t, *J* = 7.6 Hz, 2H), 1.94 (m, 4H), 1.20–1.17 (m, 6H) ; IR (Neat, cm⁻¹): 1710, 1600, 1433, 1269, 1182, 1101, 995, 815, 761, 713; λ _{abs}/nm (CH₂Cl₂): 418, 552, 601; HRMS-ESI calcd for C₅₆H₄₇N₅O₆Zn ([M]⁺): 949.2818, found 949.2812.

5,10,15-tris(4-methoxycarbonylphenyl)20-(4-*N,N***-dinonylaniline)** porphyrinato zinc (II) (Zn₁NN₃E). 300 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.15 (d, *J* = 4.8 Hz, 2H), 8.87–8.86 (m, 6H), 8.37–8.35 (m, 6H), 8.30–8.28 (m, 6H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 4.03 (s, 6H), 4.02 (s, 3H), 3.51 (t, *J* = 7.2 Hz, 4H), 1.82 (m, 4H), 1.45–1.40 (m, 8H), 1.38–1.31 (m, 16H), 0.97–0.87 (m, 6H); IR (Neat, cm⁻¹): 1722, 1604, 1434, 1272, 1190, 1107, 995, 819, 792, 763; λ_{abs} /nm (CH₂Cl₂): 417, 553, 600; HRMS-ESI calcd for C₆₈H₇₁N₅O₆Zn ([M]⁺): 1117.4696, found 1117.4690.

5,10,15-tris(4-carboxylphenyl)20-(4-hexyl-2-thienyl)porphyrinato zinc(II) (Zn₁TH₃A). mp > 300 °C; ¹H NMR (400 MHz, DMSO-D₆) δ = 13.22 (s, 3H), 9.05 (d, *J* = 4.6 Hz, 2H), 8.76–8.26 (m 6H), 8.36–8.33 (m, 6H), 8.28–8.26 (m, 6H), 7.70 (d, *J* = 3.2 Hz, 2H), 7.25 (d, *J* = 3.2 Hz, 2H), 3.09 (t, *J* = 7.5 Hz, 2H), 1.89 (*p*, *J* = 7.5 Hz, 2H), 1.55 (*p*, *J* = 7.3 Hz, 2H), 1.59–1.51 (m, 4 H), 0.93 (t, *J* = 6.9 Hz, 3H); IR (Neat, cm⁻¹): 3352, 1683, 1602, 1408, 1337, 1313, 1268, 1204, 1071, 997, 872; λ_{abs}/nm (THF), ($\epsilon/10^3 M^{-1} \cdot cm^{-1}$): 427 (350), 558 (18), 600 (9); λ_{em}/nm (THF): 612, 656; HRMS-FAB calcd for C₅₁H₃₈N₄O₆SZn ([M⁺]): 898.1804, found 898.1802, EA calcd for C₅₁H₃₈N₄O₆SZn: C 68.04%, H 4.25%, N 6.22%; found C 68.12%, H 4.29%, N 6.11%.

5,10,15-tris(4-carbonylphenyl)20-(3,6-di-tert-butyl-9-(thiophen-2-yl)-9H-carbazole)porphyrinato zinc(II) (Zn₁TC₃A). mp > 300 °C; ¹H NMR (400 MHz, DMSO-D₆) δ = 13.25 (s, 3H), 9.30 (d, *J* = 4.7 Hz, 2H), 8.87 (d, *J* = 4.7, 2H), 8.79 (s, 4H), 8.38–8.36 (m, 6H), 8.40 (s, 2H), 8.34–8.30 (m, 6H), 8.07 (d, *J* = 3.5 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.81 (d, *J* = 3.6 Hz, 1H), 7.68–7.65 (m, 1H), 1.47 (s, 18H); IR (Neat, cm⁻¹): 1722, 1606, 1550, 1485, 1363, 1276, 1263, 1178, 1110, 1020, 975, 948, 800, 750; λ_{abs}/nm (THF), ($\epsilon/10^3$ M⁻¹·cm⁻¹): 426 (409), 558 (17), 599 (6); λ_{em}/nm (THF): 605, 654; HRMS-FAB calcd for C₆₅H₄₉N₅O₆SZn ([M+H]⁺): 1092.2773, found 1092.2803, EA calcd for C₆₅H₄₉N₅O₆SZn: C 71.39%, H 4.52%, N 6.40%; found C 71.47%, H 4.45%, N 6.11%.

5,10,15-tris(4-carbonylphenyl)20-(3,6-di-tert-butyl-9-phenyl-9H-carbazole)porphyrinato zinc(II) (Zn₁BC₃A). mp > 300 °C; ¹H NMR (400 MHz, DMSO-D₆) δ = 13.46 (s, 3H), 9.03 (d, *J* = 4.5 Hz, 2H), 8.87 (d, *J* = 4.6, 2H), 8.82 (s, 4H), 8.44 (d, *J* = 8.1 Hz, 2H), 8.41 (m, 2H), 8.40–8.37 (m, 6H), 8.34–8.30 (m, 6H), 8.26 (d, *J* = 1.4 Hz, 2H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.65–7.62 (m, 2H), 1.54 (s, 18H); IR (Neat, cm⁻¹): 1687, 1604, 1509, 1481, 1362, 1271, 126, 1053, 1037, 995, 799, 759, 749; λ _{abs}/nm (THF), (ϵ /10³ M⁻¹ cm⁻¹): 426 (452), 557 (19), 598 (7); λ _{em}/nm (THF): 606, 658; HRMS-FAB calcd for C₆₇H₅₁N₅O₆Zn: C 74.00%, H 4.73%, N 6.44%; found C 68.12%, H 4.29%, N 6.11%. **5,10,15-tris(4-carbonylphenyl)20-(2,5-di-O-dodecyl phenyl) porphyrinato zinc (II) (Zn1OD₃A).** mp > 300 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO-D₆) δ = 13.24 (s, 3H) 8.75 (s, 4H), 8.71 (d, *J* = 4.8 Hz, 2H), 8.67 (d, *J* = 4.4 Hz, 2H), 8.36–8.34 (m, 6H), 8.27–8.24 (m, 6H) 7.64 (t, *J* = 8.4 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 2H), 3.80 (t, *J* = 6.4 Hz, 4H) 1.18–1.12 (m, 8H), 1.06–0.97 (m, 8H), 0.98–0.76 (m, 10 H), 0.70–0.66 (m, 4H) 0.59–0.56 (m, 4H), 0.36–0.32 (m, 4H), 0.22–0.19 (m, 4H) ; IR (Neat, cm⁻¹): 1789, 1604, 1454, 1417, 1272, 1095, 995, 794, 763, 717; λ_{abs} /nm (THF), (ε/10³ M⁻¹·cm⁻¹): 426 (391), 557 (18), 597 (7); λ_{em} /nm (THF): 605, 657; HRMS-ESI calcd for C₇₁H₇₆N₄O₈Zn ([M]⁺): 1176.4955, found 1176.4955, EA calcd for C₇₁H₇₆N₄O₈Zn: C 72.34%, H 6.50%, N 4.75%; found C 72.23%, H 6.57%, N 4.71%.

5,10,15-tris(4-carbonylphenyl)20-(4-O-hexyl phenyl) porphyrinato zinc (II) (Zn₁OH₃A). 300 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO-D₆) δ = 12.90 (s, 3H), 8.85 (d, *J* = 4.8 Hz, 2H), 8.77–8.75 (m, 6H), 8.34 (d, *J* = 8.0 Hz, 6H), 8.24 (d, *J* = 8.0 Hz, 6H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 4.20 (t, *J* = 6.4 Hz, 2H), 1.44–1.40 (m, 2H), 1.59–1.54 (m, 2H), 1.44–1.40 (m, 4H), 0.96–0.92 (m, 3H); IR (Neat, cm⁻¹): 1691, 1602, 1506, 1400, 1271, 1174, 1099, 991, 790, 765; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹·cm⁻¹): 426(471), 557(18), 597(7); λ_{em} /nm (THF): 607, 656; HRMS-ESI calcd for C₅₃H₄₀N₄O₇Zn ([M]⁺): 908.2188, found 908.2182, EA calcd for C₅₃H₄₀N₄O₇Zn: C 69.93%, H 4.43%, N 6.15%; found C 70.12%, H 4.39%, N 5.98%.

5,10,15-tris(4-carbonylphenyl)20-(4-*N,N***-dipropylaniline) porphyrinato zinc (II) (Zn₁NP₃A).** 300 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO-D₆) δ = 12.93 (s, 3H), 8.96 (d, *J* = 4.4 Hz, 2H), 8.76–8.74 (m, 6H), 8.36–8.233(m, 6H), 8.26–8.24 (m, 6H), 7.94 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.48 (t, *J* = 6.4 Hz, 4H), 1.84–1.78 (m, 4H), 1.06–1.03 (m, 6H); IR (Neat, cm⁻¹): 1682, 1600, 1515, 1415, 1272, 1195, 1091, 993, 794, 763, 750; λ_{abs} /nm (THF), (ϵ /10³ M⁻¹·cm⁻¹): 426 (248), 560 (18), 604 (11); λ_{em} /nm (THF): 621; HRMS-ESI calcd for C₅₃H₄₁N₅O₆Zn ([M]⁺): 907.2348, found 907.2342, EA calcd for C₅₃H₄₁N₅O₆Zn: C 70.01%, H 4.54%, N 7.70%; found C 69.91%, H 4.60%, N 7.79%.

5,10,15-tris(4-carbonylphenyl)20-(4-*N,N***-dinonylaniline) porphyrinato zinc (II) (Zn₁NN**₃**A)**. 300 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO-D₆) δ = 12.66 (s, 3H), 8.96 (m, 2H), 8.75 (m, 6H), 8.34–8.32 (m, 6H), 8.21 (m, 6H), 7.93–7.92 (m, 2H), 6.94–6.85 (m, 2H), 3.47 (m, 4H), 1.76 (m, 4H), 1.40–1.14 (m, 24H); I0.83– 0.82 (m 6H); IR (Neat, cm⁻¹): 1684, 1604, 1434, 1270, 1188, 1110, 997, 821, 795, 769; λ_{abs} /nm (THF), (ϵ /10³ M^{-1.}cm⁻¹): 425 (143), 560 (12), 603 (8); λ_{em} /nm (THF): 624; HRMS-ESI calcd for C₆₅H₆₅N₅O₆Zn ([M]⁺): 1075.4226, found 1075.4220, EA calcd for C₆₅H₆₅N₅O₆Zn: C 72.45%, H 6.08%, N 6.50%; found C 72.41%, H 7.94%, N 6.51%.

Figure S2. Nuclear magnetic resonance (NMR) and spectrum of 1TH3E.

Figure S3. High resolution mass spectrometer (HRMS) of 1TH3E.

Figure S5. HRMS of 1TC3E.

Figure S6. NMR spectrum of 1BC3E.

Figure S7. HRMS of 1BC3E.

Figure S8. NMR spectrum of 10D3E.

Figure S9. HR-MS of 10D3E.

Figure S10. NMR spectrum of 1OH3E.

Figure S11. HR-MS of 1OH3E.

Figure S12. NMR spectrum of 1NP3E.

Figure S13. HRMS of 1NP3E.

Figure S14. NMR spectrum of 1NN3E.

Figure S15. HRMS of 1NN3E.

Figure S16. NMR spectrum of Zn1TH3E.

Figure S17. HRMS of Zn1TH3E.

Figure S18. NMR spectrum of Zn1TC3E.

Figure S19. HRMS of Zn1TC3E.

Figure S20. NMR spectrum of Zn1BC3E.

Figure S21. HRMS of Zn1BC3E.

Figure S22. NMR spectrum of Zn1OD3E.

Figure S23. HRMS of Zn1OD3E.

Figure S24. NMR spectrum of Zn1OH3E.

Figure S25. HRMS of Zn1OH3E.

Figure S26. NMR spectrum of Zn1NP3E.

Figure S27. HRMS of Zn1NP3E.

Figure S28. NMR spectrum of Zn1NN3E.

Figure S29. HRMS of Zn1NN3E.

Figure S30. NMR spectrum of Zn1TH3A.

Figure S31. HRMS of Zn1TH3A.

Figure S32. NMR spectrum of Zn1TC3A.

Figure S33. HRMS of Zn₁TC₃A.

Energies 2016, 9, 513; doi:10.3390/en9070513

Figure S34. NMR spectrum of Zn1BC3A.

Figure S35. HRMS of Zn₁BC₃A.

Figure S36. NMR spectrum of Zn1OH3A.

Figure S37. HRMS of Zn1OD₃A.

Figure S38. NMR spectrum of Zn1OH3A.

Figure S39. HRMS of Zn1OH₃A.

Figure S40. NMR spectrum of Zn1NP3A.

Figure S41. HRMS of Zn1NP3A.

Figure S42. NMR spectrum of Zn1NN3A.

Figure S43. HRMS of Zn1NN3A.