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Abstract: This work uses the adjoint sensitivity model of the counter-flow cooling tower derived
in the accompanying PART I to obtain the expressions and relative numerical rankings of the
sensitivities, to all model parameters, of the following model responses: (i) outlet air temperature;
(ii) outlet water temperature; (iii) outlet water mass flow rate; and (iv) air outlet relative humidity.
These sensitivities are subsequently used within the “predictive modeling for coupled multi-physics
systems” (PM_CMPS) methodology to obtain explicit formulas for the predicted optimal nominal
values for the model responses and parameters, along with reduced predicted standard deviations for
the predicted model parameters and responses. These explicit formulas embody the assimilation of
experimental data and the “calibration” of the model’s parameters. The results presented in this work
demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values
that are smaller than either the computed or the experimentally measured ones, even for responses
(e.g., the outlet water flow rate) for which no measurements are available. These improvements stem
from the global characteristics of the PM_CMPS methodology, which combines all of the available
information simultaneously in phase-space, as opposed to combining it sequentially, as in current
data assimilation procedures.

Keywords: adjoint sensitivity analysis; data assimilation; model calibration; best-estimate predictions;
reduced predicted uncertainties

1. Introduction

In the present work, the predictive modeling of the counter-flow cooling tower presented in [1]
is further developed by applying the “predictive modeling for coupled multi-physics systems”
(PM_CMPS) methodology recently developed in [2]. The PM_CMPS methodology constructs a
prior distribution for the parameters and responses by using all of the available computational
and experimental information, and by relying on the maximum entropy principle to maximize
the impact of all available information and minimize the impact of ignorance. Subsequently, the
PM_CMPS methodology [2] constructs formally the posterior distribution using Bayes’ theorem,
and then evaluates asymptotically, to first-order sensitivities, the posterior distribution using the
saddle-point method to obtain explicit formulas for the predicted optimal nominal values for the
model responses and parameters, along with reduced predicted uncertainties (i.e., reduced predicted
standard deviations) for the predicted model parameters and responses. The PM_CMPS methodology
has been successfully applied to the analysis of large-scale experiments and the experimental validation
of reactor design codes of interest to reactor physics [3,4], light water reactors [5] and sodium-cooled
fast reactors [6].
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The PM_CMPS methodology relies fundamentally on the sensitivities to model parameters of the
measured model responses, which, in this work, are as follows: (i) the outlet air temperature; (ii) the
outlet water temperature; (iii) the outlet water mass flow rate; and (iv) the air outlet relative humidity.
The expressions, numerical results, and relative rankings of the sensitivities of these responses are
presented in Section 2.1. These sensitivities are subsequently used in Section 2.2 for assimilating
experimental data in order to “calibrate” the model parameters, and for obtaining best-estimate
predicted results with reduced predicted uncertainties. Section 3 concludes this work by discussing the
significance of the results presented herein in the context of ongoing work aimed at further applications
and generalization of the adjoint sensitivity analysis and PM_CMPS methodologies.

2. Results

It has been shown in the accompanying PART I [1] that the total sensitivity of a model response
R (my, Ty, Ta, w; &) to arbitrary variations in the model’s parameters da = (a1, ..., day, ) and state
functions émy,, 6Ty, 0T,;, dw, around the nominal values (mgu, Tgu, Tg, WY txo) of the parameters
and state functions, is provided by the G-differential of the model’s response to these variations. This
G-differential was denoted as DR (m?u, Tg,, Tg, WY a9 Smy, 0Ty, 0T, dw; (5&), and was expressed
in terms of the adjoint sensitivity functions as follows:

N,
& (9R
DR (mg{)/ T(z){)/ T(u)/ wO/ ‘XO; (SmH)/ §TZU/ 5Tur 5(‘]/ 5“) = 2 <a§al) + DRindirectr (1)
i=1 i
where the so-called “indirect effect” term, DR;yjirect, is given by:
DRiygirect =t Q1+ Tw - Q2+ T, Q3 +0-Q4 )

and where the vector [, Tw, Tz, 0] is the solution of the following adjoint sensitivity system:

AP A} AY AL\ [ me R,
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D D, D; D/ o R,

(1) )

Furthermore, the sources Ry = (rg Seen, rél ) , £ =1,2,3,4, for the adjoint sensitivity system

represented by Equation (3) are the functional derivatives of the model responses with respect to the
state functions, i.e.:

L= OR i OR @ _ OR @ _ OR

PoamtY R T art)T T arl T el

i=1,...,1 @)

while the components of the vectors Q, = (q?),. . .,qél)) , £ = 1,2,3,4, in Equation (2) are the

derivatives of the model’s equations with respect to model parameters, namely:

. Ny aN(Z)
M:Z( £ &x]-);i:1,...,1;e:1,2,3,4. 5)
=\ o

The explicit expressions of the vectors Q;, = (qél), . ..,qfﬁ) , £ = 1,2,3,4 are provided in

Appendix A. The model responses of interest in this work are the following quantities: (i) the outlet air

temperature, Tﬂ(1> ; (ii) the outlet water temperature, TZE,SO) ; (iii) the outlet water flow rate, mgf 0) ; and

(iv) the outlet air relative humidity, RH(1). Except for the water outlet flow rate mT(ﬂS 0), these responses
have been measured experimentally [7,8], and the first four moments of their respective statistical

distributions have been quantified in [1].
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2.1. Sensitivity Analysis Results and Rankings

As has been discussed in the accompanying PART I [1], there are a total of 8079 measured
benchmark data sets for the cooling tower model with the “fan-on,” with a drafted air exit velocity
at 10 m/s at the shroud. For this velocity (and corresponding air flow rate), the Reynolds number
is around 4500, which means that the flow within the cooling tower is in the “transitional flow and
heat transfer” regime. As has also been discussed in [1], 7668 benchmark data sets (out of the total
of 8079 data sets) are considered to correspond to the “unsaturated conditions” which are analyzed
in this work. The nominal values for boundary and atmospheric conditions used in this work were
obtained, as described in [1], from the statistics of these 7668 benchmark data sets corresponding to
“unsaturated conditions.” In turn, these “unsaturated” boundary and atmospheric conditions were
used to obtain the sensitivity results reported, below, in this Subsection. Sub-subsections 2.1.1 through
2.1.4, below, provide the numerical values and rankings, in descending order, of the relative sensitivities

computed using the adjoint sensitivity analysis methodology for the four model responses Ta(l), TZ(USO),

mz(f % and RH(. Note that the relative sensitivity, RS («;), of a response R (&;) to a parameter «; is
defined as RS («;) = [dR («;) /dw;] [a;/R («;)]. Thus, the relative sensitivities are unit-less and are very
useful in ranking the sensitivities to highlight their relative importance for the respective response.
Thus, a relative sensitivity of 1.00 indicates that a change of 1% in the respective parameter will induce
a 1% change in a response that is linear in the respective sensitivity. The higher the relative sensitivity,
the more important the respective parameter to the respective response.

2.1.1. Relative Sensitivities of the Outlet Air Temperature, Ta(l)

The sensitivities of the air outlet temperature with respect to all of the model’s parameters
have been computed using Equations (1) and (2). The numerical results and ranking of the relative
sensitivities, in descending order of their magnitudes, are provided in Table 1 below, along with their
respective relative standard deviations.

Table 1. Ranked relative sensitivities of the outlet air temperature Ta(l).

Relative Sensitivity Relative Standard

Rank # Parameter («;) Nominal Value

RS («;) Deviation (%)

1 Inlet air temperature, T, 299.11K 0.4858 1.39
2 Air temperature (dry bulb), T4 299.11 K 0.4829 1.39
3 Inlet water temperature, Ty, 298.79 K 0.2756 0.57
4 Dew point temperature, Ty, 292.05 K 0.1834 0.81
5 Pys(T) parameter, ag 25.5943 —0.0945 0.04
6 Pys(T) parameter, a; —5229.89 0.0618 0.08
7 Inlet air humidity ratio, w;, 0.0138 0.0100 14.93
8 Fan shroud inner diameter, D, 41m —0.0056 1.00
9 Water enthalpy h¢(T) parameter, a;f 4186.51 0.0050 0.04
10 Wetted fraction of fill surface area, w;s, 1.0 —0.0049 0.00
11 Nusselt number, Nu 14.94 —0.0049 34.0
12 Fill section surface area, Aguf 14221 m? —0.0049 25.0
13 Dynamic viscosity of air at T = 300 K, p 1.983 x 10~° kg/(m-s) 0.0045 4.88
14 Nu parameter, a; Ny 0.0031498 —0.0045 31.75
15 Reynolds number, Rey 4428 —0.0045 15.17
16 Fill section flow area, Ay 67.29 m? 0.0045 10.0
17 Cpa(T) parameter, ao,q,;Z 1030.5 0.0032 0.03
18 Inlet water mass flow rate, 1, 44.02kg/s 0.0031 5.0
19 hg(T) parameter, agg 2005744 —0.0030 0.05
20 D,y (T) parameter, ay 44, 2.65322 0.0028 0.11
21 Exit air speed at the shroud, V. 10.0 m/s —0.0028 10.0
22 Inlet air mass flow rate, m, 155.07 kg/s —0.0028 10.26
23 Heat transfer coefficient multiplier, fj, 1.0 —0.0026 50.0
24 Thermal conductivity of air at T = 300 K, k,; 0.02624 W/(m-K) —0.0026 6.04
25 Mass transfer coefficient multiplier, f,; 1.0 —0.0022 50.0
26 Sherwood number, Sh 14.13 —0.0022 34.25
27 D,y (T) parameter, a2 du —6.1681 x 1073 —0.0019 0.37
28 h¢(T) parameter, aq —1,143,423 —0.0017 0.05
29 D, (T) parameter, ag g 7.06085 x 10~° —0.0015 0
30 Atmospheric pressure, Py 100,586 Pa —0.0013 0.40
31 Kinematic viscosity of air at 300 K, v 1.568 x 107> m?/s —0.00074 12.09
32 Prandlt number of air at T =80 C, Pr 0.708 0.00074 0.71
33 Schmidt number, Sc¢ 0.60 —0.00074 12.41
34 hg(T) parameter, a;¢ 1815.437 —0.00074 0.19
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Table 1. Cont.

Rank # Parameter («;) Nominal Value Relatl;z{es ?‘:vauy R%aet‘ll;’:tis;;‘}od&a)rd
35 D,y (T) parameter, a3 44, 6.55265 x 107° 0.00063 0.58
36 Nu parameter, a Ny 0.9902987 —0.00032 33.02
37 Fill section equivalent diameter, Dj, 0.0381 m 0.00032 1.0
38 Cpa(T) parameter, a1,¢q —0.19975 —0.00018 1.0
39 Cpa (T) parameter, a; oy 39734 x 1074 0.00010 0.84
40 Sum of loss coefficients above fill, kg, 10.0 0.000 50.0
41 Fill section frictional loss multiplier, f 4.0 0.000 50.0
42 Nu parameter, ag ny 8.235 0.000 25.0
43 Nu parameter, a3 Ny 0.023 0.000 38.26
44 Cooling tower deck width in x-dir, Wy, 85m 0.000 1.0
45 Cooling tower deck width in y-dir, W, 8.5m 0.000 1.0
46 Cooling tower deck height above ground, Az 10.0 m 0.000 1.0
47 Fan shroud height, Az, 3.0m 0.000 1.0
48 Fill section height, Az 2.013m 0.000 1.0
49 Rain section height, Az, 1.633 m 0.000 1.0
50 Basin section height, Az, 1.168 m 0.000 1.0
51 Drift eliminator thickness, Az, 0.1524 m 0.000 1.0
52 Wind speed, V, 1.80m/s 0.000 51.1

As the results in Table 1 indicate, the first five parameters (i.e., Ty in, Tap, Tw,in, Tap, d0) have
relative sensitivities between ca. 10% and 50%, and are therefore the most important for the air outlet

temperature response, T[Sl). The two largest sensitivities have values of 48%, which means that a 1%

change in T, ;,, or Tz, would induce a 0.48% change in T[Sl). The next two parameters (i.e., a1 and w;;,)
have relative sensitivities between 1% and 6%, and are therefore somewhat important. Parameters #8
through #16 (i.e., Do, a1f, Wisa, Nu, Aswf, W, a1 Nu, Reg, Aﬁ”) have relative sensitivities of the order
of 0.5%. The remaining 36 parameters are relatively unimportant for this response, having relative
sensitivities smaller than 1% of the largest relative sensitivity (with respect to T, ;,,) for this response.
Positive sensitivities imply that a positive change in the respective parameter would cause an increase
in the response, while negative sensitivities imply that a positive change in the respective parameter
would cause a decrease in the response.

2.1.2. Relative Sensitivities of the Outlet Water Temperature, ng,SO)

The results and ranking of the relative sensitivities of the outlet water temperature with respect to
the most important 12 parameters for this response are listed in Table 2.

Table 2. Most important relative sensitivities of the outlet water temperature, T75,50).

Rank # Parameter («;) Nominal Value Relatl]w;es ?;ISIHVIW R%aet‘ll\iraetis(’t:rzodA)a)rd
1 Dew point temperature, Ty, 292.05K 0.5482 0.81
2 Inlet air temperature, T 299.11K 0.2318 1.39
3 Air temperature (dry bulb), Ty 299.11K 0.2244 1.39
4 Pys(T) parameters, ap 25.5943 —0.1949 0.04
5 Pys(T) parameters, a; —5229.89 0.1282 0.08
6 Inlet water temperature, T, 298.79 K 0.1066 0.57
7 Inlet air humidity ratio, w;, 0.0138 0.0299 14.93
8 Fan shroud inner diameter, Dy, 41m —0.0085 1.00
9 Water enthalpy hf(T) parameter, a;f 4186.51 0.0082 0.04
10 Da.y(Tab) parameter, aq 440 2.653 0.0071 0.11
11 Enthalpy hg(T) parameter, agq 2,005,744 —0.0062 0.05
12 Sherwood number, Sh 14.13 —0.0056 34.25

T(50)

The largest sensitivity of is to the parameter Ty, and has the value of 0.548; this means

that a 1% increase in T3, would induce a 0.548% increase in TZE,SO). The sensitivities to the remaining
40 model parameters have not been listed since they are smaller than 1% of the largest sensitivity
(with respect to Ty,) for this response.

2.1.3. Relative Sensitivities of the Outlet Water Mass Flow Rate, mz(f 0)

The results and ranking of the relative sensitivities of the outlet water mass flow rate with respect
to the most important 10 parameters for this response are listed in Table 3. This response is most
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sensitive to my,;, (a 1% increase in this parameter would cause a 1.01% increase in the response) and
the second largest sensitivity is to the parameter T, ;, (a 1% increase in this parameter would cause a
0.447% decrease in the response). The sensitivities to the remaining 42 model parameters have not been
listed since they are smaller than 1% of the largest sensitivity (with respect to m1,,,,) for this response.

Table 3. Most important relative sensitivities of the outlet water mass flow rate, mz<05 0,

Relative Sensitivity Relative Standard

Rank # Parameter («;) Nominal Value

RS(x;) Deviation (%)
1 Inlet water mass flow rate, 11y, 44.02kg/s 1.0060 5.00
2 Inlet water temperature, T, 298.79 K —0.4474 0.57
3 Dew point temperature, Ty, 292.05 K 0.3560 0.81
4 Pvs(T) parameters, ag 25.5943 —0.1416 0.04
5 Air temperature (dry bulb), Ty, 299.11 K —0.1184 1.39
6 Inlet air temperature, T, i, 299.11 K —0.1134 1.39
7 Pvs(T) parameters, a; —5229.89 0.0930 0.08
8 Inlet air humidity ratio, w;, 0.0138 0.0195 14.93
9 Fan shroud inner diameter, Dy, 41m —-0.0117 1.00
10 Inlet air mass flow rate, m, 155.07 kg/s —0.0058 10.26

2.1.4. Relative Sensitivities of the Outlet Air Relative Humidity, RH O

The results and ranking of the relative sensitivities of the outlet air relative humidity with respect
to the most important 20 parameters for this response are listed in Table 4. The first three sensitivities
of this response are quite large (relative sensitivities larger than unity are customarily considered to be
very significant). In particular, an increase of 1% in T, ;, or Tz, would cause a decrease in the response
of 6.66% or 6.525%, respectively. On the other hand, an increase of 1% in Ty, would cause an increase
of 5.75% in the response. The sensitivities to the remaining 32 model parameters have not been listed
since they are smaller than 1% of the largest sensitivity (with respect to T, ;) for this response.

Table 4. Most important relative sensitivities of the outlet air relative humidity, RH®D,

Relative Sensitivity Relative Standard

Rank # Parameter («;) Nominal Value

S (a;) Deviation (%)
1 Inlet air temperature, T, 299.11K —6.660 1.39
2 Air temperature (dry bulb), Ty, 299.11 K —6.525 1.39
3 Dew point temperature , Ty, 292.05K 5.750 0.81
4 Inlet water temperature, Ty i, 298.79 K 0.747 0.57
5 Inlet air humidity ratio, w;, 0.0138 0.3141 1493
6 Pys(T) parameters, ag 25.5943 —0.3123 0.04
7 Wetted fraction of fill surface area, wys, 1.0 0.1487 0.00
8 Fill section surface area, Ag,f 14,221 m? 0.1487 25.0
9 Nusselt number, Nu 14.94 0.1487 34.0
10 Dynamic viscosity of airat T=300K, 1.983 x 10~° kg/(ms) —0.1388 4.88
11 Nu parameters, a1 ny 0.0031498 0.1388 31.75
12 Fill section flow area, Agy; 67.29 m? —0.1388 10.0
13 Reynold’s number, Re 4428 0.1388 15.17
14 D.v(Tab) parameter, a4 gz 2.65322 —0.1297 0.11
15 Mass transfer coefficient multiplier, f,; 1.0 0.1023 50.0
16 Sherwood number, Sh 14.13 0.1023 34.25
17 Atmosphere pressure, Py, 100,586 Pa 0.0992 0.40
18 Day(Tap) parameter, a2 4eo —6.1681 x 1073 0.0902 0.37
19 Day (Tay) parameter, 4o e 7.06085 x 10~° 0.0682 0.00
20 Pys(T) parameters, a —5229.89 0.0681 0.08

Overall, the outlet air relative humidity, RH), displays the largest sensitivities, so this
response is the most sensitive to parameter variations. The other responses, namely the outlet air
temperature, the outlet water temperature, and the outlet water mass flow rate display sensitivities of
comparable magnitudes.

2.2. Experimental Data Assimilation, Model Calibration and Best-Estimate Predicted Results with Reduced
Predicted Uncertainties

This subsection presents the results of applying the Predictive Modeling of Coupled Multi-Physics
Systems (PM_CMPS) methodology [2] to the counter-flow cooling tower model. The PM_CMPS
methodology [2] encompasses into a unified conceptual and mathematical framework, the concepts of
both “forward” and “inverse” modeling, including data assimilation, model calibration and prediction
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of best-estimate values for model parameters and responses, with reduced predicted uncertainties.
For the simplest case of a single computational model, such as the counter-flow cooling tower model
analyzed in this work, the PM_CMPS methodology considers the following a priori information:

1. A model comprising N, imprecisely known system (model) parameters, «;, considered as the
components of a (column) vector, «, defined as:

o ={ayln=1,..., Nu} (6)

The mean values of the model parameters &, are denoted as &) = (a,), and the covariances

between two parameters «; and «; are denoted as Cov(oci,ocg). The mean values a)) are considered to be
known a priori, so that the vector o, defined as «¥ = {ocn ]n =1,..., N,x} is considered to be known

a priori. The covariances cov(a;,«;) are also considered to be a priori known; these covariances are

considered to be the elements of the a priori known parameter covariance matrix, denoted as Cgl;[“ Na)

and defined as:

CNuxNa) — [cov (‘xi’“f)]NaxNa = <(1Xi —oc?) (aj _“?)>Na><l\la; i,j=1,..., Ny (7)

2. Also associated with the model are N, experimentally measured responses, r;, considered to be
components of the column vector:

r={rli=1,...,Ny} ®)

The mean values, denoted as r;-", of the measured responses, 7;, and the covariances, denoted as

((ri =r")(rj — r]’.”)>, between two measured responses, r; and 7/, are also considered to be known a

riori. The mean measured values 7" will be considered to constitute the components of the vector r”"
1

defined as:

" ={r"i=1,... N}, t'"={(r;),i=1,...,N,, 9)
and the covariances ((r; — r}")(r; — r]'”)> of the measured responses are considered to be components
of the a priori known measured covariance matrix, denoted as Cg\]'XN'), and defined as:

Ny xN;) __ ..

C£r ) = <(ri—rlm) (r]-—r]’-”)>erNr, i,j=1,...,N;. (10)

3. In the most general case, correlations may also exist among all parameters and responses.

Such correlations are quantified through a priori known parameter-response matrices, denoted as

C(Ir\IaXNr)

o , and defined as follows:

C,(XIV\]“XN’) = <(o¢ — aco) (r— rm)+> = {C&,I:]’XN"‘)} i (11)

To keep the notation simple, the dimensions of the various vectors and matrices will not be shown
in subsequent formulas. For a single multi-physics system, as is the case of the cooling tower model
under consideration in this work, the quantities predicted by the PM_CMPS methodology [2] are
as follows:

A.  Optimally predicted “best-estimate” nominal values, o”"*?, for the model parameters:
Pl = 40 — (Cy Sy — Car) [Drr] " [rc (ao, ﬁ°> - rm] ) (12)
where the matrix D,, is defined as:

Drr = ST’(XCIXD(S;—’:( - Sraczxr - C;}S;& + Crrr (13)
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and the components of the matrix 552’ rxNa) are the first-order sensitivities (i.e., functional

derivatives) of all responses with respect to all model parameters, defined as follows:

o .. 9
dug N,
SN N = S ; . (14)
al’N’, . al’N’,
aDé] alJ(Na,

It is important to note that the first term on the right side of Equation (13) is the covariance
matrix of the computed responses, C;, , when only the first-order sensitivities are taken into
account, i.e.:

C;gmp = Smczxtxsrt(- (15)

B.  Reduced predicted uncertainties, ngfd, for the predicted nominal parameter values, given by
the expression below:

d _
CZZG =Cuy — (mes;:‘ - Car) [Drr] ! (CIXD(S;:( - Cacr)+} (16)

C.  Optimally predicted “best-estimate” nominal values, 1 "®, for the model responses, given by
the expression below:

el = ¢ (ChS — Cy) D] 7! [rc (zxo, /30) - r'"] ; (17)

D. Reduced predicted uncertainties, C}, ed, for the predicted nominal response values, given by the
expression below:

d _
= C, — (ChS/, — C) D] L (ChSH, — C) T (18)

E.  Predicted correlations, Cﬁ?"l, between the predicted model parameters and responses, given by
the expression below:

Cl = Coy — (CaaSih — Car) D] 71 (CH Sy — C) T (19)

The expressions given in Equations (6) through (19) can also be obtained from the results presented
originally in [9] for the particular case of a time-independent single multi-physics system. Note that if
the model is perfect (which means that Cy, = 0 and C,, = 0), Equations (6) through (19) would yield
o’ = &0 and " = (0, B0), without any accompanying uncertainties (i.e., C,p,mi =0, Cﬂfd =0,
Cifﬂi = 0). In other words, for a perfect model, the PM_CMPS methodology predicts values for
the responses and the parameters that would coincide with the model’s original corresponding
parameter and computed responses (assumed to be perfect), and the experimental measurements
would have no effect on the predictions (as would be expected, since imperfect measurements could
not possibly improve a “perfect” model’s predictions). On the other hand, if the measurements were
perfect, (i.e., Cr = 0 and Cu, = 0), but the model were imperfect, then Equations (6) through (19)
would yield a”"®@ = o0 — CyeS; [SraCanSia] 14 (a0), CI' = Coa — CaaSy [SaCua Sl " SraCaas
ppred — g Cfrrm =0, Cﬁﬁ‘fd = 0. In other words, in the case of perfect measurements, the PM_CMPS
predicted values for the responses would coincide with the measured values (assumed to be perfect),
while the model’s uncertain parameters would be calibrated by taking the respective measurements
into account to yield improved nominal values and reduced parameters uncertainties.

The a priori response-parameter covariance matrix, C,, has been already computed in [1],
Equation (A5), and is reproduced below:
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1296 351 233 —44709 0 --- 0
Cov (TJ™0s, Ties,, RH"®S, ay, ..., 05) 2 Cro= | 335 305 18 9358 0 --- 0 [. (20)
—5416 173 —227 1831.03 0 --- 0

where the measured correlated parameters are: a1 = Ty, a2 = Ty, a3 = Ty i, and ag = Papm-
The a priori parameter covariance matrix, Cu, has also been already computed in [1],
Equation (B1) (see the Appendix of PART 1.), and is also reproduced below:

Var(aq) Cov(a1, ) o Cov(ay, asp)
Co 2 Cov(ap, o) Var(ay) e Cov(ag,asp)
[ ] L [ ] [
Cov(asy, aq) ° o Var(asp)
17.37 2.83 1.81 —52926 0 e 0
285 556 231 8716 0 e 0 1)
1.81 2.31 2.90 —4722 0 e 0
= —529.26 —87.16 —47.22 160597.01 0 e 0
0 0 0 0 0 e 0
° [ ] L [ [ L] [ ]
0 0 0 0 0 e 2581

The a priori covariance matrix of the computed responses, C;, ", is obtained by using
Equations (15) and (21) together with the sensitivity results presented in Tables 1-4; the final result is
given below:

" = Cop (T}”,TSO),RH(U) = $,4CasS;:

art) art) arV arV) +
om O&Na Var(ay)  Cov(ay,ap) e Cov(ay,as) o on
arlHY oY Cov(ag, 1)  Var(ay) e Cov(ao,asp) arY aTY
= oy 777 dang . . . . day 7T dang (22)
aRH(M aRHWM Cov(as, a1) . o Var(as) aRH®M ORHM
duy 7T dang dag 77 dang
10.87 7.19 —34.81
= 7.19 7.72 —-13.97

—34.81 —13.97 221.88

The a priori covariance matrix, Cov (TW”s Tmeas R HMmeas ) = C,,, of the measured responses

a,out’ ~w,out’ out
) . meas  — (1) measured )
(namely: the outlet air temperature, T77 = |T, ; the outlet water temperature,
(50) measured . . o 1 measured
Toon = {Tw } , and the outlet air relative humidity, RH]** = [RH ( )} was also

computed in [1], Equation (A4), and is reproduced below:

1129 355 —43.85
Cov (T)'swi, Tiers, RHY®) £ Cpp = 355 253 531 |. (23)
—43.85 —531 25249

2.2.1. Model Calibration: Predicted Best-Estimated Parameter Values with Reduced Predicted
Standard Deviations

The best-estimate nominal parameter values have been computed using Equation (12) in
conjunction with the a priori matrices given in Equations (20)—(23) and the sensitivities presented in
Tables 1-4. The resulting best-estimate nominal values are listed in Table 5, below. The corresponding
best-estimate absolute standard deviations for these parameters are also presented in this table. These
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values are the square-roots of the diagonal elements of the matrix C,f?,jfd, which is computed using
Equation (16) in conjunction with the a priori matrices given in Equations (20)—(23) and the sensitivities
presented in Tables 1-4. For comparison, the original nominal parameter values and original absolute
standard deviations are also listed. As the results in Table 5 indicate, the predicted best-estimate
standard deviations are all smaller or at most equal to (i.e., left unaffected) the original standard
deviations. The parameters are affected proportionally to the magnitudes of their corresponding
sensitivities: the parameters experiencing the largest reductions in their predicted standard deviations
are those having the largest sensitivities.

Table 5. Best-estimated nominal parameter values and their standard deviations.

.. Original Best-Estimated  Best-Estimated
i Independent Scalar Parameters («;) Nlt\)/{::i}:;n Nogir;galln\i}glalue Stangdard Nominal Standard
Deviation Value Deviation
1 Air temperature (dry bulb), (K) Tap 299.11 4.17 299.37 3.44
2 Dew point temperature (K) Tap 292.05 2.36 292.23 2.28
3 Inlet water temperature (K) Towin 298.79 1.70 298.77 1.70
4 Atmospheric pressure (Pa) Patm 100,586 401 100,576 389
5 Wetted fraction of fill surface area Wisn 1 0 1 0
6 Sum of loss coefficients above fill Ksum 10 5 10 5
Dynamic viscosity of air 5 7 5 7
7 at T =300 K (kg/m-s) us 1.983 x 10 9.676 x 10 1.984 x 10 9.668 x 10
Kinematic viscosity of air 5 6 5 6
8 at T =300 K (m2/s) v 1.568 x 10 1.895 x 10 1.564 x 10 1.893 x 10
Thermal conductivity of air ) 3 3
9 at T =300 K (W/m-K) Kair 0.02624 1.584 x 10 0.02625 1.583 x 10
10 Heat transfer coefficient multiplier St 1 0.5 1.0316 0.47
11 Mass transfer coefficient multiplier St 1 0.5 0.882 0.41
12 Fill section frictional loss multiplier f 4 2 4 2.00
13 Py (T) parameters ap 25.5943 0.01 25.5943 0.01
14 vs{) P a —5229.89 4.4 —5229.92 440
15 a0,cpa 1030.5 0.2940 1030.5 0.294
16 Cpa(T) parameters 1,cpa —0.19975 0.0020 —0.19975 0.0020
17 @2,cpa 3.9734 x 104 3.345 x 10~° 3.9734 x 10~ 3.345 x 10°
18 0,dao 7.06085 x 10~° 0 7.06085 x 10~° 0
19 Day(T) parameters a1,dav 2.65322 0.003 6216283562 0.003
20 2400 —6.1681 x 1073 23 x 1075 100 23 x 1075
21 a3 dao 6.552659 x 10~° 3.8 x 1078 6'5%%6?68 x 3.8 x 1078
2 h(T) ! gy —1,143,423.8 543 —1,143,423.7 543
23 f(1) parameters i 4186.50768 18 4186.50818 18
24 h, (T) parameters agg 2,005,743.99 1046 2,005,743.80 1046
25 sl P g 1815437 35 1815.436 35
26 ag,Nu 8.235 2.059 8.235 2.059
27 ai,Nu 0.00314987 0.001 0.0030475 0.001
28 Nu parameters A2 N 0.9902987 0.327 0.987827 0.327
29 a3 Nu 0.023 0.0088 0.023 0.088
30 Cooling tower deck width in x-dir (m) Wikx 8.5 0.085 8.5 0.085
31 Cooling tower deck width in y-dir (m) Wy 8.5 0.085 8.5 0.085
0 Cooling tower deck height above Azge 10 01 10 01
ground (m)
33 Fan shroud height (m) Azgy 3.0 0.03 3.0 0.03
34 Fan shroud inner diameter (m) Dsan 4.1 0.041 4.1 0.041
35 Fill section height (m) Azgy 2.013 0.02013 2.013 0.02013
36 Rain section height (m) Azyin 1.633 0.01633 1.633 0.01633
37 Basin section height (m) Az 1.168 0.01168 1.168 0.01168
38 Drift eliminator thickness (m) Azg, 0.1524 0.001524 0.1524 0.001524
39 Fill section equivalent diameter (m) Dy, 0.0381 0.000381 0.0381 0.000381
40 Fill section flow area (m?) Afn 67.29 6.729 67.507 6.705
41 Fill section surface area (m?) Asurf 14,221 3555.3 13914 3463
42 Prandlt number of air at T =80 C P, 0.708 0.005 0.708 0.005
43 Wind speed (m/s) Vu 1.80 0.92 1.80 0.92
44 Exit air speed at the shroud (m/s) Vexit 10.0 1.0 9.978 1.0
Math Original Original Best-Estimated  Best-Estimated
i Boundary Parameters Notation Nomin%\l Value Standard Nominal Standard
Deviation Value Deviation
45 Inlet water mass flow rate (kg/s) My in 44.02 2.201 44.05 2.199
46 Inlet air temperature (K) win 299.11 417 300.14 2.64
47 Inlet air mass flow rate (kg/s) My 155.07 1591 154.70 15.87
48 Inlet air humidity ratio Wiy 0.0138 0.00206 0.0142 0.00137
. . Original Best-Estimated  Best-Estimated
i Special Dependent Parameters Nlt\)/{::i}:;n Nogirlllgalln\i;;lue Star%da.rd Nominal Standard
eviation Value Deviation
49 Reynold’s number Rey 4428 671.6 4395 666.1
50 Schmidt number Sc 0.60 0.074 0.5986 0.0739
51 Sherwood number Sh 14.13 4.84 13.35 4.44
52 Nusselt number Nu 14.94 5.08 14.34 4.83
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2.2.2. Predicted Best-Estimated Response Values with Reduced Predicted Standard Deviations

Using the a priori matrices given in Equations (20)-(23) together with the sensitivities presented
in Tables 1-4 in Equation (18) yields the following predicted response covariance matrix, C}, .

. . N 671 273 —22.80
crred :cOz;([Tu“)] ,{TZS,SO)] ,{RH(”} ): 273 237 -179 |. (24)
~2280 —179 14519

The best-estimate response-parameter correlation matrix, CZ;Ed, is obtained using Equation (19)
together with the a priori matrices given in Equations (20)—(23) and the sensitivities presented in
Tables 1-4. The non-zero elements with the largest magnitudes are as follows:

rel.cor.(Ry,aq) = —0.278; rel.cor.(Ry,a41) = —0.070; rel.cor.(Ry, ag9) = —0.039;
rel.cor.(Rp, aq) = —0.108; rel.cor.(Ry, aq1) = —0.019; (25)
rel.cor.(Rs, aq) = 0.232;  rel.cor.(R3,aq1) = 0.127;  rel.cor.(R3, nq9) = 0.072.

The notation used in Equation (25) is as follows: R; = Té”, R, = TL(,,SO), Rz = RHW, ay = Pot,
ag1 = Agyrp and g9 = Rey.
The best-estimate nominal values of the (model responses) outlet air temperature, Tél) ; outlet

water temperature Tfo) ; and outlet air relative humidity, RH @, have been computed using
Equation (17) together with the a priori matrices given in Equations (20)—(23) and the sensitivities
presented in Tables 1-4. The resulting best-estimate predicted nominal values are summarized in
Table 6. To facilitate comparison, the corresponding measured and computed nominal values are also
presented in this table. Note that there are no direct measurements for the outlet water flow rate, m§f 0,
For this response, therefore, the predicted best-estimate nominal value has been obtained by a forward
re-computation using the best-estimate nominal parameter values listed in Table 5, while the predicted
best estimate standard deviation for this response has been obtained by using “best-estimate” values

in Equation (15), i.e.:
be b
(o)™ = 81l [Caal [85]" 26)

Table 6. Computed, measured, and optimal best-estimate nominal values and standard deviations for
the outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water flow
rate responses.

Nominal Values and Standard Deviations T‘(ll) (K) T,(USO) (K) RH® (%) m;}so) (kg/s)
Measured
Nominal value 298.34 295.68 81.98 —
Standard deviation +3.36 +1.59 +15.89 —
Computed
Nominal value 297.46 294.58 86.12 43.60
Standard deviation +3.30 +2.78 +14.90 +2.21
Best-estimate
Nominal value 298.45 295.67 82.12 43.67
Standard deviation +2.59 +1.54 +12.05 +2.20

The results presented in Table 6 indicate that the predicted standard deviations are smaller than
either the computed or the experimentally measured ones. This is indeed the consequence of using
the PM_CMPS methodology in conjunction with consistent (as opposed to discrepant) computational
and experimental information. Often, however, the information is inconsistent, usually due to the
presence of unrecognized errors. Solutions for addressing such situations have been proposed in [10].
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It is also important to note that the PM_CMPS methodology has improved (i.e., reduced, albeit not
by a significant amount) the predicted standard deviation for the outlet water flow rate response,
for which no measurements were available. This improvement stems from the global characteristics
of the PM_CMPS methodology, which combines all of the available simultaneously on phase-space,
as opposed to combining it sequentially, as is the case with the current state-of-the-art data assimilation
procedures [11,12].

3. Discussion

In the present work, the adjoint sensitivity model of the counter-flow cooling tower derived in
the accompanying PART I [1] was used to obtain the expressions and relative numerical rankings
of the sensitivities, to all model parameters, of the following responses (quantities of interest):
(i) the outlet air temperature; (ii) the outlet water temperature; (iii) the outlet water mass flow
rate; and (iv) the air outlet relative humidity. These sensitivities were subsequently used within
the “predictive modeling for coupled multi-physics systems” (PM_CMPS) methodology [2] to obtain
explicit formulas for the predicted optimal nominal values for the model responses and parameters,
along with reduced predicted standard deviations for the predicted model parameters and responses.
These explicit formulas embody the assimilation of experimental data and the “calibration” of the
model’s parameters.

The results presented in this work indicate that the predicted standard deviations are smaller
than either the computed or the experimentally measured ones. It is also important to note that
the PM_CMPS methodology has improved (i.e., reduced, albeit not by a significant amount) the
predicted standard deviation for the outlet water flow rate response, for which no measurements were
available. This improvement stems from the global characteristics of the PM_CMPS methodology,
which combines all of the available information simultaneously in phase-space, as opposed
to combining it sequentially, as is the case with the current state-of-the-art data assimilation
procedures [11,12]. This is indeed the consequence of using the PM_CMPS methodology in conjunction
with consistent (as opposed to discrepant) computational and experimental information. Often,
however, the information is inconsistent, usually due to the presence of unrecognized errors. Solutions
for addressing such situations have been proposed in [10].

The adjoint sensitivity analysis methodology used in PART I [1] for computing exactly and
efficiently the 1%t-order response sensitivities to model parameters has been recently extended to
computing efficiently and exactly the 2nd-order response sensitivities to parameters for linear [13] and
nonlinear [14] large-scale systems. As has been shown in [15-18], the 2nd-order response sensitivities
have the following major impacts on the computed moments of the response distribution: (a) they cause
the “expected value of the response” to differ from the “computed nominal value of the response”; and
(b) they contribute decisively to causing asymmetries in the response distribution. Indeed, neglecting
the second-order sensitivities would nullify the third-order response correlations, and hence would
nullify the skewness of the response. Consequently, non-Gaussian features (i.e., asymmetries, long-tails)
any events occurring in a response’s long and/or short tails, which are characteristic of rare but decisive
events (e.g., major accidents, catastrophes), would likely be missed. Ongoing work aims at further
applications and generalization of the adjoint sensitivity analysis and the PM_CMPS methodologies, to
enable the computation of 3rd- and higher-order sensitivities and response distributions. The exact and
efficient computation of high-order response sensitivities for large-scale systems is expected to advance
significantly the areas of uncertainty quantification, model validation, reduced-order modeling, and
predictive modeling/data assimilation.
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Appendix A. Derivatives of Cooling Tower Model Equations with Respect To Model Parameters

For convenience, the model parameters are reproduced in Table A1 below from Appendix B of
PART I [1]. The independent model parameters are used for computing various dependent model
parameters and thermal material properties, as shown in Tables A2 and A3, below.

Table A1. Parameters for SRNL f-area cooling towers.

, . Absolute Relative
h(‘)(flix_ ! Independent Scalar Parameters C + + String %:;g’on 1;1,2{32(1:)1 Standard Standard
! Deviation Deviation (%)
1 Air temperature (dry bulb) (K) tdb Tap 299.11 4.17 1.39
2 Dew point temperature (K) tdp Tap 292.05 2.36 0.81
3 Inlet water temperature (K) twin Tuin 298.79 1.70 0.57
4 Atmospheric pressure (Pa) patm Patm 100586 401 0.40
5 Wetted fraction of fill surface area wtsa Wisq 1 0 0
6 Sum of loss coefficients above fill ksum Ksum 10 5 50
Dynamic viscosity of air . 5 7
7 atT =300 K (kg/m-s) muair 8 1.983 x 10 9.676 x 10 4.88
Kinematic viscosity of air . 5 6
8 at T =300 K (m/s) nuair v 1.568 x 10 1.895 x 10 12.09
Thermal conductivity of air . ) 3
9 at T =300 K (W/m-K) tcair Kair 0.02624 1.584 x 10 6.04
10 Heat transfer coefficient multiplier mithtc fut 1 0.5 50
11 Mass transfer coefficient multiplier mltmtc St 1 0.5 50
12 Fill section frictional loss multiplier mitfil f 4 2 50
13 P, (T) parameters a0 ap 25.5943 0.01 0.04
14 v P al a —5229.89 44 0.08
15 A1) a0,cpa 1030.5 0.2940 0.03
16 Cpa(T) parameters AQ2) a1,cpa —0.19975 0.0020 1.00
17 AQ3) @2,cpa 3.9734 x 10~ 3345 x 106 0.84
18 A1) 0 dav 7.06085 x 10~ 0 0
19 D,(T) parameters A(2) @1 dao 2.65322 0.003 0.11
20 AQ3) a2 o —6.1681 x 1072 23 x 107° 0.37
21 A4) 3,400 6.55266 x 107° 3.8 x 1078 0.58
22 aof aof —1,143,423.78 543. 0.05
23 hy(T) parameters alf oy 4186.50768 18 0.04
24 alg agg 2,005,743.99 1046 0.05
25 hg(T) parameters alg arg 1815.437 35 0.19
26 - ao,Nu 8.235 2.059 25
27 - a1,Nu 0.00314987 0.001 31.75
28 Nu parameters - My 0.9902987 0327 33.02
29 - a3,Nu 0.023 0.0088 38.26
30 Cooling tower deck dkxw W, 85 0.085 1
width in x-dir. (m) dkx ’ :
Cooling tower deck
31 width in y-dir. (m) dkyw Waky 8.5 0.085 1
Cooling tower deck
32 height above ground (m) dkht Az 10 01 1
33 Fan shroud height (m) fsht Azgy, 3.0 0.03 1
34 Fan shroud inner diameter (m) fsid Dran 4.1 0.041 1
35 Fill section height (m) flht Azgy 2.013 0.02013 1
36 Rain section height (m) rsht DNzZygin 1.633 0.01633 1
37 Basin section height (m) bsht Azps 1.168 0.01168 1
38 Drift eliminator thickness (m) detk Azge 0.1524 0.001524 1
39 Fill section equivalent deqv Dy 0.0381 0.000381 1
diameter (m)
40 Fill section flow area (m?) flfa Agin 67.29 6.729 10
41 Fill section surface area (m?) flsa Asurf 14221 3555.3 25
42 Prandlt number of air at T =80 C Pr P, 0.708 0.005 0.71
43 Wind speed (m/s) wspd Vu 1.80 0.92 51.1
44 Exit air speed at the shroud (m/s) vexit Vit 10.0 1.0 10.0
, Absolute Relative
Index i Boundary Parameters C + + String Math. Nominal Value Standard Standard
of ; Notation L PR o
Deviation Deviation (%)
45 Inlet water mass flow rate (kg/s) mfwin My in 44.02 2.201 5
46 Inlet air temperature (K) tain Toin set to Ty 4.17 1.39
47 Inlet air mass flow rate (kg/s) main Mg 155.07 15.91 10.26
Inlet air humidity ratio . Win;
48 (Dependent Scalar Parameter) hrin Wrain 0.0138 0.00206 14.93
49 Reynold’s number Re; Reh Rey 4428 671.6 15.17
50 Schmidt number Sc Sc 0.60 0.074 12.41
51 Sherwood number Sh Sh 14.13 4.84 34.25

52 Nusselt number Nu Nu 14.94 5.08 34.00
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Table A2. Dependent scalar model parameters.

Dependent Scalar Parameters Math. Notation Defining Equation or Correlation
. .. . . 2 a0,dav TS
Mass diffusivity of water vapor in air (m*/s) Do (T,, &) PP P
Heat transfer coefficient (W/m?-K) () f”fNi‘]’k‘”’
Mass transfer coefficient (m/s) km(e) %W
Heat transfer term (W /K) H(mg,«x) h (&) wisa Agf
Mass transfer term (m?3/s) M(myg,x) Mp,0km (o) Wesa Afs
Density of dry air (kg/m?) o(x) R,,,ﬂ,i[%lb
Air velocity in the fill section (m/s) va(ma,u) o0 L’;’z‘;m
Fill falling-film surface area per vertical section (m?) Ay %ff
Rain section inlet flow area (m?) Ain Wikx Waky
Height for natural convection (m) Z Zdk + Zfan — Zbs
Height above fill section (m) AVA) Z = Zfill = Zrain
Fill section control volume height (m) Az Zfli”
Fill section length, including drift eliminator (m) Lsn Zfil + Zge
Fan shroud inner radius (m) Tfan 0.5D 4y
Fan shroud flow area (mz) Aout r f,mz
Table A3. Thermal properties (dependent scalar model parameters).
Thermal Properties (Functions of State Variables) Math. Notation Defining Equation or Correlation
h¢(Tw) = saturated liquid enthalpy (J/kg) h(Tw o) aor + a1 Tw
Hg(Tw) = saturated vapor enthalpy (J/kg) hg w0 (Tow ) aog + a1 Tw
Hg(T,) = saturated vapor enthalpy (J/kg) hg,a(Ta,m) agg + a1gTy
Cp(T) = specific heat of dry air (J/kg-K) Cp(Ta) a0,cpa + (@1,cpa + a2,0paT) T
Pys(Tw) = saturation pressure (Pa) Pos(Top,m) P.- g“0+%, in which P. = 1.0 Pa
Pys(Ta) = saturation pressure (Pa) Pos(T,,0) P e”“% ,in which P, = 1.0 Pa

Note: The parameters a; through a4 (i.e., the dry bulb air temperature, dew point temperature, inlet water
temperature, and atmospheric pressure) were measured at the SRNL site at which the F-area cooling towers
are located. Among the 8079 measured benchmark data sets [8], 7688 data sets are considered to represent
“unsaturated conditions”, which have been used to derive the statistical properties (means, variance and
covariance, skewness and kurtosis) for these model parameters, as shown in Figures Bl through B4 and
Tables B4 through B7 in Appendix B of PART I [1].

Recall that the cooling tower model comprises conservation balances representing mathematically
the following physical phenomena: A. liquid continuity; B. liquid energy balance; C. water vapor
continuity; D. air and water vapor energy balance. For easy reference, these conservation equations
are reproduced below from Section 2 of PART I [1]:

A. Liquid continuity equations:

(i) Control Volumei=1:

m ) 2@ oy M) | PRI oW, | g,
Ny (my, Ty, To, w; &) = gy’ — gy i + R el T (0622+0M) | 0; (A1)

(ii) Control Volumesi=2,....1 — 1:

(i) ooy a4 () Mmee) [PE(TE Ve iR, 0
Ny (ma, To, To, w; &) = g My’ + =% : TS*LU Téi)(0.622ﬂ+’r:u(i)) =0 (A2)

(iii) Control Volume i = I:

Nl(l) (Me, T, Toy w;a) 2 me Y — il 4 M(%”’“) {

T+ 7 (0.6224w(D)

w

Pzgsl+1)(T,5)I+l),Dt) w(l)Patm :| =0; (A3)

B. Liquid energy balance equations:
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(i) Control Volume i = 1:
Nz(l) (mw; Tw, Ta, w; & ) = My,in { wm/ 0‘) - (Tz(UZ) - Tu(l)) (ma/ ) (A4)
2),(2) /(2 2
= ) (T, ) = (o g — i G (T ) = 0;
(ii) Control Volumesi=2,...,1 — 1:
N (i T T i) 2 ) (1)) (167 = T )
. mgﬂ)h}lﬂ)(ﬁfﬂ),@ _ (m‘%) . z(4§+1))hé(;l,;r;l)(TzE)l+l),0¢) —0
(iii) Control Volume i = I:
NZ(I) (myy, Toy, Ty, w; &) 2 mz(yl)h](cl)(Tz(UI),a) — (TZS,IH) - Tél))H(m,Z,zx) (A6)
—myg DT, @) = () mESD (TY, w) = 0
C.  Water vapor continuity equations:
(i) Control Volume i = 1:
) (2)
NY (g, To, Toy i) 2 0@ — M 4 T ”rm* |’"w —0; (A7)
a
(ii) Control Volumesi=2,...,1 — 1:
) i
Ny (m, T, To, w; o) 2 0D — w0 4 my —m™ (A8)
3 wr wr ar 7 - |mu| - 7
(iii) Control Volume i = I:
(I _  (I+1)
Ng()[) (my, Ty, Ty, w; ) £ wi, — w) + % =0; (A9)
a
D.  The air/water vapor energy balance equations:
(i) Control Volume i = 1:
(1)
NV (my, To, Tay wia) 2 (TS — Tél))Cél)(%,a) wMRI (T, w) AL
<2)_ (1) —Mw h W U 7
+(Tw T‘ﬂma)‘fi(m,;,a) + (mwm m |m)ﬂ‘g ( D‘) (Z)h( )( ( )’ ) — 0,
(ii) Control Volumesi=2,...,1 — 1:
Ni) (M, To, To w; ) 2 (T(z+1) T(gi))céi)(qi)+zz73.15 &) — (i)h(i)( éi),a)
(T g g () DD (D) ) (z+1) £(i+1) (A11)
e Mott) | 7 — + Ve (T, ) = 0;
(iii) Control Volume i = I:
I I () . I
N, (m, T, Ty ) 2 (T = TI(H)) G V(I 0) — i (T, o) A1)
1+1 - I w w h W T
+ (Tw ﬁa‘)H(m“’a) + (m m ‘)magl ( l’é) + wznhga( a,ins D‘) 0.
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The components of the vector &, which appears in Equations (A1)—-(A12), comprise the model

parameters, i.e.:
Déé(l’q,...,lXNa) (A13)

where N, denotes the total number of model parameters. These model parameters are described in
Table Al.
The following notation will be used for the derivatives of the above equations with respect to
the parameters:
i N
a, :W;le,2,3,4;1:1,...,1;]:1,...,N,X. (A14)
Al. Derivatives of the Liquid Continuity Equations with Respect to the Parameters

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®) = Ty, are as follows:

Ny Nt g

= git = PE(TS ) ) W) Py OM(mam) | Dy (Typ ) |

T+ (0.6224+0 ) TS | ODaw(Tape) Ty 7 (A15)
(=1i=1,...,j=1,

a(D) Ty

==

where: aM( ) 2 M )
Mg, & Mg, &

., 2\ Al6

aD,w(Tdb, 0() 3 Dﬂy(Tdh,lX) ( )

Dao(Tap, ) _ 1.5 - A0day Tar™* — Dao(Tap &) - (32400 + 2 - 33400 Tav) (A17)

2
9Tap A1dav + A2da0 Tap + A3da0 Tap

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a® = T4y are as follows:

aN®  aN®
= BT;,, =a?=0, (=VLi=1..Lj=2 (A18)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a® = T,in are as follows:

aNl(l) _ E)Nl(l) _ 13 _ _afnﬂ‘
aa(3) aTw,in aTw,z'n ’

t=1i=1j=3, (A19)

where: 5
Srwin — 9 ). 7000
aTwin o aTw,in [p(waln) 15850.32}

(A20)
= [ +2 3 (Tupin = 27315) + 3+ a4, (Tuin — 27315)°] - Z%s

and where ay , = —0.26847207; a3 , = ~1.8113691 x 10°3; ay , = ~1.7041217 x 10°°.

oND N ‘
aa(13> :E,T? =d?=0;, (=1i=2..,Lj=3 (A21)
w,in

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a® = P, are as follows:

aND N 4 Mimew) W)
oa® 7 Py — 71 T R 10 (0622+w)
+L Pzgi+1)(r7/(l;+1)/“) _ w(i)Pﬂtm i aM(mu,ﬂé) aNu(Re,a) omy . (AZZ)
R Ty Y (0.6224+w@) T | ONu(Rew)  Oma OPam’

(=1;i=1,...,I; j=4,
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where:
OM(Re, &) M(mg, )

_ A2
ONu(Re,a) Nu(Re,a)’ (A23)
0 Rey < 2300
ONu(Re,
% ={ 4y nuRe(mg, &) /m; 2300 < Rey < 10000 , (A24)
‘ 0.8Nu(Re,a)/m, Re; > 10000
1 D¢, 2
oMy  Vexit * fon_. (A25)

aPm‘m N RairTa,in 4 ’

Note: The term on the right hand side of Equation (A25) stems from the following relation:

Dfan” _ Pum ., 7Dfan’
4 - RairTu exit 4 .

ma = p (Ta) - Vexit - (A26)
The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a® = wy,, are as follows:

PlgéJrl) (Tz<ui+1)ru) _ w(i)Patm aM(mﬂr”‘) .

1
a3 OWisa R TZ(J+1) (0.6224-(4)("))]150 oWsg (A27)
;i=1,...,1; j=5,

~
I
—_

where: ) ,
OM(mq, &)  Mpo fmtNu(Re, &) (55)° [Dao(Tap, &)]3 Agurg
OWsq B Dyl
The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a©® = kg, are as follows:

(A28)

aNy  aNY

b p—1. i — i
@ e = =0 (=Li=1... =6 (A29)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a”) = y are as follows:

o an iz 1 [P e w0y, | oM.
W =M TR 70D (0622401 | o7 (A30)
(=1i=1,...,j=7,
where:

0 Re,; < 2300

aM(mg, tt) alleM(mu,a)Re(ma,lx)

o~ M NitRears 2300 < Rey < 10000 . (A31)
—0.8. Minar) Re; > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a® = v are as follows:

P (i ) @) Py M (g ,m) .

Ny Ny 48—
oua(®) ov 1 TZ(UHrl) (0.622+w(i) ) T,,(') o/ (A32)

(=1i=1,...,;j=8§,

==

where: AM( ) L M( )
Mg, ) 1 M(mg,
5 =3 ’ . (A33)




Energies 2016, 9, 747 17 of 47

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®) = k,;, are as follows:

N Ny e,
on(9) okgir 1 ’

=1;1i

L...,Ij=09. (A34)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a1% = f;, are as follows:

aN®  aN®
W}O)Zﬁzango; (=1;i=1,...,I; j=10. (A35)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter al) = f,,; are as follows:

aN" anV)

—_— = = ai’ll = L PZ%+1)(TZ(J+1>/“) _ W<i)Patm i aM(mﬂrD‘).
a(l) oft — 1 R TIS,IH) (0.622+w(i))Ta(z) Ofmt 7 (A36)
(=1i=1,...,1j=11,

where:

1 2
OM(mg, &)  MmoNu(Re &) (57)° [Dao(Tap, )]
O fmt DI

wtsaAsurf . (A37)
The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter 12 = f are as follows:

aN N
o2 ~ of

all’lz =0;

(=1i=1,...,I;j=12 (A38)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter {13 = a4 are as follows:

aNy) Ny

i+1) ((i+1)
_ i1z M(mga) 1 Pt (Tp &) .. -
oa(13) 9 =0 R it g ;o t=Li=1,...,Lj=13 (A39)
where: 4 ‘
opy ) (1!

(%) _ pli) (gt ), (A40)
ao

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a4 = a; are as follows:

Ny oNy s _ M) 1 aPT (T ),
atx(l‘l) - aﬂl - " - R T’(Ui+1) aa1 4

(A41)
(=1i=1,...,I =14

where:

opy (1w _ PV (1Y,
(15,0 _ P (1) ai2)
it

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a1 = ag,cpq are as follows:

aa1

aN(i) aN(i) )
=1 =4P=0 (=1i
Ju(15) aaolcpu

(A43)
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The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter w16 = a1,¢pq are as follows:

aNy aNY

— 1,16 . .
= =a;° =0, £=1i=1,...,I; j=16. A44
o (16) aal,cpu g 1 J ( )

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a1?) = 2,¢pa are as follows:

aN{  aN{

— i17 ; ;
= =ay =0, {=1i=1,...,1;j=17 A45
5207 Brern ay ; 1 J (A45)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter «® = ag 4,, are as follows:

9208 — ggey 1 R i (062240 ()1 | ODao(Tap) B0 (A46)
(=1i=1,...1j=18

Ny Ny ias 1 [P ) @) Py OM(my ) | IDgo(Typ).

where % was defined previously in Equation (A16), and:
9Dav (Tgp, &) Ty
- = . (A47)
900 dav 01dao + Aadav Tab + A3dav Tab”

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter 1% = a, 4,, are as follows:

oNy) oy _ g9 _ 1 PV a) WPy, IM(ma®)  3Dgo(Typm) .
aﬂt(lg) a"71,dav - R TZ(JJrl) (0,622+w(i))Téi> aD[m(Tdh,N) aul,dm; 4 (A48)
(=1i=1,...,1;j=19,
where 2100y ag defined previously in Equation (A16), and:
Do (Typ, ) g ’
aDaU(Tdh 0() aopg T, 15
7 _ av1db
% =— 5 (A49)
1 2
Ao (ﬂwav + @2da0 Tab + A3da0 Tap )

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the

parameter 20 = a3 4ap are as follows:
aN<1) aN(’> . (i+1) (p(i+1) (i)
j I 1 = al,ZO — 1| Py (Tw &) W\ Papm OM(man)  9Dao(Tgpn) .
0a(20) T dapge — U1 R 7+ (0,622+w(i>)T§’> 9Dgo (Typ ) 00 40’ (A50)

(=1i=1,...,1; j=20,

where % was defined previously in Equation (A16), and

9Dgo (Tap, &) 000 Ty ‘ (A51)

aaz d 2 2
2o (ﬂmav + 2040 Tap + 3da0 Tap )
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The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a@) = a3 4qp are as follows:

30T = g — M T R|T D (0622+w()1f" | ODao(Tap) — Hdon* (A52)
(=1i=1,...,I;j=21,

vy aN{ L ion 1 [P ) w0Ry, | OMOmaa) | 9Dw(Taue).

where % was defined previously in Equation (A16), and
3av (ﬂldav + 82400 Tap + ﬂ3dadeb2)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a(??) = agr are as follows:

aNl(l) _ aNl(l) — ai,22

a“(zz) = aaof =ay :0, 621,121,,1,]:22 (A54)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a*¥ = ay; are as follows:

aN{) AN
ek aﬂllf =a® =0 (=1i=1..1j=2 (839

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a4 = agg are as follows:

aNl(l) aNl(l) _ 1,24 . .
2w a0 T0 f=Lislohj=2 (A56)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a(®) = a14 are as follows:

Ny’ N s | |
aa(ZS): aalg =a =0; 621}1:1,...,1,’]225, (A57)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a(20) = ao,Ny, are as follows:

8N1(i> - 8N1<i) _ i26

61 P a)  wpy, OM(m,,x) INu(Rew) .
2 — dagny — 1 TR |7 D (0622+w) () | ONuRew)  dtonu * (A58)
(=1i=1,...,1; j=26
where % was defined previously in Equation (A23), and
1 Re; < 2300
oNu(Re,
% —{ 0 2300 < Re; < 10000 . (A59)
0.Nu 0 Re; > 10000
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The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a@) = a1 Ny are as follows:

aNy Nl

M= A2~ L [PV | wORg ] 3M(mea) ONu(Rea)
a7 aal,Nll — "M R T{E}H’l) (0622+w<1))Tﬂ<l) aNu(Re,vc) auLNu ’ (A60)
(=1i=1,...,1;j=27,
oM (mg, )
where ONu(Re,x)

was defined previously in Equation (A23), and:

0 Re,; < 2300

dNu(R

w —{ Re(mga) 2300 < Rey < 10000 . (A61)
LNu 0 Re, > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®®) = a, y, are as follows:

Ny Ny s 1 [PV ) WPy | IM(mg) INu(Rem)
28 — aaZ,Nu — " R T757i+1) (0.622+w(i))Tu<i) aNu(Re,a) a512/Nu ’ (A62)
(=1i=1,...,1; j=28,
IM(m,, o)
where ONu(Re,x)

was defined previously in Equation (A23), and:

0 Re; < 2300
R

W —{ 1 2300 < Re; < 10000 (A63)
2Nu 0 Re; > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter 2@ = az Ny are as follows:

aNl(i) _ aNl(i) — 29 _ 1 P,Eé+1)(T,5,i+1),a) . W Py OM(mg,a) ONu(Re,a)
@) ~ 93 Ny 1 R i (0.622+w®)T) | ONu(Rew)  da3nu 7 (A64)
t=1i=1,...,1;j=29,

IM(m,, o)
where INu(Re. o)

u(Re,x) Was defined previously in Equation (A23), and:

INU(R 0 Rey < 2300

M -{o 2300 < Rey < 10000 . (A65)
a
3N [Re(rmq,a)]°8 - Pr3  Rey > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®?) = Wy, are as follows:

aNl(i) _ aNl(i) — 430 _

90 Wy, T O LTS

1,...,I; j=30. (A66)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a3V = Wy, are as follows:

aNl(l) _ aNl(l) _ ai'31 _ 0, g = 1, i
onl)  OWgy !

(A67)
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The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a2 = Az, are as follows:

NN

Ju(32) o aAde -

; 0=1i=1,...,1j=32 (A68)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter aB3 = Az, are as follows:

on(33) aAzﬂm -

aN® N ,
L L =¥ =0, (=1i=1,...,1j=33. (A69)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter w34 = D, are as follows:
oy Ny isa 1 [P e iy, OM(rq,2) ONu(Re) dmy .
(34 anan - "1 R Tf/(UiJrl) (0622+w(z))T{51> BNu(Re,zx) om, an,m’ (A70)
(=1i=1,...,1; j=34,

where gI\Z\IAu (z?{“e’z)) and aN%(;E:’“) were defined previously in Equations (A23) and (A24), respectively,
and: 3 )
N - Mg
= . A71)
oD fan D fan (

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a3 = Azg are as follows:

aNl(I) aNl(l) _ 1,35 . .
W_BAZﬂ'”:al _0’ 6_1’1_1""’1/]_35' (A72)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a3®) = Az,,;, are as follows:

aNny aND
- =40 =0, (=1i=1,... 1 i=36 A7
90 Az 1 O T EIT L B30 (A7)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter 2 = Az, are as follows:

N _ o _
) bz,

=0, (=1i=1,..1j=37 (A74)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter 238 = Az, are as follows:

aN®  aN®
aaéS) — aA;d =a® =0, (=1i=1,..,Ij=38 (A75)
e

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a3 = D}, are as follows:

Ny Ny i PEVIS 0 Ry ] aM(maa),

T+ (0622401 | OPn 7 (A76)
(=1i=1,...,1; j=39,
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where:
aM( ) —M(mﬂ, a) /Dh Re; < 2300
Mg, & _ ap, uM(mﬂ/“)
e e 2300 < Rey < 10000 . (A77)

—0.2-M(ma,a)/D), Rey > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter w40 = Agy are as follows:

Ny N a0 1 [BEV@I e @Ry, | aM(maa)
oa0) T dAgy — 71 TR T+ (0.622+w(i))T,$i) Y P (A78)
(=1i=1,...,1; j =40,
where:
aM( ) 0 Re; < 2300
Mg, &) _ayNuM(mg,a)Re(img,0)
Tfill = Nou(Re.a) Ay 2300 < Rey < 10000 . (A79)

—-0.8- M(ma;“)/Afill Re; > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter w4l = Asuyy are as follows:

vy Ny i [P w0k, | M),
) gy — 71 TR e (062241 | OAsurs 7 (A80)
(=Li=1,..,Lj=41,

where: aM( oM )
Mg, & Mg, &

= A81

aAsurf Asurf ( )

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a#?) = Pr are as follows:

oy Ny a1 [PV w0R | aMOmaa),
a2~ dPr L TR i (0622+w@)T | IPr 7 (A82)
(=1i=1,..,1j=42,
where:
—~M(mg, &)/ (3-Pr) Rey < 10000
OM () _ (ma, &)/ (3 Pr) A83)
JoPr

0 Re; > 10000

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a3 = V,, are as follows:

aN®  aN®
806(13): avl =a® =0, (=1i=1,...,1j=43. (A84)
w

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a@ =V, are as follows:

PZ(,;Jrl)(TZ(UiJrl),a) . WD Py OM(mg,u) ONu(Re,&) 9m, .

1
R TI(J“) (0.622+w(i>)T,,(i) ONu(Re,n) am, Wit (A85)
(=1i=1,...,1; j=44,
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where 5;\\1/{[ (( )) and ang(;j:’“) were defined previously in Equations (A23) and (A24), respectively,

and )
Ota__Pom_ 2D (A86)
aVexit Ruir Ta,in 4

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®) = m,,;, are as follows:

aNM N o
W e =M=l A= L=l (A87)

aN{ Nt
80((4) amwm =

=0, (=1;i=2,...1j=45 (A88)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter w40 = T, iy are as follows:

Ny’ Ny
Ju (46) aTﬂ,in

=a® =0, (=1i=1,...1j=46 (A89)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a4”) = m, are as follows:

Ny oy iz 1 [PEVIE R wORy | 9M(mas) ONu(Rea).
2u7) am, — M R TZ(UHI) (0 622+w(>) 7@ | ONu(Re,)  dmg ’ (A90)
t=1i=1,...,.I, j=47,
where aaI\A[Au (g{‘;’i)) and aN%(:je’“) were defined previously in Equations (A23) and (A24), respectively.

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a8 = w;, are as follows:

aNy Ny
on48) dwjy,

P =0, (=1i=1,...1j=48 (A91)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the

parameter %) = Re; are as follows:
aNl(l) — 481\11(1‘> = [,lif49 — l l+1 (Terl)r ) w(i)Patm aM(mﬂr"‘) aN”(Redr“) .
306(49) E)Red ! R T(l+1) (0622-1—(4)(1) ) Tﬂ(i) aNu(Red,a) E)Red 4 (A92)

(=1i=1,...,1;j=49,

where %)) was defined in Equation (A23), and:

0 Re; < 2300
=< apn 2300 < Re; < 10000 (A93)
0.8 - a3 ny - Rey 02Pr'/3  Rey > 10000

ONu(Rey, )
aRed

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter a®%) = Sc are as follows:

L Pzgé+1)(rl('1i+l>/“) _ ‘Umpatm i aM(mﬂrD‘) .
R e (062240 )T | 95¢ (A94)
{=1i=1,...,I; j =50,
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where:

oM(mg, &) 1 M(m,, )
= Al
dSc 3 Sc (A9)
The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter «®!) = Sh are as follows:

Ny Ny

_ 51 [P WPy | M(maa).
951 dSh 1 R T+ (06224001 | 9Sh (A96)
(=1i=1,...,I; j=51,
where:
OM(mg, &)  M(mg, «)
oSh

A97
< (A97)

The derivatives of the “liquid continuity equations” [cf. Equations (A1)-(A3)] with respect to the
parameter ®?) = Nu are as follows:

NN

— — aiz52 — L Pzgé+]>(r7,(lj+]>/“) _ (‘Jmpatm _ aM(mﬂ"X).
9a(52) oNu — "1 R Tz(UH—l) (0.622+w(i))Ta(]) oNu (A98)
(=1i=1,...,1; j=52,
IM(m,, o)
where ONu(Re,x)

was defined in Equation (A23).
A2. Derivatives of the Liquid Energy Balance Equations with Respect to the Parameters

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a) = Ty, are as follows:

aNy? Ny

= 1’1: . =27 =
D~ Ty =ay 0, ¢=2i=1,..

LLj=1 (A99)
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a® = T4y are as follows:

aNy) N
alx(z) - apo

=0, (=2;i

(A100)
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a® = T,in are as follows:

angV  aniY

(1)
Ohy (T in ) . .
. 1/3 — . f win (1) . amw,m (2) (2) amw,m .
aa(3) - aTw,m = a2 B mw’mW + hf (Tw’m’ “) aTw,in o hg’w(Tw ,a)m’ (A101)
(=2i=1,j=3,
where 2Mwin

“t was defined in Equation (A20), and:

(M
Y (T i, )
Rt (A102)
aNy oy

(A103)



Energies 2016, 9, 747 25 of 47

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a® = P, are as follows:

Ny Nl 4 T+ _ (i) 9H(mgn) INu(Rew) om, .
@) T 9Py — aZ - w a ONu(Re,u) amy, 9Patm” (A104:)
(=2i=1,...,[;j=4,

where aN”a(rIn{:’“) and a%’:; - were defined in Equations (A24) and (A25), respectively, and:

o0H(mg, &)  H(mg, w)

ONu(Re,&) Nu(Re &) (A105)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a® = wy, are as follows:

aNZ(l) aNz(l) ai,S _ (T“E}l—"_l) _ Ta(l)) aH(mg, “)

= = ; 0=2,i=1,...,I;j=25, A106
a5 OWisq OWisq / ( )

where:

aH(ma, :x) . fhtNu (Re/ "‘)kairAsurf
awtsg a Dhl '
The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a©® = k. are as follows:

(A107)

any!  aN{ . . .

—_— = —=— =4 =0 = 4, = e ; — 0. 08

RCERE a3 =0, (=2i=1,...,;j=6 (A108)
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to

the parameter a”) = y are as follows:

aNz(i) aN2(i) 7 (i+1) (1) aH(ma,(X) . .
o = o = ——(Tw — Tl )T' (=2i=1,..,Lj=7, (A109)
where:
0 Re,; < 2300
J0H(m,, « w-H(mg,u) Re(mg,
(aya) = | el Rebn) 9300 < Rey < 10000 (A110)
—038 Ales) Re; > 10000

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a® = v are as follows:

aN®  an@
a(28): ai =af =0, (=2i=1,.,j=8 (A111)
14

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter 2 = k,;, are as follows:

aNy?)  aNy)
o ok,ir

=a = - (T?Efﬂ)—Téi)) w; 0=2i=1,...,1j=09, (A112)

where:
BH(ma,a) o H(ma,tx) . fhtNu(Re/a)wtsaAsurf

akair kair Dh I

(A113)
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a1? = f;,; are as follows:

9a(10) — ofy 2

(i) W | |
Ny 0Ny _ o _ (ro™ -1") MMM &) i, L =10,  (Al14)

= w a T/
where:
OH(mg, &)  H(mg &)  kairNu(Re, a)wisa Asyr s
e fu D1 '
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a1V = f,,; are as follows:

(A115)

aNz(l) _ aNz(l) — i
oall) — fpr — ?

=0, ¢(=2i=1,...,I, j=11. (Al16)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter 12 = f are as follows:
aNz(l) — aNz(l) 12

oalin = o =% =0, (=2i=1,...,I;j=12. (A117)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a3 = ag are as follows:

aN®  an®
aa(i) = a;O =ay® =0, (=2i=1,...,[j=13. (A118)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a1 = a; are as follows:

aN®  anN®
2= 2 =g =0, t=2i=1,...,[j=14 (A119)

oun(14) - aﬂl

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a(!> = g .,,, are as follows:

aNy) Ny

oa(15) aaO,cpa

=ay® =0, (=2i=1,...,j=15 (A120)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a1 = 4, .,,, are as follows:

N N ,
0T " Bargy =% 0 (ZBI= Lo lj=16 (A121)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a17) = 12,cpq are as follows:

aNy Ny

w7 = Iy = a7 =0, (=2i=1,...,1j=17 (A122)
,cpa
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter 218 = g 4o are as follows:

aNy? Ny

_ 18 . . i i
98 daggm 2 0, £=2i=1,..1j=18 (A123)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to

(19)

the parameter «'*”) = ay 4,, are as follows:

any)  any!
alx(w) - aal,dav

=ay® =0, 0=2i=1,..,1j=19. (A124)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to

the parameter 2?0 = ) 4qp are as follows:
aNy)  any
aa(ZO) B aaZ,dav

=as® =0, (=2i=1,...,1j=20. (A125)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter 2@ = a3 4qp are as follows:

aNy? Ny

— 2l _ Q. P i
) oy 2 0 (=2%i=1,..,Lj=2L (A126)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a?? = agr are as follows:

aNy) Ny ()ah (1) ) 41y my () (i) (i+1).
W — dag; — a3 = my, Toagy M Ty T e T (A127)
(=2i=1,...,Ij=22

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter «*® = 4y are as follows:

aNy) aN{) o3 (i) (1) ) (1) (T )
B~ Dayy =02 =M g T e (A128)

= Tm) — TV, =0 i=1,...,1 j=23.

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a(?¥) = agg are as follows:

aNy) Ny

_ 22 ( (i) )ahﬁl)( i) D) (i)
2 = Jog e

aaoq =My = —My; (A129)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a®) = a14 are as follows:

oNy _ aNy _ ios (i) _ (it >)M - ( () (’“)) T+,

du(25) dagg — =a; 7(mw w darg My — My
t=2i=1,...,I; j =25

(A130)
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a®®) = gy, are as follows:

oy oNE) o (m(it1) _ () dH(mgm) Nu(Rew). ;o i _ i
=aj Ty — T, ; £=21i=1,...,1; j =26, (A131)

9a(26) T dag,Nu ONu(R a) a9, N

where % was defined in Equation (A105) and W was defined in Equation (A59).

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter @) = a1 Ny are as follows:

oy oNy _ ig7 _ (1) _ pl) dH(men) ONu(Rea),
@) T~ dan, 2 T ( w a ) ONu(Rex) Odajny ’ (A132)
(=2i=1,...,1;j=27,
oH (mg,,u) 8Nu(Re, )
where INu(Re.o) WaS defined in Equation (A105) and —;, =~ was defined in Equation (A61).
The derivatives of the liquid energy balance equatlons [Cf Equations (A4)—(A6)] with respect to

the parameter a®® = ay Ny are as follows:
oNy Ny ios _ (qpli]) i) dH(mae) ONu(Rea).
28 T OdagNny, — 2 T w @ ) ONu(Rex) dapny ' (A133)

(=2i=1,...,1;j=28,

where % was defined in Equation (A105) and was defined in Equation (A63).
The derivatives of the liquid energy balance equatlons [cf Equations (A4)—-(A6)] with respect to

the parameter a®®) = a3 y,, are as follows:

aNu(Re o)

Ny Ny a9 (1) _ p(0)) dH(mym) ONu(Rew),
() T dazNy a4y = w a ONu(Ren) dazny (A134)
(=2i=1,...,1; j=29,

where % was defined in Equation (A105) and aN”giRNe“) was defined in Equation (A65).
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to

the parameter w0 = Wy, are as follows:

aNy? oY)
Ju(30) o adex

=a' =0, (=2i=1,...,1Ij=30. (A135)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter 2B = Wy are as follows:

aNy oy

— i3l _ . P .
B0~ By = 0; (=2i=1,...,1;j=3L (A136)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter aB2 = Az, are as follows:

aNZ(Z) _ aNZ(l) 1,32

Ju(32) o aAde -2

=0, ¢(=2i=1,..., I, j=32 (A137)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter 233 = Az, are as follows:

an® N ,
aa<§3> — aAZ;m =af® =0, (=2i=1,..1Ij=33. (A138)
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter «®¥) = Dy, are as follows:

Ny

aﬂt(34> anan - "2

Ny a4 (i+1)  (i)\ 9H(maa) INu(Rex) am, .
=A== (Tw - Ta ) INu(Rew) o, aD";M, (A139)
(=2i=1,...,1;, j =34,

where %was defined in Equation (A105), while aN”a(rsf’“) and a%”;zn were defined in Equations

(A24) and (A71), respectively.
The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter aBd = Azg are as follows:

any oY)

i35 . .
= =a;7 =0, ¢(=2,i=1,...,I; j=35. Al4
0a3)  dAzgy %2 K =l By= 9 (A140)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter 20 = Az, . are as follows:

NG aN®
aaéé) = aAZZ ' Ea12136:O,' (=2i=1,...,I;, j=36. (A141)
rain

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to

the parameter 2 = Az, are as follows:

aN®  aN®
aa(§7) = aAZZb = =0, (=2i=1,..,j=37 (A142)
S

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter aB8 = Az, are as follows:

Ny Ny s
:a' —

on(38) oAz, 2

0; (=2%i=1,...,1;j=38 (A143)

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter 2% = Dy, are as follows:

(i G , ,
Ny ON~ iz (Tzﬁj“) - Tf)) OH(ma &)y 5y 1, j=39,  (Al44)

ou(39) N aDh -2 aDh !
where
aH( ) _H(ma, "‘)/Dh Re; < 2300
mll/a _ a , uH(mﬂ/“)
= — e 2300 < Rey < 10000 (A145)

—0.2-H(mga,«)/D), Rey > 10000

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a0 = Agy are as follows:

aNy?) Ny

= giA0 — _ (Téj“) ~ T,Y)) OH(maw) 5 iy 5 j=40,  (Al46)

806(40) B aquill -2 aAﬁU
where:
9H( ) 0 Re; < 2300
Mg, & o _al,NuH(ma,lx)Re(mﬂ,tx)
i = el 2300 < Rey < 10000 (A147)

—0.8- H(ma,a)/Afm Re; > 10000
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a) = Agyrf are as follows:

= (=2i=1,...,1j=41, (Al48)

Ny Ny (20 — i) 2HCrmare),

) T 0Ag,r 2 w ) 0Asus

where:
aH(mu/“) o H(ma/‘x) _ fhtkairNu(Re/“)wtsa

aAsm‘f Asurf Dyl

(A149)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a*?) = Pr are as follows:

E)Nz(l) B BNz(l) 242 (T(i+1) _ T(i)) OH (g, ).

= w a 9Pr ;

a2 — opr 2 t=2i=1,.,Lj=42  (Al50)

where:
0 Re; < 10000

_ (A151)
H(mg, )/ (3-Pr) Rez; > 10000

oH (m,, &)
JdPr

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a3 = V,, are as follows:

aNz(i) B aNz(i) — g
ou(43) oV, 2

=0, (=2i=1,...1I;j=43. (A152)

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a@) =V, are as follows:

oNy) oNy) _ g4 — _ (pli+) _ p()Y 9H(mem) INu(Rew) am, .
a4 T Verip — 72 w @ ) ONu(Rew) — dmg Vit (A153)

(=2i=1,...,1; j =44,
where % was defined in Equation (A105), while aN%(nlj:’“) and aﬂ;ﬁ:ﬂ and were defined previously
in Equations (A24) and (A86), respectively.

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a%) = My, in are as follows:

(1) (1)
oN, oN. 1 2 2 2
i = oty = 8% = W (T, @) = WGL(T, 0) = T = mg T 420 — 05, (a154)

(=2i=1;j=45

aN®D N ‘
aa(i5) = amzl =a® =0, (=2i=2,..,Ij=45 (A155)
w,mn

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter w40 = T, in are as follows:

Ny AN
aa(i@ = aTazm =a* =0, (=2i=1,..,Ij=46 (A156)
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The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a*”) = m, are as follows:

Ny Ny i (p(i+) () H(maa) ONu(Rem)
W@ = om, =R T ( w T %4 ) ONu(Rewa) omg (A157)
(=2i=1,...,1;,j=47,
here 2A0ma®) 5,4 ONu(Re ) defined ly in Equations (A24) and (A105), tivel
where 5x7 Re o) o, were defined previously in Equations an respectively.
The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a8 = w;, are as follows:

aN{ aNyY
a“(ig) == =¥ =0 (=2i=1,..,1j=48 (A158)
mn

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a*%) = Re, are as follows:

aNZ(i) _ aN2(") a9 1) _ ()Y 9H(max) INu(Regw),
32 = Me; —H =~ \Hw T %4 ) ONu(Reyzw) ORey; ’ (A159)
(=2i=1,...,1; j =49,

where % was defined in Equation (A105), and M was defined in Equation (A93).

The derivatives of the liquid energy balance equatlons [cf. Equations (A4)—(A6)] with respect to
the parameter a®”) = Sc are as follows:

oNy)  aNy)
5 (;0) = aSZC =a' =0, ¢=2i=1,..1Ij=50. (A160)
(44

The derivatives of the liquid energy balance equations [cf. Equations (A4)—(A6)] with respect to
the parameter a®!) = Sh are as follows:

oND N ,
: (él) _ 852h =a' =0, ¢=2i=1,...,I;j=5L (Al61)
o

The derivatives of the liquid energy balance equations [cf. Equations (A4)-(A6)] with respect to
the parameter a®?) = Nu are as follows:

() (i) ) ‘
N, _ 9N i52 _ _ (TZE,ZH) - TS)) OH(maw) ) o i1 . p =5,  (Al62)

ou(52) — ONu = oNu ’

where aal\?(im"’“)) was defined in Equation (A105).

(Re,

A3. Derivatives of the Water Vapor Continuity Equations with Respect to the Parameters

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®) = Ty, are as follows:

aN®  aN@
aa(gl) = 8sz =ay'=0;, (=3i=1,...,[j=1 (A163)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter «(?) = T, are as follows:

aNy  aN{)
w2 apo o

2_0, (=3i=1,..,1-1]j=2, (A164)
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aN{D Nt dw;
3 3 _— 12 in . .
= =a;" = ; =3,i=1j=2, (A165)

ou(2) apo 3 apo J
where: 0
a0+T—
dwjy, 0.622a1 P;te dp

3T = — L (A166)
dp T 2 <P B a0+%)
tdp atm — €

the parameter a®)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
= Ty, are as follows:

Ny _aNgY g

1 amw in . .
= =a," = ——+—; (=3;i=1,j=3, A167
a3 aTw,in s Mg aTw,in : J ( )
where g%’—m was defined in Equation (A20).

oNy” Ny .
MOR T =ay =0, £=3;i

=2,...Lj=3. (A168)
The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a® = P, are as follows:

8N3(1) _ aNg(l) — az,4 _
oa® 0Py 2

) am,

; £=3i=1,...,1-1,j=4
mﬂz aputm’ 3/l 7 7 /] 7

(A169)
I I j +1
aa(4) apatm -3 aPatm maz aPatm ’ ’ ' ’
where 93’% - was defined in Equation (A25) and:

110+71-1f]

0wy 0.622e = '

o IR (A171)

atm ap+ T
Patm — € i

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a® = wyq, are as follows:

Ny _ang) 45 _o.
ou(®) 0Wrsq 3 ’

(A172)
The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a® = kg, are as follows:

NN, .
PRk

(A173)
The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a”) = y are as follows:

Ny _ aNy) _ 47 =0 ¢
aa(7) ay -3 !

=3i=1,... (A174)
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The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a® = v are as follows:

aNy) Ny

5 5 =af=0, (=3i=1,...,[;j=8. (A175)
14

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter 2 = k,;, are as follows:

aN{ aN{
804(39) :ak3' Egg9:0; (=3i=1,...,I;j=09. (A176)
arr

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a1% = f,, are as follows:
Ny _ Ny _ 410
910 afy 2

=0, (=3i=1,...,1I;j=10. (A177)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a1V = f,,; are as follows:

aN?Ei) aNéi) i1l
= =a; =00=3i=1,...,;j=1L Al17
o) = of, @ ZOE=¥ =L by (A179)
The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a1?) = f are as follows:

M aN®
SZ\(IZ): a; =a?=0; (=3i=1,..,Lj=12 (A179)
14

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a13) = g are as follows:

aNy Ny

= = =0 =3,i=1,...,I1-1,i7=1 Al
a3 = gy =8 =0 t=3i=1..1-1j=13 (A180)
aNél) aNg(I) 113 _ OWin

— = 4 = ; :;':;.:1, A181

3208~ day = T g (THISLI=T (A181)
where: y
+7
dwiy  0.622Pyme T

= ; A182
aﬂo 110+-[’-171 2 ( )
Patm — e v

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter 1% = g, are as follows:

aNy) Ny

8 = 5 =ay* =0, (=3i=1,..1-1j=14, (A183)
14 1

aN Nl dw; o

o 5y = a;’l =yt = aall” ; 0=3i=1j=14, (A184)
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where: “

‘ a0+Td
0wy _ _ 0.622Pume” (A185)

daq a0+ L 2
0+
T, (Putm—e po)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a1® = ag,cpa are as follows:

aNy Ny

oa(15) aaO,cpa

=a® =0, (=3i=1,...,j=15 (A186)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to

the parameter a16) = a1,¢pq are as follows:
aNy’  any
9a(16) ~ 9ay,cpa

=ay® =0, (=3i=1,..,1j=16 (A187)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a('”) = a, .,,, are as follows:

aNy Ny

1,17 . .
= =a;’ =0; =3;i=1,..., I, i =17. A188
5a17) ~ Bz as 0, £=3;i J ( )

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to

(18)

the parameter &' = q 4, are as follows:

aNy) Ny
on(18) aaO,de

=ay® =0, (=3i=1,...,j=18 (A189)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to

the parameter a!¥) = a; 4, are as follows:
aN{ aN{)
oa(19) N 941, 4ap

=ay® =0, (=3i=1,...,Lj=19. (A190)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter 220 = ) gy are as follows:

aNy? Ny

1,20 . .
_ a0, (=3;i=1,...,1 j=20. A191
o (20) 003 dav 3 ! J ( )

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter 2@ = a3 4qp are as follows:

aNy Nl
3 3 =gl—0;, ¢(=3i=1,..,1j=21 (A192)
3 )

du @) aa?),duv

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter «*? = ay are as follows:

aNy)  aNy)
aa(gz) = aa(‘:’f = 1113,22 =0, ¢(=3i=1,...,1j=22 (A193)
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The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter ) = ays are as follows:

aNs(l) _ aNa(l) L
aa(23) aa1f I

0; ¢(=3i=1,..1j=23 (A194)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter «(>*) = g, are as follows:

E)Néi) _ aNéi) — g2
a(x(24) aaog -3

0; (=3i=1,..1Ij=24 (A195)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®) = a1q are as follows:

oNy) Ny s . |
02~ amy 3 C0 =il Li=5 (A196)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to

(26)

the parameter «'*® = g y,, are as follows:

aNy) aNy
oa(26) — 9ag Ny

=a® =0, (=3i=1,...,;j=26 (A197)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a@) = a1 Ny are as follows:

aNy aNy!
a[x(27) - aﬂLNu

=a =0, (=3i=1,...,[;j=27. (A198)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®® = g, y, are as follows:

aNy aNy

i28 , .
—2 = =a;°° =0 =3i=1,...,I; ] =28 Al
e 302 nn aj 0, ¢=3;1 PR N | 8 (A199)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®”) = a3, are as follows:
(i) (i)
oN, _ oN,
ou(29) 8a3,Nu

=ay® =0, (=3i=1,...,1j=29 (A200)
The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®%) = Wy, are as follows:

aNy) Ny

30 pa i o
B0 W 3 0; £=3i=1...Ij=230 (A201)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®) = Wy, are as follows:

aN®  aN®
min:awjk =at =0, (=3i=1,...,[j=3L (A202)
Y
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The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter aB2 = Az are as follows:

aNGD  aN®
aaéz) = aA;dk =a2 =0, (=3;i=1,...,[j=32 (A203)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to

(33)

the parameter a> = Azg,, are as follows:

an® N , ' .
aa<§3) = 8Az;m =ay® =0, (=3i=1,...,1j=33 (A204)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a4 = Dg,, are as follows:

N N , @ _ D) o ’ |
500 =D,y = =z aDgy (SISl li=3 (A205)
an an

where a%";” was defined in Equation (A71).

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter &> = Az are as follows:

aNy) Ny
on(3) aAzfm

=ay® =0, (=3i=1,...,[;j=35 (A206)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter aB0) = Az, .. are as follows:

N aN®
80((;6) = aAz3 — = {113:36 =0, ¢=3i=1,...,1I, j=36. (A207)
rain

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a®”) = Az, are as follows:

aNy aNy!

ou(37) - aAst

=as7 =0, (=3i=1,..,1j=37 (A208)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter aB8 = Az, are as follows:

8N3(i) _ E)Néi) — 38 _
a(x(38) aAZde -3

0; £=3i=1,...1j=38 (A209)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter 2 = Dy, are as follows:

N N

25 = 9D =% 0; (=3i=1,...1I;j=39. (A210)
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The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a*?) = Ag, are as follows:

Ny Ny
a0 — 9Agy BT

0; (=3;i=1,...,1;j=40. (A211)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a*) = Ay, are as follows:

E)Néi) _ aNg(i) — Al —
alx(41) aAsurf -3

0; (=3;i=1,...,1;j=4lL (A212)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a#?) = Pr are as follows:

8N3(i) _ aNg(i) = A2 _
a2 opPr — 3

0; (=3i=1,..1j=42 (A213)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®) = Vv, are as follows:
(i) (i)
oN; _ oN,

=ay® =0, (=3i=1,...,[;j=43. (A214)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a*¥ = V,;; are as follows:

Ny Ny m =l om,

= =gy = — ; £=3i=1,...,1, j =44, A215
o)~ By mE Ve l / (A219)
where aalj"”,t was defined in Equation (A86).

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a9 = My, in are as follows:

aNs”  angl

1,45 : H
L B SR A21
dn(45) a“lw,jn 3 ’ 3 i ] 5, ( 6)

aNél) aN3<l) __ i45 . .
) om0 0; £=3i=2,...,1j=45 (A217)

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter w40 = T, in are as follows:

aN?Ei) aN?Ei) i46

= =ay =0, (=3;i=1,...,1; j=46. A21

3% = 3T, aj ; 3i=1,...,I; j=46 (A218)
The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to

the parameter a®) = m, are as follows:

aN(l) aN(l) ) (7) . (i4+1)
= e == TR (=3i=1,. =4 (A219)
a
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The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a8 = w;, are as follows:

oNy o S48 o,
Jun(48) awin I !

£=3i=1,...,1—1, j =48, (A220)

aND N
azx(iS) = -=a¥ =1 (=3i=Lj=4 (A221)
mn

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter a4%) = Re; are as follows:

aNél) aNél) 1,49 0
_ _ 48—,

T = TRey =% ;o 0=3i=1,...,1;j=49. (A222)

The derivatives of the water vapor continuity equations [cf. Equations (A7)-(A9)] with respect to
the parameter «®?) = Sc are as follows:

aN®  an®
. (30) = 8530 =af’ =0, ¢=3i=1,...1Ij=50. (A223)
n

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®!) = Sh are as follows:

aNG NG
5 (;’1) = as?;l Ea351:0;€:3,‘i:l,_,_,[,‘j:Sl. (A224)
e

The derivatives of the water vapor continuity equations [cf. Equations (A7)—(A9)] with respect to
the parameter a®? = Nu are as follows:

aN?El) _ aN?Sl) 1,52

922 oNu B

=0; (=3i=1,...,1j=>52 (A225)

A4. Derivatives of the Air and Water Vapor Energy Balance Equations with Respect to the Parameters
The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with

respect to the parameter a(!) = Ty, are as follows:

Ny Ny

il p—a i 1.
o]~ T = =0, (=4i=1,...,1-1j=1, (A226)

aND aND A — e 7\ 127315
D T Ty % T p 2 &

I+1
mII(T, ;)
n

+ wi aTa,z‘n

_ W) (10427315 S (A227)
=Cp (| twpmg (=4i=Lj=1

Note: The value of the inlet air temperature is set equal to dry-bulb temperature, although these
quantities are treated as two different parameters in the model. The dry-bulb temperature is used
in mass diffusivity calculations. The relation between the two parameters, i.e., T, ;, = Ty, needs to
be accounted for when computing the respective derivatives: the derivative of Equation (A12) with
respect to the dry-bulb temperature must be the same as the derivative of Equation (A12) with respect
to the inlet air temperature.
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a® = Ty are as follows:

— =al?=0, (=4i=1,..,1-1j=2 (A228)

I I
oN,” Ny 12 _ iy
o 9T, "t T Ty,

(algTa,,‘n + aog) ; d=4i=1j=2, (A229)

where g‘}’;; was defined in Equation (A166).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a® = Tyyin are as follows:

aNil) aNil) al 3 _ gz)v(TZg)/“) amw,in — algTTS’Z)+a0g aml"'i” .
EHE aTw/in R T Mg aTw,in - Mg aTw,in / (A230)
(=4i=1j=3,

where 3T was defined in Equation (A20), and

aNy)  aNy
o aTw,in

=al’ =0, (=4i=2,...,1j=3 (A231)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a® = Py, are as follows:

aNi) aN() _ al4 (T(iJrl) T(i)) 1 OH(mgn) ONu(Rea) om,  H(mgu) om,
O apgfm 4 w a Mg aNH(Re,lX) onig 9Pyt ma2 9Patm A232
(mg)_ (i+1) )h ( <1+1),1)¢) am . . ( )

- maZ E)Patjn; t=4i=1,...,1-1j=4,

aN() _ aN() _ _ (T(1+1) T(i)) [L OH(ma,x) ONu(Re,x) om, _ H(mgu) m,

E)zx( ) 0 apa(t_m )_( 4 a mg ONu(Re,x)  9mg 9Py ma?  OParm (A233)
( mlt ml i+1 )h i+1) (Tw ,a) 3 dw: . .
- m:zz apzltj” + 31(;;;:; (algTa,in + aOg) ;o U=4i=1j=4

OH (mg,u) d ONu(Re,x) 3mu

where 5 (Re, ) an o, were defined in Equations (A24) and (A105), respectively, while

and cUnz

were defined in Equations (A25) and (A171), respectively.
The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a® = wyq, are as follows:

ony N _ s (18— 1) a(my,a)

= = = ; =4,i=1,...,I, j=5, A234
a5 OWsq 4 mg 0Wisq ¢ ! =5 (A234)
OH (11,,1)
where o Was defined in Equation (A107).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a® =k, are as follows:

aN® N
a“(‘l@ :ak4 =a=0, (=4i=1,...,j=6. (A235)
sum

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a”) = y are as follows:

oNy Ny _ (Y - 1) oH ()
a‘x(7) al/l — "4 mg a]’t 4

(=4i=1,...,Lj=7, (A236)
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where W was defined in Equation (A110).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a® = v are as follows:

aNy Ny
Ju(8) oo

=af=0, (=4i=1,..,[j=8 (A237)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a) = k,;, are as follows:

Ny Ny _ o (16 1) aH ()
on® Ok v Ma Oy

(=4i=1,...,1j=9, (A238)

where % was defined in Equation (A113).
The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with

respect to the parameter a(19) = f,,, are as follows:

oNy o _ g (T — 1) 9H (g )
oa(10) — 9fyy Ma O

(=4i=1,...,1;j=10, (A239)

where % was defined in Equation (A115).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a(!) = £, are as follows:

aNy)  aNy

92D~ =a=0;, (=4i=1,..,[j=1. (A240)
m

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a(!? = f are as follows:

aNzii) aNf) — il2 , .
502 ~ af =a;,° =0 (=4i=1,... 1 j=12 (A241)
The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter (¥ = g are as follows:

NGO aN®
3 (;13) = aa4 Ea213:O; £:4,l:1,/1—],]:13, (A242)
a 0

aNﬁil) aNAEI) — 113 awm . .
S = G = = G (T taag) (=%i=0j=13  (A249)
where a‘" was defined in Equation (A182).

The derlvatlves of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a(1*) = a; are as follows:

aN aN
5 (‘1‘4) = 8{14 =aM=0 (=4i=1,..1-1j=14, (A244)
o 1

aNil) aNéEI) — 1,14 awm . .
2D = oa = ay " = 30, (a1gToin+a0g); (=4 i=1j=14, (A245)

Win

where aa o was defined in Equation (A185).
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a(1® = ag,cpa are as follows:

; ()
ac{ﬁ (T,, +2273.15’a>
aaO,cpa

{=4i=1,...,I;, j=15

(i) (i) . . .
oON,” _ oN,’ _ 15 (i+1) (1)
9215~ 9ag,cpa =4ay = (Ta - T, )

S (O (A246)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a16) = a1,¢pq are as follows:

; (i)
() [ 1 +273.15
PNIO PINIO , , o 9Cp (7 2 ﬂ)
4 —_ 1 — al,16 (T(Z+l) _ T(I))
atX(16> aal,cpa -4 a a a‘zl,cpa

—05 (T§i+l) - Tﬂ(i)) (TV +27315); ¢(=4;i=1,...,I; j=16.

(A247)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a(17) = a3 cpa are as follows:

acf,“ <T;i)+2273415,a>
oua(17) - aﬂZ,cpa ! aﬂZ,cpa (A248)
. . . 2
—025 (Tu(’“) - Ta(’)) {Ta(’) T 273.15} ;o l=4i=1,...,Lj=17.

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter w18) = a9 4ap are as follows:

aNy aNy

_ i,18
= =a,; = 0
a“(18) alloldm, a

; (=4i=1,...,Ij=18 (A249)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter 219 = a1 4gp are as follows:

aNy Ny

1,19 . :
= =a;, =0, (=4,i=1,...,I; j=19. A2
ox(19)  0aq 440 “ K =t =1 (A250)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter 220 = a3 4qv are as follows:

aNy Ny

_ 1,20 . .
- =g 0, (=4i=1,.. 1 j=20. A251
30 = Baym aj i j (A251)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter w2 = a3 4qp are as follows:
(1) i)
aNy’  aNy
Ja(21) aagrd[w

=a? =0, (=4i=1,...,j=2L (A252)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a?? = agr are as follows:

N, _ Ny’ — 42—
aa(22) aaof T4 !

(=4i=1,...,1j=2. (A253)
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a®® = ays are as follows:

5;657: aa;___agz‘ 0 (=4i=1,...,1;,j=23 (A254)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter ¥ = g, are as follows:

i i i i+1
aNi) _ BNi) = g2 = (i) _ ) 4 m() - mz(u+ :
du(24) dagg 4 m,

; (=4i=1,...,1;j=24  (A255)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a(?> = a14 are as follows:

aN(l) aN(l) _i75 i1 (i+1) . (l) (mg)*mgﬂ))n(vi“)
i = aafg =a” = WHFD T _ O 4 A (A256)
t=4i=1,...,I;, j =25

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter w20 = ap,Ny are as follows:

20 — dagn, — 4 T g ONu(Rea) dagny ' (A257)
{=4i=1,...,1,j=26

aN{ Nl 2126 _ (T 1Y 9H(mam) INu(Ren) .

where aal\l}lu(("f{e”;)) and al\gz(Re’ %) were defined previously in Equations (A59) and (A105), respectively.

The derivatives of the air /water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a?”) = a; y, are as follows:

aNy Ny 27 (r8 Y 1Y 9H(m,a) ONu(Rew) .

@) T dmng 4 T g ONu(Re,x)  Oaynu ' (A258)
l=4i=1,...,I;j=27,

where :1\171 S(Re a)) and al\g;gii’“) were defined previously in Equations (A61) and (A105), respectively.

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with

respect to the parameter #?® = g, y,, are as follows:

anNy _ aNy) _ iog (1 -1y aH(mae) ONu(Rea) .
ou28) T dagny — ay = myg ONu(Rew) Odapn, ' (A259)
(=4i=1,...,Ij=28,

where aalif(Re a)) and al\g;gRe ) were defined previously in Equations (A63) and (A105), respectively.

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter «?%) = a3y, are as follows:

Ny Ny 2 _ (TS 1) 9H(m, ) ONu(Rew) .
o) T OazNn, T 4 T Mg ONu(Rew) dazny (A260)
{=4i=1,...,1;j=29,

OH (mg,u) and ONu(Re,un)

where ONu(Re,x) 943 Nu

were defined previously in Equations (A65) and (A105), respectively.
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter 2B = Wy, are as follows:

aNy  aNy

= 1’30 = U, =4 ] = S —
B0 W 0 f=%i=1..1j=30 (A261)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with

() =

respect to the parameter « Wy are as follows:

aN® NG
=4 =820 (=4i=1,..,[j=3L (A262)

Ju(31) o adey

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a(®?) = Az are as follows:

E)Nf) _ aNii) _ i
0w (32) oAzz 4

=0 (=4i=1,..1j=32 (A263)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a®3) = Az, are as follows:

oNy _ aNy) i _ g,
) obzp 4 TV

(=4i=1,..,Ij=33. (A264)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter ¢3%) = Dy, are as follows:

ony _aNy s (T gy [ 1 0H(maw) aNu(Rew) om, _ Himga) o,
a0 ~ g, — %~ Ve 7l ) | GNu(Rea)  oma 9D ma?  Dfan
(m) —m e (16 2) g

- it anan; l=4i=1,...,I, j=34,

(A265)

oH (mg,u) ONu(Re,n) ONu(Reun)
where ONu(Re,ux) and amg dmg

respectively, while a%";ﬂ was defined in Equation (A71).

were defined previously in Equations (A105) and (A24),

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a3 = Azgy are as follows:

N N ,
aa(§5) = aAzjrl-” = 112’35 =0, ¢=4i=1,...,1, j=35. (A266)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter 20 = Nz, are as follows:

aNii) aNin) — 1,36 . .
908 ~ Az~ =0 t=4i=1,...,1j=36 (A267)

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a®”) = Az, are as follows:

Ny _ o _
) bz,

=0, (=4i=1,...1j=37 (A268)
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a®® = Az, are as follows:

Ny aNy
o=t =¥ =0 (=4i=1,..1j=38 (A269)

Ju(38) o aAsz

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with

respect to the parameter a®”) = D, are as follows:

aNy)  aNy

(i4+1) (@)
_ i (To ' =T")9H(mg&) . o
B oD, M4 T - oD, (=4i=1,...,1;j=239, (A270)

where %"I;Z"x) was defined in Equation (A145).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a0 = Agy are as follows:

N N , (i+1) (i)
. (io) — aA4 = — (T _ T, )alé(;lna,oc); (=4i=1,...,j=40, (A271)
o fill a fill

Mg(";?l’l“) was defined in Equation (A147).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a@) = Asyrf are as follows:

where

aNy Ny (Y — 1Y 9H (my, )
= =aqa; = —Ll=4i=1,...,; j=41, A272
o (41) aAsurf 4 Mg aAsm’f l J ( )

M was defined in Equation (A149).
surf

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a2 = Pr are as follows:

where

oNy  aNy L, (Y — 1) 9H(my, )

oa42  o9Pr ~ ¢ M, oPr '

(=4i=1,..1j=42, (A273)

where % was defined in Equation (A151).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a®) =V, are as follows:

aN®  aN®
. (13): av4 =a® =0, (=4i=1,.,[j=43 (A274)
n© w

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a** = V,;; are as follows:

BNiU _ BNii) _ ai’44 _ (T(i+1) . T(i)) 1 0H(mgu&) ONu(Rewa) om, _ H(mgx) dm,
WA T W — Y T Vo a mg ONu(Re,w)  Omg  0Viys ma?  Vexit (A275)
(i) —my " i (™Y ) am : :
— s an:,'t" (=4i=1,...,1;, j=44,
where aﬁ(g{‘;’g) and aNIgSE:’“) were defined previously in Equations (A105) and (A24), respectively,

while aa‘}"”,t was defined in Equation (A86).
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The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter @) = My, iy, are as follows:

aNil) aNil) _ 145 hé(fz)li(TYEJZ)r‘x) algTz(uz)Jra(Jg , ,
00 g W T me . m, o (T HISLI=S (A276)

N N '
7806(15) = am4‘ EQZ45:O; 624, 1:2,,1,]:45 (A277)
w,in

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter w40 = T, in are as follows:

aNf) _ aNii) 1,46

= =af =0 (=4i=1,...,]1-1]= 7
3a(4) — 9T, =4y 0 £=4i=1,...,1-1,j=46 (A278)
Nt aN(I) 146 (1) +273 15 ah(H])( Ty jtt)
aulie = T, = 4 L35 ) o, Pin Onin)

/ (A279)

(I)
= C;(,I) (T,,+2273.15,a) + wiydig; (=4 i=1j=46.

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a”) = m, are as follows:

Ny N ay G) 1)\ B (T )
= T = = = () ™) e (A280)
+ (T = 1) [ i), MuRee) _ Hlvgp) | =gy i= 1., 1 j =47,

where aﬁ(&:’é 02) d aNua(;je %) were defined previously in Equations (A24) and (A105), respectively.

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter a8 = w;, are as follows:

o
o (48) owiy, 4

=0, (=4i=1,..,1—1;j=48, (A281)

I I
Ny aNy s — IV
a8 dwy, 4
The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter 2“9 = Re, are as follows:

(Tpin,0); (=4i=1j=48 (A282)

aNy) i49 (T -1Y) 9H(mae) ONu(Rega) .
ag = = 1y ONu(Rezx) ORey; 7 (A283)
b=4i=1,...,I;j=49,

where % was defined in Equation (A105) and w was defined in Equation (A93).

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter a®?) = Sc are as follows:

aN®  aN®
- (30) = 8540 =a =0, (=4i=1,..1Ij=50. (A284)
n




Energies 2016, 9, 747 46 of 47

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)-(A12)] with
respect to the parameter «®Y) = Sh are as follows:

aNy Ny
b= 4 =gt =0, (=4i=1,...,[ =5 (A285)

oa(5)  9Sh

The derivatives of the air/water vapor energy balance equations [cf. Equations (A10)—(A12)] with
respect to the parameter #®? = Nu are as follows:

Ny Ny s () 1) (g m).
9202 _ oNu z ONu_

(=4i=1,...,1j=>52 (A286)

where aH(m”’“)) was defined in Equation (A105).

ONu(Re,x
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