Supplementary Information Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites

Mingyi Fan¹, Tongjun Li¹, Jiwei Hu^{1,*}, Rensheng Cao¹, Xionghui Wei², Xuedan Shi¹ and Wenqian Ruan¹

- ¹ Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, Guizhou, China
- ² Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- * Correspondence: jiweihu@yahoo.com; jwhu@gznu.edu.cn; Tel.: +86-851-8670-2710

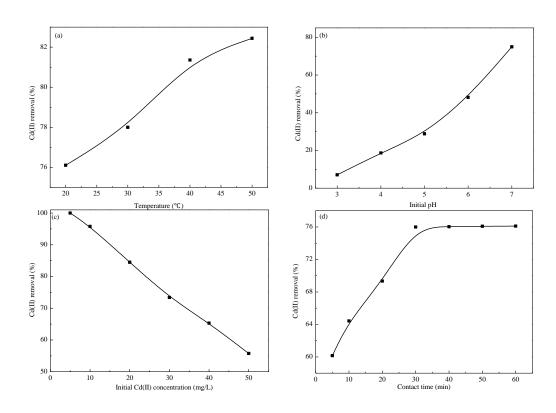


Figure S1. Effect of temperature on Cd(II) removal by nZVI/rGO composites: initial pH = 7.0; nZVI/rGO composites dosage = 30 mg; Cd(II) concentration = 20 mg/L; and time = 1h (a). Effect of initial pH on Cd(II) removal by nZVI/rGO composites: temperature = 20 °C; nZVI/rGO composites dose = 30 mg; Cd(II) concentration = 20 mg/L; and time = 1h (b). Effect of initial Cd(II) concentration removal by nZVI/rGO composites: temperature = 20 °C; initial pH = 7.0; nZVI/rGO composites: temperature = 20 °C; initial pH = 7.0; nZVI/rGO composites dose = 30 mg; and time = 1h (c). Effect of contact time on Cd(II) removal by nZVI/rGO composites: temperature = 20 °C; initial pH = 7.0; nZVI/rGO composites dose = 30 mg; and Cd(II) concentration = 20 mg/L (d).