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Abstract: This paper focuses on the analysis of InGaZnO thin-film transistors (TFTs) and circuits
under the influence of different temperatures and bias stress, shedding light into their robustness
when used in real-world applications. For temperature-dependent measurements, a temperature
range of 15 to 85 ◦C was considered. In case of bias stress, both gate and drain bias were applied for
60 min. Though isolated transistors show a variation of drain current as high as 56% and 172% during
bias voltage and temperature stress, the employed circuits were able to counteract it. Inverters and
two-TFT current mirrors following simple circuit topologies showed a gain variation below 8%, while
the improved robustness of a cascode current mirror design is proven by showing a gain variation
less than 5%. The demonstration that the proper selection of TFT materials and circuit topologies
results in robust operation of oxide electronics under different stress conditions and over a reasonable
range of temperatures proves that the technology is suitable for applications such as smart food
packaging and wearables.
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1. Introduction

InGaZnO thin-film transistors (IGZO TFTs) enable uniformity over large-areas, compatibility with
low-cost and low-temperature fabrication techniques, and high mobility (>10 cm2/V·s), setting oxide
TFTs as a winning alternative for flexible large area electronics (LAE) when compared to competing
TFT technologies (e.g., a-Si:H and poly-Si) [1]. As a good maturity level of this transistor technology
starts to be achieved, circuit design and fabrication [2–5] becomes increasingly important, enabling
one to implement smart integrated systems—namely, near-field communication (NFC) smart labels [6],
intelligent packaging, and systems on glass, plastic, or garments [7]. However, the continuous real-time
operation of these applications demands robust circuit performance against bias stress and over a
reasonable range of temperatures. Though IGZO TFTs show better stability compared to a-Si:H TFTs,
several studies have demonstrated that they still show non-negligible threshold voltage (VTH) shift
with respect to bias stress [8–10] and temperature [11,12].

In oxide TFTs, VTH variation with gate bias stress is due to the charge trapping at the
semiconductor dielectric interface or charge getting into the dielectric [8–10]. Due to the variation
in total charge of the conductive channel, the drain current (IDS) of the TFT will also be changed.
On the other hand, as temperature increases, mobility increases and VTH tends to have a negative shift,
implying that the semiconductor and hence the device are becoming more conductive. Possible causes
are oxygen vacancies in the semiconductor creating additional states near conduction band and
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excitation of electrons due to temperature. IGZO TFTs have been analyzed under different temperature
ranges to gain insights into the mechanisms controlling carrier transport. Chowdhury et al. worked in
a low-temperature range (10–300 K), concluding that variable range hopping was dominant below
80 K, and that above this temperature thermally-activated band conduction would dominate [12].
Between 300 and 10 K, a VTH shift as high as +8 V and saturation mobility (µsat) decrease from 22 to
<1 cm2/V·s were reported. Godo et al. have shown a VTH shift >4 V between 120 ◦C and 180 ◦C also
for IGZO TFTs, explained by assuming two kinds of donor-like states as carrier generation sources [11].

Despite the high relevance of these studies to gain insights on device physics, the works in this area
are typically based on oxide TFTs annealed at high temperatures (>300 ◦C), which are more stable than
low-temperature ones but are not compatible with low-cost flexible LAE concepts. Furthermore, reports
on temperature/stress analysis of circuits based on oxide TFTs or even on other thin-film technologies
are scarce. A common-source amplifier static performance with a-Si:H TFTs was reported under bias
stress conditions at room temperature, the transfer characteristics of the amplifier being resistant to
VTH shift in the TFTs [13]. The current work presents for the first time a unified characterization of
low-temperature (180 ◦C) oxide TFTs and circuits behavior under bias stress and temperatures ranging
from 15 to 85 ◦C. The temperature range was selected having in mind typical storage/utilization
environments of general-purpose smart packages and wearables (due to a setup limitation, it was not
possible to extend the analysis to lower temperatures; still, as will be seen in the results section, smaller
variation of properties are seen as temperature is decreased). From measurements, it was clear that
IDS has a strong dependency with temperature and bias stress. However, circuits (inverter and current
mirrors) have shown a robust performance by compensating these IDS shifts, even if a low-temperature
oxide TFT process is used (180 ◦C), which leads to lower TFT performance and more device-to-device
variation than what is typically obtained with high-temperature processing (>300 ◦C).

The rest of the paper is structured as follows: Section 2 describes fabrication details of TFTs
and circuits. Section 3 presents isolated TFTs stress and temperature-dependent behavior. Section 4
introduces robust circuit topologies that can cancel IDS variations. Section 5 discusses the measured
circuit response under bias stress and over a valid range of temperatures, and finally conclusions are
drawn in Section 6.

2. Transistor and Circuit Fabrication and Characterization

In a 2.5 × 2.5 cm2 glass substrate, individual TFTs and circuits were fabricated with a staggered
bottom gate structure and annealed at 180 ◦C. Gate, source, and drain electrodes were made of
60 nm-thick Mo deposited in an AJA ATC-1800 sputtering tool (AJA International Inc, North Scituate,
MA, USA). The oxide semiconductor was a 30 nm-thick In2O3-Ga2O3-ZnO (IGZO) layer, and the
dielectric layer was a 175 nm-thick multicomponent/multilayer stack based on Ta2O5 and SiO2.
The semiconductor and dielectric layers were deposited by RF magnetron sputtering in an AJA
ATC-1300F system (AJA International Inc, North Scituate, MA, USA) without intentional substrate
heating. The electrodes and the semiconductor were patterned using a liftoff process, while the
dielectric was etched by reactive ion etching in a Trion Phantom 3 system with SF6 atmosphere.
On top of the devices and after the 180 ◦C annealing on a hot-plate for 1 h, a 1 µm-thick chemical
vapor-deposited parylene-C (poly (monochloro-p-xylylene)) was deposited in a CVD-PDS-2010 tool
(Speciality Coating Systems, Indianapolis, IN, USA). The parylene-C layer was deposited on top of an
adhesion promoter consisting of Sylane A-147 from Specialty Coating to improve adhesion to IGZO.
Access to gate, source, and drain pads was opened using oxygen plasma in the Trion Phantom 3
system (Trion Technology, Inc., Clearwater, FL, USA). This passivation layer improves device stability,
as shown in [14,15]. All the TFTs (isolated and integrated in circuits) had a channel length (L) of 20 µm,
with channel widths (W) in the range of 40 to 320 µm. A cross-sectional view of the TFT structure is
presented in the inset of Figure 1b. Regarding circuits, inverter (common-source amplifier with a diode
connected load), 2-TFT, and cascode current mirrors were evaluated.
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Figure 1. Effect of (a,b) positive gate and drain bias stress and (c,d) measurement temperature on the
electrical properties of In2O3-Ga2O3-ZnO (IGZO) thin-film transistors (TFTs). (a,c) show transfer
characteristics; (b) shows IDS evolution measured continuously during bias stress and the inset
presents device structure cross sectional view; (d) shows µsat dependence of VGS-VTH for the different
temperatures and the inset presents activation energy with respect to the gate voltage.

Electrical characterization of the TFTs and circuits was carried out with an Agilent 4155C
semiconductor parameter analyzer (Agilent Technologies, Santa Clara, CA, USA) and a Cascade
Microtech M150 probe station with a ERS AC3 chuck for temperature control. All measurements and
device stressing were done in the dark.

Regarding bias stress, transistors and circuits were measured before (pre-stressed state) and with
a bias stress for every 20 min up to one hour. For isolated TFT, VGS and VDS were set to 4.5 V and
10 V, respectively. To mimic these conditions in inverters, VIN of 4.5 V and VDD of 10 V were used.
For two-TFT current mirrors, a constant input current (IIN) of 10 µA was supplied, while maintaining
the output voltage at 10 V. For the cascode current mirror, output voltage was kept at 15 V instead.
For these biasing conditions, the VGS of TFTs in the current mirrors was approximately 4.5 V during
stress. Regarding temperature stress, all the devices were allowed to settle at each temperature during
20 min before measurement.

3. Isolated TFT Behavior

3.1. Stress-Dependent Behavior

Typically, oxide TFTs show positive VTH shift under positive gate bias stress due to charge trapping
at the semiconductor/dielectric interface or charge getting into the dielectric [8–10]. However, oxide
TFTs employing high-k dielectrics can also show an anomalous trend of negative VTH shift, typically
attributed to charge detrapping from the dielectric and charge migration by dipole-creation [16–18].
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Transfer curves measured after discrete periods of gate bias stress are presented in Figure 1a.
They suggest a charge trapping mechanism only, with a VTH shift of 1.29 V after 60 min stress.
Further insights into the instability mechanism can be seen by analyzing the continuous IDS variation
during the entire stress period (Figure 1b). While a decrease of IDS with time is the general trend (in
agreement with the positive VTH shift), an opposite behavior is verified during the first minutes of
stress. This suggests that in fact the two instability mechanisms mentioned above can be present, but
charge trapping tends to dominate for longer periods of stress. The small peaks visible in this plot are
due to the short interruptions of bias stress for the measurement of transfer characteristics (20 min and
40 min). A detailed analysis of these competing mechanisms is currently under study.

3.2. Temperature-Dependent Behavior

Figure 1c shows the transfer characteristics within a temperature range of 15–85 ◦C. Three effects
are readily observed as temperature increases: (i) VTH is shifted towards negative values; (ii) maximum
IDS is increased; (iii) non-idealities appearing at the subthreshold region disappear. The VTH and
IDS trends can be explained by the larger concentration of free carriers available, which escape from
localized states as temperature is increased [19]. Note that the negative VTH shift is not the only reason
for the larger maximum IDS; in fact, µsat is significantly enhanced as temperature increases (Figure 1d).
It is interesting to notice that Chen et al. obtained a considerably smaller increase of field-effect mobility
within the same temperature range on IGZO TFTs (from ≈9 to 11 cm2/V·s). This can be justified by the
different temperatures used for device fabrication: Chen et al. used 300 ◦C, against 180 ◦C of our oxide
TFTs. It is well known that (post-)processing temperature is one of the most important parameters in
setting the quality of IGZO thin films, with lower temperatures resulting in larger density of subgap
trap states, hence to more notorious thermal activation of µsat [20,21]. This is also related to effect (iii),
observed in Figure 1c and also in Figure 1d: As expected, Ea decreases with increase in VGS and a
minimum of 70 meV is obtained at VGS = 8 V from Figure 1d inset. Values lower than this are typically
reported in literature for IGZO TFTs (around 26 meV) [19]. However, it should be noted again that the
processing temperature of the present devices is quite low (180 ◦C) compared to the typical >300 ◦C
reported in literature. As shown in [20], defects close to 100–300 meV are annihilated as annealing
temperature increases; hence, it would be expected that devices annealed at lower temperature would
present higher Ea.

Table 1 shows measured IDS with respect to stress and temperature variation, taken for
VGS = 4.5 V and VDS = 10 V. Under the considered testing conditions, IDS can be changed by more
than 170%, as can be noticed from Table 1.

Table 1. Drain current variation on IGZO TFTs under different durations of gate and drain bias stress
and measurement temperature. IDS measured at VGS = 4.5 V and VDS = 10 V.

Stress (Min.) Temperature ( ◦C)

0 20 40 60 15 25 45 65 85

IDS (µA) 11.3 10.7 6.8 5.0 6.8 8.1 7.1 11.5 21.9
Relative variation (%) 0.0 −5.2 −39.5 −56.0 −15.5 0.0 −12.2 43.3 172.3

4. Robust Circuits against Bias Stress and Temperature: Theoretical Analysis

When isolated TFTs show significant performance variation under external stimulus, obviously
circuits and systems employing these devices tend to show degradation in their performance.
Robust circuit topologies have been analyzed to infer about their ability to counteract IDS variation.
Circuit schematics and the corresponding micrographs are presented in Figures 2 and 3, respectively.
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Figure 2. Circuit schematics: (a) Inverter; (b) Two-TFT current mirror; (c) Cascode current mirror.

(a) (b) (c) (d)

Figure 3. Micrographs of (a) TFT; (b) Inverter 40–40; (c) Two-TFT current mirror with WT1 = 40 µm
WT2 = 320 µm; (d) Cascode current mirror.

For the sake of simplicity, threshold voltage with respect to stress time and temperature variation
is expressed as follows:

VTH(t, T) = VTH0 + ∆VTH(t, T) (1)

where t is stress time, T is temperature, and ∆VTH(t, T) is change in the threshold voltage with respect
to the stress time and the temperature variation.

Inverter: Considering the inverter circuit (Figure 2a), from a large signal analysis perspective,
when T1 and T2 are under saturation, and assuming that they have same dimensions and are well
matched, (i.e., no significant variation due to process non-uniformity is verified), output voltage (VOUT)
can be expressed as

VOUT = VDD − µT1(T)
µT2(T)

VIN −
[
(∆VTH(t, T))T2 −

µT1(T)
µT2(T)

∆VTH(t, T))T1)
]

(2)

When T1 and T2 are exposed to same conditions (bias stress and temperature), the output signal
is almost independent of the ∆VTH(t, T)T1,T2 and mobility variation due to temperature (µT1 ≈ µT2).

Current Mirrors: When the TFTs are matched, have equal channel length, and ignoring the
channel length modulation due to the long L (=20 µm), the input and output currents in this circuit
(Figure 2b) are related by
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IOUT
IIN

=
WT2µT2(T)(VGS − VTH2)

2

WT1µT1(T)(VGS − VTH1)2 (3)

When all transistors in this circuit are exposed to the same bias stress conditions (it should be
noted that VGS of T1 and T2 are equal) and/or temperature variations, VTH variation is going to
be the same for both the TFTs, and hence the mirrored current is supposed to be robust against
operating conditions. This circuit output resistance is equal to the output resistance of a single TFT (ro).
Under similar conditions, the same analysis is valid for the cascode current mirror (Figure 2c), and this
circuit has high accuracy because of its high output impedance (gmr2

o).

5. Circuits Measurements and Discussion

A characterization of inverters and current mirrors under different bias stress periods and
temperatures is presented in Figures 4 and 5. The gain of the inverter is approximately given by√

WT1
WT2

, when T1 and T2 have same channel length and good matching. A value of 0.98 was measured,
which is close to unity, as expected. As is apparent from Figure 4, when the inverter circuit is subjected
to bias stress or temperature, its voltage transfer characteristics are not significantly affected because
T1 and T2 are exposed to relatively similar conditions: VTH and mobility variations in one TFT should
be canceled by the other, as per (2). The gain of the inverter changed by less than 8% from its original
value under bias stress, and less than 5% regarding temperature, as as it can be noticed from Table 2.
The inset in Figure 4a shows a magnification of the output voltage when input voltage is high (VOL).
A decrease of ≈0.2 V on VOL can be noticed between the unstressed state and after 60 min stress.
This indicates a decrease of the driver TFT’s (T1) resistance comparatively to the load TFT (T2) as stress
time is increased. The effect can be understood by analyzing the bias stress conditions of each transistor:
By fixing VIN = VGST1 = 4.5 V, VOUT = VDST1 = 5.2 V. Hence, since VDD = 10 V, VDST2 = VGST2 = 4.8 V.
With lower VGS and higher VDS, the VTH shift for T1 is smaller than for T2 [22,23]. Given that close
to VOL T1 is operating in linear regime, RT1/RT2 is decreased for longer stress periods. The small
increase of VOL between the unstressed state and after 20 min stress might be explained by considering
that the initial period where the anomalous VTH shift is predominant (Figure 1b) is found to have
some variation from device to device. Hence, until the 20 min stress period, the anomalous VTH shift
(negative) in T2 might be slightly more significant than in T1.

-1 0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

V
O

U
T

 (V
)

V
IN 

(V)

Before stress
20 min. stress
40 min. stress
60 min. stress

V
DD

= 10 V

7.4 7.6 7.8 8.0
3.0

3.1

3.2

3.3

3.4

3.5

V
O

U
T

 (V
)

V
IN 

(V)

-1 0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

V
DD

= 10 V

V
O

U
T

 (V
)

V
IN 

(V)

15 °C
25 °C
45 °C
65 °C
85 °C

(a) (b)

Figure 4. Transfer characteristics of IGZO TFT-based inverters under different (a) bias stress
(gate + drain) periods and (b) temperatures. The inset in (a) shows a magnification at the VOL region.
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Figure 5. Mirroring ratios of IGZO TFT-based current mirrors under different (a) bias stress
(gate + drain) periods and (b) measurement temperatures. A typical characteristic of a current mirror
is presented in (c), showing constant gain between IIN = 5–20µA.

Table 2. Inverter maximum gain variation with respect to bias stress and temperature variation.

Stress (Min.) Temperature ( ◦C)

0 20 40 60 15 25 45 65 85

Gain 0.99 0.95 0.94 0.92 0.98 0.98 0.97 0.94 0.97
Relative variation (%) 0.0 −4.0 −4.9 −7.3 0.1 0.0 −1.2 −4.3 −1.3

For the current mirrors, gain with respect to bias stress and temperature is presented in Figure 5.
This gain as well as its variation relative to unstressed states and room temperature measurements are
reported in Table 3. Current mirrors with different W2

W1 are presenting close-to-theoretical gain, without
significant changes under bias stress or temperature, as expected per (3). A maximum variation below
9% was measured with increasing stress time, while for temperature variation it was always below
5%. Proving its robustness, the cascode current mirror presents higher stability than the two-TFT
configurations due to its high output impedance. The presented gains are taken as an average of gain
between IIN = 5–20 µA, with the standard deviation over this range never exceeding 2%. Figure 5c
illustrates this by showing for the two-TFT (40–40) current mirror that IOUT is increasing linearly with
IIN , resulting in a constant gain over this range. This is verified for all the current mirrors, regardless
of bias stress and temperature. It should be noted that the circuits have shown a robust performance,
irrespective of the unavoidable mismatches arising due to the low-temperature fabrication and different
layouts of the TFTs [24] (i.e., direct and fingered layouts, see Figure 3).
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Table 3. Current mirror average gain variation under different durations of gate + drain bias stress and
measurement temperature, when Iin is varied from 5 to 20µA.

Gain Stress (Min.) Temperature ( ◦C)

0 20 40 60 15 25 65 45 85

Cascode 1.06 1.11 1.09 1.09 1.04 1.04 1.04 1.02 1.04
Relative variation (%) 0.0 4.7 2.8 2.8 −0.2 0.0 0.0 −1.7 0.0

40–40 1.03 0.96 0.95 0.94 1.02 1.04 1.05 1.05 1.05
Relative variation (%) 0.0 −6.6 −7.9 −8.7 −1.9 0.0 1.0 1.0 1.0

40–80 2.03 2.12 2.15 2.19 1.96 1.98 2.01 2.02 2.07
Relative variation (%) 0.0 4.1 6.0 7.6 −1.1 0.0 1.3 2.1 4.2

40–160 3.95 3.85 3.86 3.86 3.91 3.92 3.95 3.99 4.08
Relative variation (%) 0.0 −2.5 −2.4 −2.4 −0.2 0.0 0.8 1.8 4.0

40–320 7.90 8.15 7.85 7.88 7.84 7.86 7.99 8.20 8.30
Relative variation (%) 0.0 3.2 −0.6 −0.2 −0.4 0.0 1.7 4.3 5.6

6. Conclusions

This paper presented an application-oriented analysis of oxide TFTs under gate and drain bias
stress and different measurement temperatures. The relatively large changes of IDS (as high as
172%) under the more severe conditions (i.e., longer bias stress period and higher temperature)
are significantly attenuated on circuits, namely inverters (or common-source amplifier with a
diode-connected load) and current mirrors, given that the variations seen in one node are counteracted
by the ones in other node. Thus, this work shows that even when employing low-temperature oxide
TFT processes (which inherently result in higher device-to-device variation and degraded TFT stability
compared to higher temperature processes), oxide TFT circuitry following simple design considerations
can provide robust performance in real-world applications demanding continuous operation.
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The following abbreviations are used in this manuscript:

a-IGZO amorphous Indium Gallium Zinc Oxide
TFT Thin-film Transistor
NFC Near-field communication
a-Si:H Hydrogenated amorphous silicon
RF Radio Frequency
RT Room Temperature
LAE Large area electronics
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