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Abstract: Ti3C2Tx MXene, a new 2D nanosheet material, is expected to be an attractive reinforcement
of metal matrix composites because its surfaces are terminated with Ti and/or functional groups
of –OH, –O, and –F which improve its wettability with metals. Thus, new Ti3C2Tx/Al composites
with strong interfaces and novel properties are desired. To prepare such composites, the chemical
stability of Ti3C2Tx with Al at high temperatures should be investigated. This work first reports on
the chemical stability of Ti3C2Tx MXene with Al in the temperature range 500–700 ◦C. Ti3C2Tx is
thermally stable with Al at temperatures below 700 ◦C, but it reacts with Al to form Al3Ti and TiC at
temperatures above 700 ◦C. The chemical stability and microstructure of the Ti3C2Tx/Al samples
were investigated by differential scanning calorimeter, X-ray diffraction analysis, scanning electron
microscopy, and transmission electron microscopy.
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1. Introduction

MXenes, as a new family of two-dimensional (2D) materials, have attracted much attention
because of their unusual combination of mechanical, physical, and chemical properties [1–10].
The MXenes are produced by the selective extraction of A-element from the layered MAX phases
(where M is an early transition metal, A is an A group element, and X is C or N), such as Ti3AlC2, Ti2AlC,
and Ti3SiC2 by either HF solutions [1,2,11–13], HCl/fluoride salt solutions [3,14–18], or HF/oxidant
solutions [19]. After removal of the A layers from MAX, the top and bottom surfaces of the bare MXene
monolayer or single sheet are terminated by the redistribution of M atoms with metallic bonds. Hence,
the MXenes exhibit metallic conductivity. However, the exposed M surfaces of MXenes are always
attached by functional groups such as hydroxyl (–OH), oxide (–O), or fluorine (–F) after etching in acid
solutions. Hence, the general formula Mn+1XnTx (where Tx denotes the MXene terminal groups and x
is number of terminal groups, n = 1, 2, or 3) is always used to represent the MXenes.

MXenes have similar structure and properties to graphene and other 2D nanosheets. The attractive
2D MXenes are now being used in a wide range of applications in energy storage, electromagnetic
interference shielding, water purification, gas- and biosensors, lubrication, photo-, electro- and
chemical catalysis, and as reinforcement for composites [3,5–7,12,20–30].

In the 2D MXene group, Ti3C2Tx is the first reported and the most explored material because it is
easily synthesized from the Ti3AlC2 precursor using HF solution [1]. The 2D Ti3C2Tx single nanosheet
is micrometers in width but less than a nanometer in thickness. Hence, the Ti3C2Tx MXene, with its
attractive properties and high aspect ratios, has already been used as a reinforcement in composites.
So far, the majority of the current work on composites containing Ti3C2Tx has focused on polymer
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matrix composites [30–34], but less attention has been devoted to the use of Ti3C2Tx to reinforce metal
matrix composites.

In recent years, there has been intense research into Al matrix composites reinforced with 1D
carbon nanotubes (CNTs) and 2D graphene to improve their mechanical properties [35–38]. However,
there remains a challenge to overcome weak interfaces in the CNT/Al and graphene/Al composites,
due to the poor wettability of CNTs and graphene with Al matrix.

Using Ti3C2Tx to reinforce the Al metal matrix composites possibly endows the Ti3C2Tx/Al
composites with a strong interfacial strength because the surfaces of Ti3C2Tx nanosheets are terminated
with Ti or functional groups such as –OH, –O, and –F. It has been reported that the surface modification
of CNTs by –O and –OH functional groups enhanced the interfacial bonding between metals and
CNTs [39,40]. The functionalized 2D nanotubes can be employed as reinforcing fillers [41,42].
In addition, the –F and –O surface functional groups on the Ti3C2Tx nanosheets can be eliminated
at high temperatures [43,44]. The loss of surface functional groups possibly promotes the bonding
of Ti surface atoms on bare Ti3C2 with Al. However, work on the Ti3C2Tx/Al composites has been
much less focused so far. The ability to practically produce Ti3C2Tx/Al composites remains to be
demonstrated. Al matrix composites reinforced with 1D CNTs and 2D graphene have always been
prepared in the temperature range 500–640 ◦C. To practically prepare Ti3C2Tx/Al composites and to
understand the chemical stability of Ti3C2Tx with Al, the temperature range 500–700 ◦C was selected
in the present study.

The purpose of this work was to assess the chemical stability of Ti3C2Tx with Al in the temperature
range from 500 ◦C to 700 ◦C by X-ray diffraction, differential scanning calorimetry, scanning electron
microscopy, and transmission electron microscopy methods. The interfaces between Ti3C2Tx and Al
were characterized.

2. Materials and Methods

Ti3C2Tx MXene was prepared by acid etching of Ti3AlC2 powder. The fabrication of Ti3AlC2 has
been described elsewhere [45]. Briefly, Ti (325-mesh, >99.2% purity), Al (particle size <5 µm, 99.5%
purity), and C (graphite, <45 µm, >99.5% purity) powders with a molar ratio of Ti:Al:C = 3:1.1:2 were
mixed for 10 h. The mixed mixture was cold-pressed to form compacts with a diameter of 50 mm
and a height of approximately 5 mm. The compacts were pressurelessly sintered at 1450 ◦C for 1 h in
an Ar atmosphere. The sintered samples were pulverized and then sifted with a 300-mesh sieve to
make Ti3AlC2 powder. A total of 2.5 g of Ti3AlC2 powder was immersed in 60 mL of 40% HF solution
in a polytetrafluoroethylene (PTFE) container. A heating magnetic stirrer was used to continuously
stir the solution in the PTFE container at 50 ◦C for 0.5 h. The solution was centrifugally separated in
a centrifuge (LD-4, Jinan Wohong Experimental instrument Co., Ltd., Jinan, China) with a rotation
rate of 4000 rpm for 5 min and then washed with deionized water until a pH of about 7 was attained.
The obtained sediment was vacuum dried at 80 ◦C for 24 h to make the desired Ti3C2Tx powder.
The prepared Ti3C2Tx powder was sieved with a 200-mesh sieve.

Al and 10 wt % Ti3C2Tx powders were mixed in a polypropylene container with agate balls for
10 h in a rotary drum type ball-miller with a speed of 150 rpm. The mixture was cold-pressed in a
stainless steel mold with 100 MPa to form pellets with a diameter of 20 mm and a height of about
5 mm. The pellets were put into a graphite crucible coated with boron nitride and then sintered in the
absence of additional pressure conditions in the temperature range 500–700 ◦C for 1 h in Ar.

The phase composition of the samples before and after sintering was identified by X-ray diffraction
(XRD) analysis using a D/Max 2200 PC diffractometer (Rigaku Co. Ltd., Tokyo, Japan) applying
monochromatic Cu Kα radiation. The operating voltage and current were 40 kV and 20 mA,
respectively. The microstructures of the sintered samples were characterized with a ZEISS EVO
18 scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer system
(EDS), and a JEM-2100F (JEOL Ltd., Tokyo, Japan) transmission electron microscope (TEM) with an
operating voltage of 200 kV. TEM images were processed with the software RADIUS Desktop 2.0
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(EMSIS GmbH, Muenster, Germany). Differential scanning calorimetry (DSC) analysis was used to
measure the amount of energy absorbed or released by the Ti3C2Tx/Al mixture heated in a NETZSCH
STA 449F3 thermal analyzer (Netzsch, Germany) from room temperature to 800 ◦C with a heating rate
of 15 ◦C/min in flowing Ar.

3. Results and Discussion

The DSC curve of the Ti3C2Tx/Al mixture, together with that of pure Al for comparison,
is presented in Figure 1. A broad endothermic peak appearing at around 110 ◦C on the DSC curve for
Ti3C2Tx/Al is ascribed to the evaporation of water absorbed in the interlayers of Ti3C2Tx. The thermal
gravity (TG) curve correspondingly exhibits a downward trend on mass loss. A sharp endothermic
peak at 664 ◦C corresponds to the melting of Al (660 ◦C). Comparing the two DSC curves, it can
be found that there is an exothermic peak at 717 ◦C on the DSC curve of Ti3C2Tx/Al, which can be
ascribed to the occurrence of a reaction between Ti3C2Tx and Al. In the temperature range from 150 ◦C
to 700 ◦C, the TG curve reveals a gradual mass loss, possibly due to the removal of surface groups
such as –OH and –O. Zhou et al. [43] reported that there was a broad and weak exothermic peak
in the DSC curve for the pure Ti3C2Tx in the temperature range 200–800 ◦C in Ar due to the loss of
surface groups. Shah et al. [46] reported that the bonding energies for –O, –OH, and –F groups in the
Ti3C2Tx MXene are 530.3 eV, 531.3 eV, and 685.1 eV, respectively. The bonding energies suggest that
the removal sequence of the surface groups is –O > –OH > –F. Li and coworkers [44] reported that
the disappearance of –OH and –O groups occurred at approximately 500 K and the removal of –F
group was required at a high temperature of 1173 K in Ar. Sang and coworkers also confirmed that the
functional group of –O was removed after annealing of Ti3C2Tx MXene at 500 ◦C [47].
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Figure 1. DSC analysis for 10 wt % Ti3C2/Al mixture in the temperature range 50–800 ◦C, together
with Al for comparison.

To identify the reaction products and to characterize the microstructure, the samples sintered at
temperatures from 500 ◦C to 700 ◦C were examined using XRD, SEM, and TEM.

Figure 2 shows XRD patterns of 10 wt % Ti3C2Tx/Al samples before and after sintering at various
temperatures. Before sintering, only Ti3C2Tx MXene and Al are detected, see Figure 2a. The broad
peaks indicate the nanosheet structure of Ti3C2Tx. After sintering at 650 ◦C, some sharp diffraction
peaks but with lower intensities appeared, in addition to the peaks corresponding to Al. These peaks
are in good agreement with the simulated peaks for pure Ti3C2 and Ti3C2F2, see Figure 2b. It should
be noted that the (002) peak at 8.7◦, (004) peak at 17.98◦, and (006) peak at 27.38◦ belonging to the
Ti3C2Tx MXene disappeared in the XRD patterns of the sintered samples, see Figure 2b,c. The XRD
results suggest that water molecules associated with the interlayer functional groups such as –O and
–OH were gradually removed from 100 ◦C to 650 ◦C. The loss of water and functional groups causes a
decrease in the basal space distance, or, alternatively, the newly formed surfaces possibly bond to form
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a new structure, which potentially induces the disappearance of basal peaks. The disappearance of
basal plane peaks is similar to those for some layered compounds such as montmorillonite [48] and
tetratitanate [49]. However, the diffractogram of the sample sintered at 700 ◦C shows the appearance of
new phases of Al3Ti and TiC, indicating the occurrence of a reaction between Ti3C2Tx and Al at 700 ◦C.
This result is in good agreement with the DSC analysis. Some weak peaks belonging to unreacted Ti3C2

and Ti3C2F2 can still be found. However, several peaks appearing in Figure 2c were not confirmed.
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(c) 700 ◦C in Ar for 1 h.

Figure 3 presents the morphologies of the raw Al and Ti3C2Tx powders and microstructures of the
sintered samples. The raw Al particles are spherical, and each Ti3C2Tx particle has stacked multilayers,
as shown in Figure 3a. After sintering at 650 ◦C, the polished surface shows that the Ti3C2Tx particles
mainly distribute at the Al grain boundaries, see Figure 3b. No other new phases were detected in
the sample sintered at 650 ◦C. The fracture surface clearly shows the stacked multilayers of Ti3C2Tx

particles, see Figure 3c.
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Figure 3. SEM micrographs of the initial powders (a), and polished surface (b) and fracture surface
(c) of the samples sintered at 650 ◦C in Ar for 1 h. The left- and right-hand side micrographs in (a) show
the morphologies of Al and Ti3C2Tx powders, respectively.

Figure 4a presents a TEM image of a multilayer Ti3C2Tx flake. The EDS line analysis, see Figure 4b,
reveals the Al signal in the Ti3C2Tx flake, indicating the diffusion of Al atoms into the multilayers
of Ti3C2Tx. The interlayer spacing areas of Ti3C2Tx provide active sites for Al nucleation and crystal
growth. It should be noted that the F element was detected in the Ti3C2Tx multilayers, but O was
mainly distributed in the areas between the Ti3C2Tx flake and Al grains. The presence of F in the
multilayers suggests that the surface-layer termination of MXene is mostly F, i.e., Ti3C2F2. The –O
group in Ti3C2Tx may react with Al to form Al2O3.
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Figure 5 presents the TEM micrographs of a Ti3C2Tx/Al sample sintered at 650 ◦C. These Ti3C2Tx

flakes are from several nanometers to tens of nanometers in thickness, indicating the thinner flake is
composed of at least two Ti3C2Tx layers, see Figure 5a. The interspaces in the Ti3C2Tx flakes are filled
with Al. A high-resolution TEM (HRTEM) image shows that the interlayer spacing of Ti3C2Tx is about
0.855 nm, see Figure 5b. This value is smaller than the value of 1.17 to 1.28 nm for the initial Ti3C2Tx

flakes due to the removal of functional groups after heat treatment at 650 ◦C. The HRTEM image of the
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Ti3C2/Al interface reveals that the lattices of the Ti3C2 and Al regions are in direct contact, as shown
in Figure 5c. The interface is clean and continuous. Neither precipitates nor amorphous regions are
observed at the interface. The above observation suggests that the Ti3C2/Al interface is chemically
and structurally stable at 650 ◦C.Materials 2018, 11, x FOR PEER REVIEW  6 of 9 
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4. Conclusions

The chemical stability of Ti3C2 with Al was investigated in the temperature range 500–700 ◦C in
Ar for 1 h. Ti3C2Tx is thermally stable with Al at 650 ◦C, but it reacts with Al to form Al3Ti and TiC at
700 ◦C. For the Ti3C2Tx/Al sample sintered at 650 ◦C, the Ti3C2Tx/Al interface is clean and continuous,
without precipitates and amorphous regions. The loss of water molecules and the removal of functional
groups of –OH and –O induces a decrease in the interlayer spacing of Ti3C2Tx. The present work
demonstrates the possibility to prepare Ti3C2Tx MXene reinforced Al or other metal matrix composites
under certain processing conditions.
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