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Abstract: The pitting corrosion resistance and passive behavior of type 304 borated stainless steels
(Fepalance—18Cr-12Ni-1.5Mn—(0.19, 0.78, and 1.76 wt %)B) manufactured through conventional ingot
metallurgy were investigated. The alloys were composed of an austenitic matrix and Cr,B phase,
and the volume fraction of Cr,B increased from 1.68 to 22.66 vol % as the B content increased from
0.19 to 1.76 wt %. Potentiodynamic polarization tests measured in aqueous NaCl solutions revealed
that the pitting corrosion resistance was reduced as the B content increased and the pits were initiated
at the matrix adjacent to the CryB phase. It was found that the reduced resistance to pitting corrosion
by B addition was due to the formation of more defective and thinner passive film and increased pit
initiation sites in the matrix.

Keywords: borated stainless steels; pitting corrosion; passive film

1. Introduction

Boron (B)-containing austenitic stainless steels known as borated stainless steels (BSSs) have
been widely used in the nuclear industry primarily due to their excellent thermal neutron
attenuation capability. The BSSs are used in storage racks and transportation casks for the storage of
spent nuclear fuel from power reactors [1-11]. Because the neutron absorption ability directly relies
on the B content in the materials [3,6,8,10], the BSS should contain as much B as possible to be safely
used as wet storage rack materials for spent nuclear fuel. In addition, desirable strength, formability,
and corrosion resistance in a wet storage environment are also required. Eight types of BSSs based on
AISI S30400 stainless steel, which meet the requirements of the mechanical properties, are specified
in ASTM A 887-89 (ASTM International, West Conshohocken, PA, USA, 2004a) [12] from 304B with
0.20-0.29 wt % B to 304B7 with 1.75-2.25 wt % B [2,3,7-11].

A small addition of B of less than approximately 50 ppm to FeCrNi-based austenitic stainless
steels is recognized to be beneficial to the creep resistance, hot workability, and intergranular corrosion
resistance [13-18]. However, the solubility of B in the austenitic stainless steels is very limited—as low
as approximately 100-150 ppm depending on the matrix composition [9,13,19]; thus, the addition of an
excessive amount of B inevitably forms M,B (M stands for metal; Cr and/or Fe) type phase, which is
known to degrade the mechanical and corrosion properties [4-8,13,20]. The corrosion damage of the
stainless steel racks can accelerate the fracture of the structure; thus, the corrosion behavior of BSSs
has been investigated and well documented. Loria et al. [13] reported the general corrosion behavior
and intergranular corrosion susceptibility of type 304 stainless steel with 0.5 wt % B and without B in
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sulfuric acid solution. He et al. [8] investigated the general and localized corrosion behavior of BSSs
(UNS 530464 and UNS 530465) in simulated groundwater at 60-90 °C. Lister et al. [7] also examined
the general and pitting corrosion resistance of UNS 530464-530466 alloys (made through powder
metallurgy) and type 316 stainless steel with 1 wt % B (made through ingot metallurgy) in aqueous
solutions containing CI~ and NO3 ™. In addition, Moreno et al. [6] focused on the pitting corrosion
resistance of UNS 530466 alloy in aqueous solutions with NaCl and NaCl + Na;S. Upadhyay et al. [20]
investigated the localized corrosion resistance of type 304 stainless steels with (1.2 wt %) and without
B through electrochemical noise analyses and polarization tests. A consensus was found that lower
corrosion resistance was obtained in the alloys with higher B content.

Although several researchers have investigated the various types of corrosion of BSSs, little work
has been done on the passive behavior of BSSs. In general, the BSSs applied for wet spent fuel
storage racks are installed in an on-site spent fuel storage pool, and they are exposed to a relatively
mild corrosive environment with low CI~ concentration and near-neutral pH. Under this condition,
the overall corrosion resistance of the BSS rack primarily depends on the protectiveness of the
passive film; thus, it is necessary to investigate the passive behavior of BSSs. Therefore, the present
paper aims to investigate the passive behavior and the resistance to passivity breakdown of type 304
stainless steels (Fepajance I8Cr12Nil.5Mn-based alloys, in wt %) containing 0.19-1.76 wt % B, which were
manufactured through conventional ingot metallurgy.

2. Materials and Methods

2.1. Materials

The investigated alloys were Fep,1ance18Cr12Nil.5Mn-based alloys (type 304 stainless steels)
containing 0.19-1.76 wt % B. The detailed chemical compositions of the alloys are given in Table 1.
The alloys were fabricated through conventional ingot metallurgy. The ingots (50 kg) were reheated
at 1150 °C for 1 h and then hot-rolled into plates with a thickness of 40 mm. The hot-rolled plates
were solutionized at 1050 °C for 1 h followed by water quenching. The temperatures for reheating
and solutionization were determined based on thermodynamic calculations, which were conducted
using ThermoCalc software with the TCFE 7.0 database [21]. Based on the compositions in Table 1,
the equilibrium between liquid, FCC, BCC, Cr;B, and Cry3C¢ phases was estimated.

Table 1. Chemical compositions (in wt %) of the investigated alloys.

Alloy Fe Cr Ni Mn Al C Si B

B019 17.7 11.9 135 0.024 0.056 025 0.19
B078  Balance 18.4 123 155 0.035 0.066 0.26 0.78
B176 18.3 12.4 157  0.039 0.073 028 1.76

For microstructure observation, the alloy specimens (15 mm x 10 mm x 3 mm) were polished
using a diamond suspension with a particle size of 1 pm and then etched using a mixed solution of
30 mL HC1 + 20 mL HNOj; + 50 mL ethanol. The microstructures of the specimens were observed using
an optical microscope (Epiphot, Nikon, Japan) and a scanning electron microscope (SEM, JSM-7100F,
JEOL, Tokyo, Japan). In addition, the chemical composition of the second phase was investigated
using electron probe microanalysis with wavelength dispersive spectrometry (EPMA-WDS, JXA-8530F,
JEOL). Based on the micrographs, fractions and sizes of the second phases were measured using
Image-Pro Plus 7.1 software (Media Cybernetics, Silver Spring, MD, USA). For the analyses of the
second phase formed after solution treatment, a transmission electron microscope (TEM, JEM-2100F,
JEOL, Japan) operating at 200 kV was used. In order to identify the second phase directly, a dual beam
system (NOVA 200, FEI Company, Hillsboro, OR, USA) composed of both focused ion beam (FIB) and
high-resolution SEM columns was used. Cross-section milling was performed with 30 kV Ga ions.
Pt was deposited on the interface between the Omni-probe and sample, and the final cuts were made
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by FIB. The standard lift-out technique was used where the specimen was removed from the trench
using an Omni-probe and placed on a Cu grid for TEM observation.

2.2. Pitting Corrosion Resistance

The resistance to pitting corrosion of the alloys was evaluated through polarization and immersion
tests in aqueous solutions containing CI~. The polarization tests were conducted in 10 ppm and 58 ppm
NaCl solutions at 20 4 1 °C, and the potential sweep rate was 2 mV s~ 1. After the test, the pit initiation
sites were observed using SEM and a surface profiler (Wyko NT8000, Veeco, Plainview, NY, USA [22]).
The immersion tests were conducted in 3.5 wt % (=0.6 M) NaCl solution for 35 days at 20 £ 1 °C.
For the immersion tests, the specimens (40 mm x 10 mm X 3 mm) were polished using a 1 pm sized
diamond suspension.

2.3. Passive Film Properties

Passive behavior and passive film properties were investigated. For these investigations, a
borate—phosphate—citric buffer solution with pH 8.5 (0.2 M boric acid + 0.05 M citric acid + 0.1 M
tertiary sodium phosphate) was used, which is proven to form a stable and thick passive film on
Fe-based alloys [23]. The polarization behavior of the alloy was examined through potentiodynamic
polarization tests in the buffer solution at 20 4 1 °C at a potential sweep rate of 2mV s~ ! in order to
measure the potential range for the stable passive state and passive current density (ipassive)-

Then the chemical and electronic properties of the passive films were investigated. The chemical
composition of the passive film was examined through X-ray photoelectron spectroscopy (XPS, PHI
5000 VersaProbe, ULVAC-PHI, Kanagawa, Japan) using an Al K« anode X-ray source (150 W, 15 kV,
hv =1486.6 eV). For the XPS analysis, the passive films were formed on the BSSs in the buffer solution
(pH 8.5) by applying constant anodic potential of 0 Vgcg for 3 h.

Regarding the electronic properties of the passive film, the point defect density of the space
charge layer of the passive film was investigated through Mott-Schottky analysis. For this, the passive
film was potentiostatically grown by applying constant anodic potential of 0.6 Vgcg for 1 h in the
borate-phosphate—citric buffer solution (pH 8.5), and then the capacitance of the passivated layer was
measured at a frequency of 1000 Hz with an imposing sinusoidal voltage perturbation of £0.01 V
(peak-to-peak) during the negative potential sweep from 0.6 to —0.7 Vgcg with a potential sweep rate
of 0.01 V step~1.

All of the polarization tests and capacitance measurements (Mott-Schottky analysis) were
conducted in a standard three-electrode setup with the metal specimen being a working electrode,
a Pt plate (50 mm x 120 mm x 0.1 mm) as a counter electrode, and a saturated calomel reference
electrode (SCE) as a reference electrode; the electrochemical tests were controlled by a potentiostat
(Reference 600, GAMRY Instruments, Philadelphia, PA, USA). For the working electrode, the specimens
(10 mm x 10 mm X 3 mm) were mounted in cold epoxy resin and then mechanically ground using
SiC emery paper up to 2000 grit. The polarization test was performed on an exposed area of 0.2 cm?,
which was controlled using electroplating tape. The polarization tests were performed on each
specimen 3-5 times, and the capacitance of the passive layer was repetitively measured on each
specimen three times in order to confirm reproducibility.

3. Results and Discussion

3.1. Microstructure

Figure 1 shows the equilibrium phase fractions as a function of temperature. In the case of
B019 alloy, the pure liquid state is stable above 1424 °C, and the fraction of austenite phase increases as
the temperature decreases. Therefore, during the cooling process from the liquid, austenite phase is
firstly formed and then Cr and B become enriched in the liquid phase. When the remaining liquid
reaches a critical temperature, a eutectic reaction occurs in which austenite and Cr,B are simultaneously
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produced in the liquid. These eutectic reactions similarly occur in B078 and B176 alloys. The melting
points of the B019, B078, and B176 alloys are 1270, 1273, and 1274 °C, respectively. The differences in
the melting points are induced by other alloying elements distributed in the austenite phase. In the
case of B176 containing 1.76 wt % B, the eutectic reaction mainly occurred without producing a
pro-eutectic phase. The results of the reactions were confirmed in the microstructure observations

in Figure 2.
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Figure 1. Equilibrium phase diagrams of (a) B019, (b) B078, and (c) B176 alloys calculated using
Thermo-Calc software.

Figure 2a-1-c-2 is SEM images of B019, B078, and B176 alloys showing the distribution of the
second phase in the matrix. The second phases were irregular in shape as well as size (ranging
over 2-30 um) and were not homogeneously distributed over the matrix. The microstructure of the
B019 alloy (Figure 2a-1-a-4) shows the mixture of the second phases and austenite formed by the
eutectic reaction around the austenite that first formed during cooling. On the other hand, in the case
of the B176 alloy (Figure 2c-1-c-4), the second phase was distributed rather homogeneously in the
austenite matrix. The measured fractions of the second phases in the B019, B078, and B176 alloys were
1.68 £ 0.49,9.73 £ 0.28, and 22.66 =+ 0.8 vol %, respectively, which are similar to the predicted values
from the thermodynamic calculation.

In the B019 alloy (Figure 2a-2), second phases with needle-like shapes were observed, and as the
B content increased to 0.78 and 1.76 wt % (Figure 2b-2 and c-2, respectively), both the volume fraction
and number of the second phases increased, and the platelike-shaped second phases were frequently
found in the B176 alloy.

The equilibrium phase diagrams in Figure 1 suggest that the relatively dark phase shown in
the SEM images (Figure 2) is Cr,B and that the matrix is austenite, which was confirmed by the
composition analysis through the EPMA (Figure 3). Figure 3a—c shows back-scattered electron
(BSE) images and the elemental maps (Cr, B, Fe, and Ni) of the B019, B078, and B176 alloys. In the
BSE images (Figure 3a-BSE—c-BSE), the second phase appears in dark gray in comparison with the
matrix (light gray), which indicates that the second phase contains heavier elements than the matrix.
Figure 3a-Cr—c-Fe clearly shows that Cr and B are enriched with the second phase where Fe is slightly
depleted. Ni is rarely detected in the second phase as shown in Figure 3a-Ni—c-Ni.

Shown in Figure 4 are SEM micrographs of FIB sampling, bright field (BF) TEM images, and
selected area diffraction patterns (SADP) of the second phase as well as the matrix taken from the
B078 specimen. Based on the analyses of SADP, the second phase was confirmed to be CryB with
orthorhombic structure (space group: Fddd) and the lattice parameters of CrpB are a = 0.4275 nm,
b =0.7452 nm, and ¢ = 1.4795 nm.

Because the second phase is the (Cr,B)-enriched phase, the concentrations of Cr and B in solid
solution state in the matrix consequently decrease as the volume fraction of Cr;B increases. Most of
the alloyed B was consumed by forming Cr;,B; thus, the concentrations of B in solid solution state of
the austenite matrices of the three BSSs were calculated to be less than approximately 2.0 x 107> wt %.
Accordingly, the Cr content in the matrix decreased as the alloyed B content increased. The Cr contents
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of the austenitic matrices of B019, B078, and B176 alloys at solution treatment temperature were
calculated to be 16.67, 13.65, and 9.21 wt %, respectively. On the other hand, Ni and Mn, which did
not participate in forming Cr,B, were anticipated to be enriched in the austenitic matrix. Indeed,
the calculated Ni contents of the austenitic matrices increased from 12.34 wt % for the B019 alloy to
14.85 wt % for the B176 alloy. Those of Mn also increased from 1.38 wt % for the B019 alloy to 1.68 wt %
for the B176 alloy.

(a-1) \i;

Figure 2. Microstructures of (a) B019, (b) B078, and (c) B176 alloys. SEM images of the alloys taken at
(a-1,b-1,c-1) low and (a-2,b-2,c-2) high magnification, and optical micrographs of the alloys taken at
(a-3,b-3,c-3) low and (a-4,b-4,c-4) high magnification.

Figure 2a-3—c-4 is optical micrographs of the three alloys, which were polished and etched in
acidic solution to identify the grain boundary. In the three alloys, the annealing twins (marked by
arrows in Figure 2a-4—c-4) were frequently observed in the polycrystallized matrix, confirming that
the matrix was recrystallized austenite. It is noted that the average grain diameter decreases as the B
content increases, because the eutectic Cr,B effectively blocks grain boundary migration during the
heat treatment.
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Figure 3. Elemental X-ray mapping of Cr, B, Fe, and Ni along with the corresponding back-scattered electron (BSE) images of the (a) B019, (b) B078, and (c) B176 alloys.
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Figure 4. Procedure of focused ion beam (FIB) sampling, bright field (BF) imaging, and corresponding selected area diffraction (SAD) patterns of CrpB and the
austenite matrix taken from the B078 alloy.
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3.2. Pitting Corrosion Resistance

Figure 5a,b exhibits the potentiodynamic polarization curves of the B019, B078, and B176 alloys
measured in 10 ppm and 58 ppm NaCl solutions, respectively. As shown in Figure 5a,b, the three
BSSs passivate in the dilute NaCl solutions under the open circuit condition and do not exhibit
active—passive transition. In the 10 ppm NaCl solution (Figure 5a), the Ecorr values of the three alloys
were —0.274 Vgcg, and those were slightly shifted to the lower potential of —0.353 Vscg in the NaCl
solution with increased NaCl concentration (Figure 5b). For the three alloys, stable passivity appeared
only in the limited potential range from the Ecorr to the pitting potential (Ep;;). The average Ep;; was
calculated from repetitive polarization tests and is plotted in Figure 5c as a function of the B content.
Higher E;; was obtained in more dilute NaCl solution, as expected, and it was clear that the E;; was
linearly lowered with an increase in the B content in the alloys. Therefore, it could be concluded that
the resistance to pitting corrosion of the BSSs was degraded as the B content increased.
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Figure 5. Potentiodynamic polarization curves of the alloys measured in (a) 10 ppm and (b) 58 ppm
NaCl solutions at 20 & 1 °C at a potential sweep rate of 2 mV s~1; (c) Variation of the average pitting
potentials of the alloys as a function of the B content.

Figure 6 shows the corroded surfaces of the three alloy specimens after immersion in a 3.5 wt %
NaCl solution for 35 days. Figure 6 confirms the decrease in the resistance to pitting corrosion along
with the increase in the B content in the alloys. The photos demonstrate that pitting corrosion is the
primary corrosion type in this Cl~-containing environment, and the number of pits and damaged area
increase as the B content increases in the alloys.

Figure 6. Corrosion morphologies of (a) B019, (b) B078, and (c) B176 alloys after immersion tests in a
0.6 M NaCl solution at 20 & 1 °C for 35 days.

Figure 7a—c shows SEM images of the pit initiation sites observed in B019, B078, and B176
specimens, respectively. In all of the alloys, pits are initiated at the matrix adjacent to the Cr,B and
propagated into the matrix. Figure 7d—f exhibits 3-dimensional surface topographies of the pitted
BSS specimens measured through a surface profiler. In the topographies, the higher phase (red color)
than the matrix (green and blue color) is Cr;B due to its higher hardness than that of the matrix [24].
Figure 7d—f also clearly demonstrate that the pitting corrosion occurs at the boundary between the
Cr,B and the matrix, which corrodes while the Cr,B remains intact [7,11,20].
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Figure 7. SEM images of the pit initiation sites of (a) B019, (b) B078, and (c) B176 alloys. Three-dimensional surface topographies of the pit initiation sites of (d) B019,
(e) B078, and (f) B176 alloys.
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3.3. Passive Film Analysis

The passive behavior of the BSSs was evaluated. Figure 8a shows potentiodynamic polarization
curves of the alloys measured in the borate-phosphate—citric buffer solution at pH 8.5. All of the
alloys exhibit passive behavior in this solution without active—passive transition, and the Eco,r values
of the alloys are approximately —0.66 Vscg. In the polarization curves of the BSSs, there are three
current peaks at —0.55, —0.33, and 0.57 Vgcg, indicated by arrows in Figure 8a. Peak I at —0.55 Vgcg is
attributed to the oxidation of Fe to Fe?*, and Peak II at —0.33 Vg is due to the reoxidation of FeZ*
to Fe3*. Peak III at 0.57 Vgcg, reflects the reoxidation reaction of Cr3* to Cr*. In addition, the rapid
increase in the current density above approximately 0.65 Vgcg is due to oxygen evolution (that is,
transpassive reaction) [25-28]. The polarization curves exhibit that the potential range for the stable
passivity extends from Ecorr (approximately —0.66 Vgcg) to approximately 0.65 Vgcg. In the passive
potential range, the lowest ipassive is Observed at approximately 0 Vgcg. The average ipassive values
(measured at 0 Vgcg) of the alloys were calculated from the repetitively measured polarization curves
3-5 times and plotted versus the B content (Figure 8b). The minimum ip,ssive value increased from
7.32 t0 10.05 pA cm 2 as the B content increased from 0.19 to 1.76 wt %; thus, it was concluded that
the passive film with the highest resistance was formed on the BSS containing the lowest B content.
It is worth mentioning the decrease in the grain size of the austenite matrix of the BSSs as shown in
Figure 2a-3—c-4. The grain refinement is known to accelerate passivation, resulting in the formation of
a thick and dense passive film [29-31]; thus, the ipassive is generally lowered when the grain size of the
matrix decreases [32]. In this case, however, the ipassive Of the BSSs apparently increased although the
grain size of the austenite matrix decreased; thus, it is reasonable to conclude that the change in the
grain size is not the dominant factor for determining the magnitude of the ipassive-
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Figure 8. (a) Potentiodynamic polarization curves of the alloys measured in a borate—phosphate—citric
buffer solution with pH 8.5 (0.2 M boric acid + 0.05 M citric acid + 0.1 M tertiary sodium phosphate) at
20 + 1 °C at a potential sweep rate of 2 mV s~1; (b) Variation of the average passive current density
values of the alloys as a function of the B content.

The chemical composition and structure of the passive film were examined using XPS. For this
analysis, the passive film was potentiostatically formed in the borate-phosphate—citric buffer solution
(pH 8.5), and the film formation potential was determined to be 0 Vscg, at which the lowest ipassive Was
observed as presented in Figure 8a. Figure 9a—c shows the concentration depth profiles of the B019,
B078, and B176 alloys, respectively. Figure 9 demonstrates that stable passive films with similar
structure and chemical composition were formed on the three BSSs. The passive films were primarily
composed of Fe, Cr, and O with a small amount of Mn (less than 0.05 atom %). A notable difference
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among the passive films of the three BSSs was observed in the film thickness. The thickness of the
passive film can be estimated from the concentration depth profile of O (Figure 9d) by taking the
depth from the surface at which the 50% value of the O amplitude appears [31,33,34]. The thickness
of the passive film formed on the B176 alloy was calculated to be 1.823 nm, while that on the B019
alloy was 2.469 nm. That is, a thinner passive film was formed on the BSS with higher B content.
In addition, the Cr content was also affected by the B content in the matrix. As shown in Figure 9e,
the Cr contents at the film surface of the B019, B078, and B176 alloys were 6.80, 7.39, and 9.89 atom %,
respectively, and the Cr content inside the passive film was also slightly higher in the B176 alloy than
in the other alloys.

2]
o

(d) —=—B019 —e—BO078 B176

Concentration,
atom %

O concentration,
atom %

(e) —=—B019 —e—B078 B176

Concentration,
atom %

Cr concentration,
atom %

0 1 2 3 4 5
Estimated depth, nm

Concentration,
atom %

Estimated depth, nm

Figure 9. Chemical composition depth profiles of the passive films of (a) B019, (b) B078, and (c) B176
alloys analyzed through XPS; (d) O and (e) Cr concentration profiles of the passive films formed on
the alloys. The passive films were formed in a borate—phosphate—citric buffer solution (pH 8.5) by
applying constant anodic potential of 0 Vgcg for 3 h.

Then, the point defect density in the passive film was measured through Mott-Schottky analysis.
Generally, the passive film of stainless steel formed in an aqueous solution is known to contain
large numbers of point defects such as oxygen vacancies (Vo?*), metal vacancies (V¥ ™), and cation
interstitials (M;**); thus, the passive film behaves as an extrinsic semiconductor. The point defect
density of the space charge layer in the passive film can be calculated through the capacitance
measurement, which is Mott-Schottky analysis. For Mott-Schottky analyses, the specific interfacial
capacitance (Cy,y) of the passivated surface is obtained using Cyys = 1/wZ ", where w is the angular
frequency and Z" is the imaginary part of the specific impedance. The measured capacitance (Cy,t,)
is a series combination of the double layer capacitance (Helmholtz layer capacitance, Cy) and space
charge layer capacitance (Csc). The Cgsc of the n-type semiconductor and the relationship between
Ciota» Ch, and Cgc are given as follows:

1 1 1 2 kpt
= = —= \(Eap—Epp — & 1
@ a, g () (2T g

where ¢ is the dielectric constant of the passive film (15.6 for the passive film of stainless steel [35,36]),
€ is the vacuum permittivity (8.854 x 10!* Fcm™!), e is the electron charge, Egpy is the applied potential,
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and k is the Boltzmann constant. Thus, for an n-type semiconductor, a graph of C SC’Z versus Eapp
should be linear with a positive slope and Csc 2 is inversely proportional to donor density (Np). In the
Mott-Schottky relationship, Cy is sufficiently higher than Cgc; therefore, it can be neglected in a series
of combinations with the Csc. Thus, the measured capacitance (Cy,,) can be assumed to be equal
to Cgc.

Mott-Schottky plots of the BSSs are presented in Figure 10a, as measured in the
borate—phosphate—citric buffer solution at pH 8.5. For the Mott-Schottky analysis, the passive film was
formed by applying constant anodic potential of 0.6 Vgcg for 1 h and capacitance was then measured
at a constant frequency of 1 kHz with an imposing sinusoidal voltage perturbation of 10 mV
in a potential range from 0.6 Vgcg to —0.7 Vscg. The XPS analysis (Figure 9) confirmed that the
passive films formed on the BSSs were (Fe,Cr)-oxide, which is known to have n-type semiconductivity.
In accordance with the Mott-Schottky relation (Equation (1)), the n-type semiconductor passive film
exhibits a positive slope (ACjota1 2/ AV) in the Mott-Schottky plot, and the dominant and detective
point defects in the n-type semiconductor passive film are V52* (shallow donor) and Cr®* (deep donor).
In order to investigate the densities of both donors, film formation for Mott-Schottky analysis was
conducted by applying anodic potential between peak III (Cr** — Cr®*, shown in Figure 8a) and the
transpassive potential where oxygen evolution occurred.
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Figure 10. (a) Mott-Schottky plots for the passive films formed on the borated stainless steels (BSSs).
The passive films were formed in a borate-phosphate—citric buffer solution (pH 8.5) by applying
constant anodic potential of 0.6 Vscg for 1 h, and the capacitance of the passivated layer was measured
at a frequency of 1000 Hz with an imposing sinusoidal voltage perturbation of £0.01 V (peak-to-peak);
(b) Variations of the densities of the point defects (Vo2 and Cr®*) as a function of the B content.

The Mott-Schottky plots of the BSSs shown in Figure 10a exhibit two potential sections showing
linear increase, between —0.35 and 0 Vgcg (Region I) and between 0 and 0.4 Vgcp (Region II).
Using the positive ACyors 2/ AV values in Regions I and 1I, the shallow and deep donor densities can
be estimated, respectively.

The average point defect density values of the BSSs are presented in Figure 10b as a function of the
B content. Figure 10b clearly shows that the densities of both shallow and deep donors increase with
the increase in the B content. The average shallow donor density of the B019 alloy was 3.49 x 102 cm 3
and that of the B176 alloy was 4.32 x 10?° cm 3. In addition, the average deep donor density increased
from 17.51 x 10%° cm~3 for the B019 alloy to 24.27 x 10?° cm~3 for the B176 alloy. The high point defect
density in the passive film implies a large amount of charge carrier in the passive film which well
explains the higher ipassive Of the B176 alloy than that of the B019 alloy in the polarization curves, as
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shown in Figure 8b. In addition, Figure 10b also demonstrates that the alloy containing more B forms
more defective and, hence, less protective passive film; thus, the results from Figure 10b are partly
responsible for the degraded resistance to pitting corrosion of the B176 alloy shown in Figures 5 and 6.

The noticeable point in Figure 10b is the change in the Cr®* concentration. The density of Cr* in
the passive film significantly increased with the increase in B content in the BSSs, which corresponded
to the XPS analysis result (Figure 9e). It is generally accepted that the passive film of stainless steel
(FeCr-based alloys) containing higher Cr is more protective [28,36,37], resulting in the enhancement
of the resistance against passive breakdown. However, in the case of BSSs, the passive film formed
on the B176 alloy exhibited the lowest resistance to pitting corrosion although the film contained the
highest Cr concentration. This discrepancy can be explained as follows: First, the overall resistance
against pitting corrosion of the BSSs shown in Figures 5-7 is primarily determined by the surface
heterogeneity (i.e., Cr;B), which provides the pit initiation site, in comparison with the protective
ability of the passive film. Second, the detrimental contribution of Cr;B to the overall passivation
is considered. As discussed in Section 3.1, the Cr content in the solid solution state in the austenite
matrix decreased from 16.67 to 9.21 wt % as the B addition increased from 0.19 to 1.76 wt % because of
the CryB formation. Thus, the higher Cr concentration in the passive film on the BSS with higher B
content is considered as evidence of the passivation of Cr,B. However, the electrical conductivity of
the Cr,B is lower than that of the austenite matrix [38], and the volume fraction of Cr,B remarkably
increases as the B addition increases; thus, the formation of a stable and continuous passive film on the
B-containing alloy is inhibited. As a result, a thin (Figure 9d) and defective passive film is formed on
the alloy with high B content.

4. Conclusions

The resistance to pitting corrosion and passive behavior of type 304 stainless steels
(Fepalance 18Cr12Nil.5Mn-based alloys, in wt %) containing 0.19-1.76 wt % B, which were manufactured
through conventional ingot metallurgy, were investigated. The pitting corrosion resistance was
evaluated through potentiodynamic polarization and immersion tests in aqueous solutions with C1~.
The passive behavior was examined in a borate-phosphate—citric buffer solution at pH 8.5 through
potentiodynamic polarization tests. The physicochemical and electronic properties of the passive
film were examined using XPS and Mott-Schottky analyses. On the basis of the tests, the following
conclusions could be drawn.

1.  The borated stainless steels were composed of austenitic matrix and Cr,B phase. As the B content
increased from 0.19 to 1.76 wt %, the volume fraction of Cr,B increased from 1.68 to 22.66 vol
%, and the concentration of Cr in solid solution state in the austenitic matrix was lowered from
16.67 to 9.21 wt %. In addition, the grain size of the austenite matrix decreased as the Cr,B
fraction increased.

2. In various NaCl solutions, lower pitting corrosion resistance was observed in the alloy with
higher B content. The pits were initiated at the matrix adjacent to the Cr,B and propagated into
the matrix.

3. Regarding the passive behavior, the passive current density increased as the B content in the
alloy increased. The passive films of the borated stainless steels formed in borate—-phosphate—citric
buffer solution (pH 8.5) were (Fe,Cr)-oxides. With an increase in the B addition, the passive film
thickness decreased from 2.5 to 1.8 nm, and the Cr content in the passive film slightly increased.
Furthermore, Mott-Schottky analysis confirmed that more defective passive film was formed on
the alloy with higher B content.

4. The reduced resistance to pitting corrosion of the B-bearing type 304 stainless steel along with
the increase in the B content was due to the formation of a more defective and thinner passive
film and a larger number of pit initiation sites in the matrix.
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