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Abstract: Using Ti(OC4H9)4 as a precursor, Fe(NO3)3·9H2O as the source of iron, and NH4NO3 as
the source of nitrogen, an Fe/N codoped TiO2 catalyst was prepared using a sol-gel hydrothermal
method. The as-prepared powders were characterized using X-ray powder diffraction, electron
spectroscopy for chemical analysis, Fourier-transform infrared spectroscopy, and ultraviolet-visible
spectrophotometry. Fe and N codoping resulted in decreased crystallite size and increased specific
surface area. Results of the photocatalytic degradation of acid orange 7 (AO7) in a continuous-flow
fluidized-bed reactor indicated that the maximum decolorization (more than 90%) of AO7 occurred
with the Fe/N-TiO2 catalyst (dosage of 20 g/L) when a combination of visible light irradiation for
10 h HRT (hydraulic retention time), and a heterogeneous system was used. The AO7 degradation
efficiency was considerably improved by increasing the hydraulic retention time from 2.5 to 10 h or
by reducing the initial AO7 concentration from 300 to 100 mg/L. The reaction rate increased with the
light intensity and the maximum value occurred at 35 mW/cm2; moreover, the efficiency of the AO7
degradation increased when the pH decreased with maximum efficiency at pH 3.
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1. Introduction

Environmental pollution is a considerable concern in the modern world. An estimated 2% of
dyes produced annually are discharged as effluents from manufacturing plants, whereas 10% of dyes
are discharged from textile and related industries [1]. Effluents generated from textile manufacturing
contain a variety of pollutants characterized by deep coloration, high oxygen demand, high pH,
large amounts of suspended solids, and low or nonbiodegradability [2,3]. Many methods have
been tested to remove dyes from industrial effluents, including biological processes, adsorption,
and coagulation. However, these methods still generate a large amount of sludge or solid waste that
requires further treatment.

Advanced oxidation processes are a suitable alternative to traditional methods for solving
environmental problems caused by the discharge of textile-dyeing wastewater. Titanium dioxide
(TiO2) is a heterogeneous photocatalysts and TiO2 based photocatalysis is a promising technique
for wastewater treatment [4], especially for wastewater containing refractory organic compounds.
However, the large band gap for highly oriented TiO2 powders with pure anatase structure and rutile

Materials 2018, 11, 939; doi:10.3390/ma11060939 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-9804-1713
http://www.mdpi.com/1996-1944/11/6/939?type=check_update&version=1
http://dx.doi.org/10.3390/ma11060939
http://www.mdpi.com/journal/materials


Materials 2018, 11, 939 2 of 9

are 3.2 and 3.0 eV, respectively. Therefore, pure TiO2 can absorb solar light only in the near ultraviolet
(UV) region. To modify this property and shift the excitation threshold toward higher wavenumbers,
the recombination time of free radicals must be extended or the phase composition must be changed
to significantly affect the optical and electrical properties of the material. Doping with different
nonmetallic or metallic elements has often been employed to improve photocatalytic activity [5].

Among nonmetallic dopants, doping TiO2 with N is one of the most effective methods to produce
effects from visible light irradiation [6]. However, because the N 2p states are strongly localized at
the top of the valence band, the photocatalytic efficiency of N-doped TiO2 decreases. The isolated
empty states tend to trap photogenerated electrons, thereby reducing the photogenerated current [7].
Doping TiO2 with two different elements, namely nitrogen and cheaper Fe ions, has attracted interest in
computational studies. Several papers have reported that Fe ions can trap holes or electrons at low doping
levels, whereas they become recombination centers at high doping levels [8–10]. The photocatalytic
activities of these powders are approximately two to four times higher than those of pure anatase TiO2

under visible light irradiation. The synthesis of TiO2 nanoparticles by using a combination of sol-gel
and hydrothermal methods is another recent innovation. The sol-gel hydrothermal method combines
the advantages of the sol-gel method with high-pressure hydrothermal conditions [11]; particle size
and morphology can be controlled during the hydrothermal process [11,12].

In this paper, we present a sol-gel hydrothermal method for the fabrication of Fe/N-TiO2

catalysts that respond to visible light. The photocatalytic activity of Fe/N-TiO2 was measured for the
degradation of acid orange 7 (AO7) in a continuous-flow fluidized-bed system under visible light
irradiation. The effects of operational parameters, such as the catalyst activity, dosage, and solution
pH, were also examined.

2. Materials and Methods

2.1. Sample Preparation

Fe/N-TiO2 was prepared using a sol-gel hydrothermal method. A suitable amount (0.1 mol)
of titanium tetra-n-butoxide [Ti(OC4H9)4] (Sigma Aldrich, MO, USA) was dissolved in 100 mL of
anhydrous ethanol (Merck, Darmstadt, Germany) to obtain solution A. Moreover, 0.0012 mol of iron
nitrate [Fe(NO3)3·9H2O] (Merck, Darmstadt, Germany) and 0.001 mol of ammonium nitrate (Merck,
Darmstadt, Germany) were mixed with 2 mL of distilled water and 10 mL of acetic acid (Merck,
Darmstadt, Germany) to prepare solution B. Then, solution A was slowly added to solution B at a rate
of 2 mL per minute under stirring for up to 48 h. The sample mixture was transferred to a hydrothermal
flask to undergo treatment at 100, 150, 175, and 200 ◦C for 1 h. The resulting Fe/N-TiO2 powder was
washed with distilled water until a pH of 7 was established and then dried at 80 ◦C for 24 h.

2.2. Characterization

The band gap of Fe/N-TiO2 was measured using a UV-visible spectrophotometer (Cary 300 Bio,
Varian, Mulgrave, Victoria, Australia) equipped with an integrating sphere for diffuse reflectance
spectra. The chemical composition of Fe/N-TiO2 was verified through electron spectroscopy for
chemical analysis (ESCA; ESCALAB 250, VG Scientific, UK). Crystal structures were obtained through
X-ray diffraction (XRD; Rigaku Co. DMAX 2200VK, Tokyo, Japan) using Cu Kα radiation (λ = 1.5418 Å).
All peaks measured through XRD were assigned by comparison with those of the Joint Committee on
Powder Diffraction Standards (JCPDS 04-002-2678) [13]. The specific surface area (BET, m2 g−1) was
calculated using the BET equation, and total pore volume (Vt, m3 g−1) was evaluated by converting
the adsorption amount at P/P0 = 0.95 to the volume of the liquid adsorbate.

2.3. Photocatalytic Experiments

The upflow fluidized-bed system is shown in Figure 1. The photocatalytic activities of Fe/N-TiO2

samples under visible light were evaluated based on the degradation rate of AO7 in a cylindrical quartz
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reactor (40/30 mm OD/ID; height = 500 mm) containing 20 g of Fe/N-TiO2 and 5 L of a 200 mg/L
AO7 aqueous solution. The photoreactor was open to the atmosphere, and the quartz reactor was
surrounded by 14 light tubes. The visible light tubes were germicidal lamps with a wavelength of
419 nm (Sankyo Denki, Tokyo, Japan). The light power (approximately 8 mW/cm2) in the center of the
reactor in air was measured using a hand-held optical power meter (Model 840-C, Newport, Irvine,
CA, USA). The photodegradation rates of AO7 solutions were determined by periodically measuring
the absorbance at λ = 484 nm by using a Hach DR 4000 UV-visible spectrophotometer (Hach, Loveland,
CO, USA).
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3. Results and Discussion

3.1. Characterization of the N/Fe-TiO2 Samples

Figure 2a presents the XRD patterns of undoped (TiO2) and Fe/N-TiO2 particles as a function
of the reaction temperature. Fe/N-TiO2 particles were readily indexed to the diffraction peaks of the
anatase phase (JCPDS 04-002-2678) and exhibited the presence of an intense peak corresponding to
the (101) plane. The major peaks observed corresponded to the (101), (004), (200), (105), and (204)
planes of the anatase phase [14]. For 100, 150, 175, and 200 ◦C Fe/N-TiO2 particles, the crystallite
sizes were 10.65, 10.79, 12.11, and 13.46 nm, respectively. Smaller crystallite sizes were obtained
for the codoped samples, which indicated that the incorporation of Fe and N ions restricted the
growth of TiO2 crystallite and prevented the transformation of anatase to rutile [15]. Deng et al. [16]
also investigated the morphology of Fe-doped titania nanotubes synthesized using the sol-gel and
hydrothermal methods. They found that the addition of Fe slowed the crystallization process and
prevented the growth of crystallite TiO2. The crystallite size of Fe/N-TiO2 particles increased with the
reaction temperature (Table 1).

To determine whether codoping with Fe/N was successful, the surface of Fe/N-TiO2 composites
was examined through ESCA. The ESCA spectra of Ti 2p in Fe/N-TiO2 shown in Figure 2(b) reveal that
the Ti 2p1/2 and Ti 2p3/2 peaks at 464.2 and 458.5 eV, respectively, were in a favorable agreement with
those previously observed for Ti4+ [17].The presence of N in TiO2 particles was substantiated by the N
1s spectra and significant peaks around 400 eV, which can be attributed to the formation of anionic
N in O−Ti−N linkages [18], whereas the iron peak (710 eV) was attributed to Fe3+, indicating the
formation of Fe2O3 [19]. Saha and Tompkins [20] investigated N 1s ESCA spectra during the oxidation
process of Ti–N and assigned the peaks at 400 eV to be molecularly chemisorbed γ−N2. Kim et al. [15]
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reported that the ionic radii of Fe3+ (0.64 Å) and Ti4+ (0.68 Å) are similar and that Fe3+ can therefore be
incorporated into the lattice of TiO2 to form a Ti–O–Fe bond in Fe/N-TiO2. The results indicate that
Fe is present in the form of Fe3+ by replacing Ti4+ in the doped photocatalyst, which may change the
charge distribution of atoms on the photocatalyst surface, resulting in enhanced photocatalytic activity.
By contrast, the decrease of Ti binding energy upon N-doping could be interpreted as the formation of
O–Ti–N in the TiO2 lattice [19], which indicates that nitrogen incorporation can successfully retard the
charge recombination at the TiO2/dye/electrolyte interface. Additionally, the concentrations of Fe and
N in Fe/N-TiO2 determined using ESCA were 5.58 and 5.48 wt %, respectively, which were consistent
with the theoretical expectation.
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samples A–E, (b) ESCA spectra of the samples.

Table 1. Physicochemical properties of doped and undoped samples.

Sample Crystallite
Size (nm)

BET Surface
Area (m2 g−1)

Band Gap
(eV)

Degradation (%)
(Batch-Type)

Undoped TiO2 30.01 56 3.20 31

Fe/N-TiO2

100 ◦C 10.65 233 2.67 61
150 ◦C 10.79 226 2.67 95
175 ◦C 12.11 211 2.74 93
200 ◦C 13.46 213 2.55 67

The calculation of the band gap of materials can be conducted using the following formulation:
absorption coefficient (a) and the incident photon energy (hν) can be written as a = Bi·(hν−Eg)2/hν,
where Bi is the absorption constant for indirect transitions, hν is the photon energy, and Eg is the
band gap energy [21]. Plots of (ahν)1/2 versus hν from the spectral data are presented in Figure 3a,
which shows the UV-visible spectra of the undoped (TiO2) and Fe/N-TiO2 particles from 250 to
700 nm. Samples A–E exhibited typical UV-visible spectra for semiconductor materials with a band
gap absorption onset at 465, 388, 464, 452, and 485 nm, which corresponded to energy bandgaps
at 2.67, 3.20, 2.67, 2.74, and 2.55 eV, respectively. These results demonstrate that the absorption of
doped TiO2 in the visible light region is significantly enhanced compared with that of undoped
TiO2, which in turn may considerably increase the photocatalytic activity of TiO2 under visible
light irradiation. Fourier-transform infrared (FT-IR) spectrum of the Fe/N-TiO2 prepared using the
sol-gel hydrothermal method at 150 ◦C and the undoped TiO2 over the 400–4000 cm−1 range are
shown in Figure 3b. The strong absorption at 3442 and 1640 cm−1 were assigned to the stretching
vibration and the bending vibration of OH, respectively, originating from water adsorbed on the
samples’ surface [15]. The peaks around 1090 cm−1 were attributed to the N atoms embedded in the
TiO2 network. In addition, the small peak observed at 570 cm−1 indicates Fe–O–Ti vibrations [22].
No absorption peak for Fe–N stretching was observed, indicating that Fe did not substitute for Ti at
sites where N atoms substituted for O atoms.
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The optimal synthesis temperature of Fe/N-TiO2 was determined from batch experiments.
Figure 4a shows the photocatalytic AO7 degradation curves for Fe/N-TiO2 catalysts synthesized at
different temperatures (see Table 1). The photocatalytic activity evolved as follows: Fe/N-TiO2 (150 ◦C)
> Fe/N-TiO2 (175 ◦C) > Fe/N-TiO2 (200 ◦C) > Fe/N-TiO2 (100 ◦C) > undoped TiO2. Fe/N TiO2 (150 ◦C)
exhibited the highest photocatalytic activity and led to 95.2% AO7 degradation in 5 h. In addition,
Figure 4b plots ln(C/C0) versus time obtained by assuming first-order kinetics for the degradation
reaction. C and C0 are the AO7 concentrations at time t and initial concentration, respectively. The plots
were almost linear, indicating that the reactions followed pseudo first-order kinetics. The first-order
degradation rate constants (k) for Fe/N-TiO2 (150 ◦C), Fe/N-TiO2 (175 ◦C), Fe/N-TiO2 (200 ◦C),
Fe/N-TiO2 (100 ◦C), and undoped TiO2 catalysts were 5.64 × 10−2, 4.57 × 10−2, 2.23 × 10−2,
1.36 × 10−2, and 8.53 × 10−1 min−1, respectively. This suggests that codoping of Fe and N narrows
the TiO2 band gap. Cong et al. [23] reported that the overlap of the Ti-d orbital of TiO2 and the doped
metal d orbital leads to a narrowing of the TiO2 band gap in TiO2 implanted with metal ions, allowing
the absorption of visible light. Therefore, N and Fe were incorporated into the TiO2 framework,
narrowing the band gap of TiO2 to 2.67 eV (Table 1) and causing a large red shift, which in turn caused
a much narrower band gap and greatly improved photocatalytic activity. By contrast, it inhibits the
recombination of photogenerated electrons and holes. Fe ions with a suitable concentration can trap
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photogenerated electrons, which enhances the utilization efficiency of the photogenerated electron
and hole [24]. Consequently, under these experimental conditions, Fe/N-TiO2 (150 ◦C) was optimal
for AO7 removal after 5 h of visible light irradiation time.
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3.2. Degradation of AO7 in a Continuous-Flow Fluidized-Bed System

The optimal Fe/N-TiO2 (150 ◦C) catalyst was selected for photocatalytic activity tests of the
degradation of AO7. The effect of the initial AO7 concentration on the photocatalytic degradation
efficiency was examined for concentrations ranging from 100 to 300 mg/L with an Fe/N-TiO2 (150 ◦C)
dosage of 20 g/L, a hydraulic retention time (HRT) of 10 h, a pH of 3, and a visible light intensity
of 35 mW/cm2. Figure 5a shows the AO7 removal efficiency and observed rate constant (Kobs) as
a function of the initial AO7 concentration at a pH of 3 and with an HRT of 10 h. The degradation rate
of AO7 decreased when the initial AO7 concentration increased. The number of photons decreased
because of the decreasing intensity of the visible light, leading to a decrease in the formation of
hydroxyl radicals, which ultimately reduced AO7 removal efficiency [25]. Moreover, the reaction
rate also increased when the visible light intensity increased, and the maximum rate was reached for
an irradiation of 35 mW/cm2, as illustrated in Figure 5b. This indicates that the rate of photons per
unit area of catalyst powder increased with the light intensity [26], and there was a corresponding
increase in photocatalytic degradation rate of AO7.

To study the effect of pH on degradation efficiency, experiments were performed under visible
light at pH values from 3 to 10 with constant concentrations of AO7 and Fe/N-TiO2 (150 ◦C) catalyst.
The results in Figure 6a indicate that the photodegradation efficiency for AO7 increased as the pH
decreased, with maximum efficiency (88%) at pH 3. The degradation rates for the continuous-flow
photoreactor evolved as follows: pH 3 > pH 7 > pH 10. In addition, increasing the HRT from 2.5 to
10 h increased the AO7 removal efficiency from 32% to 88% at pH 3. Explaining the effect of pH on the
dye photodegradation efficiency is difficult because of the multiple roles of H+ ions, but pH change
is related to the charge in the functionalized surface of the solid catalyst according to the following
reactions [27]:

TiOH + H+ ←→ TiOH2
+, pH < pHζ (1)

TiOH + OH− ←→ TiO− + H2O, pH > pHζ (2)
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Figure 5. (a) AO7 removal efficiency and Kobs as a function of initial concentration, (b) effect of visible
light intensity on AO7 removal efficiency and Kobs (Experimental condition: pH = 3, HRT = 10 h,
catalyst dosage = 20 g/L).

According to Equation (1), when TiO2 is suspended in an acidic solution (pH < point of zero
charge, pHζ), the surface charge of TiO2 becomes positive. Conversely, when TiO2 is suspended
in a basic solution (pH > pHζ), the surface charge becomes negative, as shown in Equation (2).
Figure 6b shows that pHζ for the Fe/N-TiO2 was 6. Therefore, the surface of the catalyst was positively
charged at pH < 6 and negatively charged at pH > 6. AO7 is an anionic dye and was negatively
charged under the experimental conditions used because of the SO3

2− groups. Therefore, electrostatic
interactions between the Fe/N-TiO2 catalysts and the sulfonate groups resulted in adsorption at pH < 6
and enhanced degradation efficiency. Conversely, adsorption of AO7 onto Fe/N-TiO2 surfaces was
weak at pH > 6 because of Coulombic repulsion between the negatively charged Fe/N-TiO2 and the
AO7 molecules. Therefore, the degradation efficiency decreased.
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(ζ) of Fe/N-TiO2 (initial AO7 concentration = 200 mg/L, catalyst dosage = 20 g/L, visible light intensity
= 35mW/cm2).

4. Conclusions

Fe/N-TiO2 catalysts were synthesized using a combination of sol-gel and hydrothermal processes.
The average size and distribution of the Fe/N-TiO2 particles synthesized was approximately 10–15 nm.
The average size of the particles synthesized increased with the reaction temperature, and the
absorption edge of Fe/N-TiO2 catalysts was red-shifted toward 480 nm. The Fe/N-TiO2 photocatalyst
exhibited favorable photocatalytic activity for the degradation of AO7 in a continuous-flow
fluidized-bed system under visible light. The experimental results revealed that the optimal dosage of
Fe/N-TiO2 was 20 g/L, and that AO7 degradation efficiency was substantially improved by increasing
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HRT from 2.5 to 10 h or by reducing initial AO7 concentration from 300 to 100 mg/L. Additionally,
the degradation efficiency of AO7 increased as the pH decreased, with a maximum efficiency at pH 3.
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