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Abstract: This work analyzes the role of both the grain size distribution and the crystallographic
texture on the tensile behavior of commercially pure titanium. Specimens with different
microstructures, especially with several mean grain sizes, were specifically prepared for that purpose.
It is observed that the yield stress depends on the grain size following a Hall–Petch relationship,
that the stress–strain curves have a tendency to form a plateau that becomes more and more
pronounced with decreasing mean grain size and that the hardening capacity increases with the
grain size. All these observations are well reproduced by an elasto-visco-plastic self-consistent model
that incorporates grain size effects within a crystal plasticity framework where dislocations’ densities
are the state variables. First, the critical resolved shear stresses are made dependent on the individual
grain size through the addition of a Hall–Petch type term. Then, the main originality of the model
comes from the fact that the multiplication of mobile dislocation densities is also made grain size
dependent. The underlying assumption is that grain boundaries act mainly as barriers or sinks for
dislocations. Hence, the smaller the grain size, the smaller the expansion of dislocation loops and thus
the smaller the increase rate of mobile dislocation density is. As a consequence of this hypothesis,
both mobile and forest dislocation densities increase with the grain size and provide an explanation
for the grain size dependence of the transient low work hardening rate and hardening capacity.

Keywords: grain size; texture; crystal plasticity; elasto-visco-plastic self-consistent (EVPSC) scheme;
hardening; dislocation density; titanium

1. Introduction

Both crystallographic texture and grain size distribution are recognized to be of prime importance
to understand the mechanical behavior of polycrystals [1–4]. In particular, since the works of Hall [5]
and Petch [6], the grain size is known to strongly influence the yield stress of polycrystals. For grain
sizes larger than 1 µm, the work hardening behavior is, however, generally reported to become
almost insensitive to the grain size after a few percent of strain, particularly in face centered cubic
metals [7–9]. Texture effects arise because of elastic and plastic anisotropies at the crystal level and
are well captured by homogenization schemes like self-consistent approaches which can handle an
extensive number of crystallographic orientations within reasonable CPU time simulations. However,
only a few approaches do account explicitly for grain size distribution in addition to crystallographic
texture [2,4,10–13]. In these mean-field approaches, the individual grain sizes get into the constitutive
laws of the model as ad hoc parameters. Otherwise, no grain size effect could be predicted since these
classical homogenization schemes do not include any internal length scale. Predicting direct grain
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size effects is, however, possible from strain gradient theories or generalized continuum plasticity
models (e.g., [14]). Though not the grain size, these models consider nevertheless an internal length
scale parameter whose value is generally also defined in an ad hoc way. Since the equivalent grain
diameter, similarly to the grain orientation Euler angles, can now be readily determined by EBSD
analyses, considering the individual grain size in self-consistent models still remains an attractive
approach due to its potential good compromise between relative model simplicity, low CPU time and
reliability of the predictions. The question is, however, to know how to modify the constitutive laws to
include relevant effects of the individual grain size.

The present work focuses on the tensile behavior of commercially pure (cp) α-titanium which
exhibits a hexagonal close-packed (hcp) crystallographic structure. In particular, α-Ti is characterized
by a high anisotropy of glide resistance [15] and also by non-negligible anisotropy of slip family rate
dependence [16–22]. Tensile tests were performed on Ti specimens which were specifically prepared
to exhibit various microstructures in order to study the combined role of the texture and the grain
size distribution. On the other hand, the constitutive setting of an elasto-visco-plastic self-consistent
(EVPSC) scheme [19,23,24] is modified in order to include grain size effects. The constitutive framework
is based on crystal plasticity and considers dislocations’ densities as state variables. The first goal of
the present paper is to present an original way to account for the grain size effect in the dislocation
evolution laws. Then, by comparison of the experimental and simulated results, its other purpose is to
clarify the respective role of the texture and the grain size distribution and to contribute to a better
understanding of the tensile hardening behavior of cp Ti.

The paper is organized as follows. Section 2.1 presents experimental details. Section 2.2 describes
the micromechanical model and the way grain size effects are considered. Section 3 shows and
discusses the simulations results in comparison with the experimental characterizations. Concluding
remarks follow.

2. Materials and Methods

2.1. Preparation, Microstructural and Mechanical Characterization of the Specimens

The as-received material was a 2 mm-thick plate of commercially pure titanium (Ti grade 2) in
a fully recrystallized state with a mean grain size Dm of about 10 µm. Specimens cut off from this
plate were cold rolled, either along the previous rolling direction or along the previous transverse
direction. After rolling, the specimens were annealed under various conditions in a furnace working
under secondary vacuum. The samples were small dog-bone-shaped specimens with total length
L0 = 43 mm, gauge length Lg = 11.0 mm, width w0 = 3.0 mm, thickness t0 = 0.5 mm and could be
put entirely in an FEG-SEM. Tensile tests were performed at ambient temperature on a Deben Microtest
MT10331-1kN tensile machine (Woolpit, UK) at a constant displacement speed of 0.5 mm · mn−1,
which corresponds to an initial strain rate of 7.5 · 10−4 s−1. The extension direction was parallel either
to the last rolling direction or to the last transverse direction. Throughout the paper, the nomenclature
to name the specimens is the following: the first letter corresponds to the last rolling direction (R means
rolling along the previous rolling direction and T along the previous transverse direction) whereas the
second letter refers to the direction of tension (R means tension along the last rolling direction and T
along the last transverse direction) and the number to the mean grain size in microns. The names of
the seven selected specimens used in this study and their conditions of preparation are reported in
Table 1. Figure 1 exhibits examples of experimental tensile curves obtained for three specimens of RR
type (i.e., rolling and tension along the previous rolling direction) with different mean grain sizes.
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Table 1. Preparation conditions and some metallurgical data of the seven specimens.

Specimen Cold Rolling Reduction Annealing Conditions Number of Grains in the Data Set

RR 2.8 75% 500 ◦C - 40 mn 6254
TR 2.8 75% 500 ◦C - 40 mn 7328
RR 4.8 75% 650 ◦C - 1 h 8793
RR 9.8 75% 730 ◦C - 2 h 3262
RT 9.8 75% 730 ◦C - 2 h 3262

RR 11.7 75% 740 ◦C - 2 h 4075
RR 21.3 30% 840 ◦C - 4 h 1273

Figure 1. Engineering stress versus engineering plastic strain for three specimens of RR type with
different mean grain sizes.

The microstructural characterization was made by EBSD in an FEG-SEM. From each EBSD
map, the equivalent diameter Dg and the mean orientation of each grain were collected using a
post-processing software (Channel 5 (v5.11, Oxford Instrument, High Wycombe, UK) or ATEX [25]). In
all the cases, the specimens were fully recrystallized. The specimens with the smallest mean grain size
were close to the end of the primary recrystallization. Figure 2 shows examples of obtained grain size
distributions for the two samples with the minimum and maximum mean grain size. In the top part
of Figure 2, the scales and the bin sizes used to plot the distributions were exactly the same in order
to highlight the differences between the obtained microstructures. When normalized by the mean
grain size, all the distributions look, however, pretty similar and follow approximately log-normal
probability density functions (see the bottom part of Figure 2).

For each specimen, the data set of the grains (volume fractions and orientations) was used to plot
the texture. An example is given in Figure 3 in terms of pole figures. The pole figures correspond
to well known textures for this material [17,26–30] where basal planes are tilted 30◦ ± 10◦ from the
normal toward the transverse direction. When the grains are small, which means that the annealing
was stopped close to the end of the primary recrystallization, the texture resembles the deformation
one whereas the grain growth texture is obtained after heat treatments made at higher temperatures
(see [31] for further information). The data set of the grains (grain diameters in addition to volume
fractions and orientations) are the microstructural information used further in the simulations.
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Figure 2. Probability distributions of grain sizes for specimens RR 2.8 and RR 21.3. In the bottom part,
the distributions are normalized by the mean grain size Dm and the maximum likelihood estimate for
a log-normal distribution computed thanks to the MATLAB software (R2015a, MathWorks, Natick,
Massachusetts, US) being superimposed.

Figure 3. Pole figures for the specimens RR 2.8 (a,b) and RR 11.7 (c,d) plotted thanks to the ATEX
software [25]. x represents the last rolling direction and y the transverse direction.
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2.2. Micromechanical Modeling Including Grain Size Effects

The model used to simulate the tensile behavior is a modified version of the one that was
developed in [19] to study hardening mechanisms in cp Ti. The purpose of the modification
is to account for grain size effects. The model is still based on an advanced elasto-viscoplastic
self-consistent (EVPSC) homogenization scheme which considers a small strain setting and an affine
linearization of the viscoplastic flow rule. The 1-site self-consistent approximation is formulated thanks
to the translated field method [19,23,24]. Compared to hereditary approaches [32], the numerical
implementation of such internal variable approach is much easier as no use of Laplace–Carson
transform is needed. In the present model, each grain is represented by a sphere to which is associated
a mean crystallographic orientation, a volume fraction and a diameter Dg which hence allows for
considering grain size distribution effects. The EVPSC model has been described in detail in several
references [19,23,24], and therefore only the main equations are recalled here.

2.2.1. Micro-Macro Scale Transition

In homogenization theory, the macroscopic stress rate and strain rate tensors, σ̇ and ε̇, of a
representative volume element V are obtained by volume averaging the local stress rate and strain
rate tensors, σ̇l and ε̇l (scale of the grains), as follows:

σ̇ =
1
V

∫
V

σ̇l(x)dx , ε̇ =
1
V

∫
V

ε̇l(x)dx. (1)

Within the small strain framework, the local total strain rate relative to an elasto-viscoplastic
behavior splits into an elastic part and a viscoplastic one:

ε̇l = ε̇e
l + ε̇

p
l . (2)

The linear Hooke’s law relates ε̇e
l to the local Cauchy stress rate σ̇l :

ε̇e
l = s : σ̇l , (3)

where the colon : denotes the contracted product of two tensors, and s is the local elastic compliance
tensor. The viscoplastic strain rate ε̇

p
l is a nonlinear tensorial function of the Cauchy stress σl . Using a

first order affine linearization, it can be written:

ε̇
p
l = m : σl + η̇, (4)

where m is the tangent viscoplastic compliance tensor defined by m = ∂ε̇
p
l /∂σl , and η̇ corresponds to

a back-extrapolated strain rate. In the absence of volume forces, static equilibrium conditions impose:

div σl = 0 , div σ̇l = 0, (5)

whereas kinematic compatibility gives:

ε̇ =
1
2
(5u̇ + t5u̇), (6)

where u̇ is the material velocity field. For uniaxial tensile tests along the x1-axis, mixed boundary
conditions are prescribed as follows: ε̇11 = experimental applied strain rate and σ̇22 = σ̇33 = σ̇23 =

σ̇31 = σ̇12 = 0.
As a result of the translated field method and self-consistent approximations, the explicit

expressions of σ̇l and ε̇l can be obtained in each grain as a function of σ̇, ε̇, crystallographic orientation
and stress history σl in the grain [19,23,24]. These expressions account for coupled elastic and
viscoplastic inter-granular accommodations.
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2.2.2. Single Crystal Constitutive Laws

Crystal elasticity and plasticity were considered at the single crystal level. Plastic strain and
plastic rotation ω

p
l can occur by dislocation-based crystallographic slip only:

ε̇
p
l = ∑

s
R(s)γ̇(s) , ω̇

p
l = ∑

s
S(s)γ̇(s). (7)

γ̇(s) denotes the slip rates on systems (s) while R(s) and S(s) are, respectively, the symmetric and
the skew-symmetric Schmid orientation tensors associated to system (s). Glide on prismatic, basal,
pyramidal <a>, 1st order pyramidal <c+a> and 2nd order pyramidal <c+a> slip systems were taken
into account. Twinning was not considered since the twin volume fraction in cp Ti was observed to be
very small during tensile tests, especially along the rolling direction [17,19]. The slip rates result from
the Orowan relation:

γ̇(s) = ρ
(s)
m b(s)v(s), (8)

where b(s) is the Burgers vector magnitude. From relation 8, it is seen that the evolution of mobile
dislocation densities ρ

(s)
m and dislocation velocities v(s) are treated separately on each slip system.

This allows for accounting for an initial fast multiplication of mobile dislocations, as suggested by
Conrad [33] and Naka [34] to explain the presence of a yield plateau in Ti. When dislocations multiply
rapidly, the actual strain rate may overcome the imposed strain rate. As a consequence, the average
dislocation velocity has to be adjusted so as to retrieve the imposed strain rate, which can cause a
significant slow-down of the flow stress increase. The average dislocation velocity on system (s) was
assumed to follow a classic power law relationship:

v(s) = v(s)0

∣∣∣∣∣τ(s)τ
(s)
c

∣∣∣∣∣
n(s)

sgn (τ(s)), (9)

where v(s)0 is a reference velocity, n(s) the inverse of the strain rate sensitivity and τ(s) the resolved
shear stress. It is noteworthy that the components of the tangent viscoplastic compliance tensor m
and of the back-extrapolated strain rate tensor η̇ (Equation (4)) are deduced from the combination
of Equations (7)–(9) [19]. Although in elasto-viscoplasticity all non-zero shear stress levels produce
some slip, τ(s)c can be described as the critical resolved shear stress (CRSS) given the values considered
for n(s) (see further Table 2). It writes as the sum of the lattice friction stress τ

(s)
0 and a generalized

dislocation strengthening relation that accounts for dislocation interactions between systems [35,36].
Moreover, following references [2,4,10–13], τ(s)c is also assumed to depend on the individual grain size
Dg in a Hall–Petch type relationship:

τ
(s)
c = τ

(s)
0 + µ(s)b(s)

√
∑

l
a(sl)ρ

(l)
f +

kHP√
Dg

. (10)

a(sl) denotes the interaction coefficient which is related to the strength of the interaction between system
(s) and (l). µ(s) is the directional shear modulus of system (s). ρ

(l)
f depicts forest (or sessile) dislocation

density on system (l). kHP is a Hall–Petch type slope resolved on slip system (s). It is noteworthy
that, with this supplementary term, the CRSSs are different from grain to grain according to both their
orientation and their size. For the same orientation, the smallest grains are harder than the largest ones,
which is in agreement with recent experimental characterizations of CRSSs in grade 1 cp Ti by high
energy X-ray diffraction microscopy [37]. Moreover, it must be underlined that, through Equation (10),
<c+a> systems will display stronger hardening by virtue of the values of Burgers vector magnitude and
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directional shear modulus (see Table 2), which is in accordance with experimental observations [38,39].
Finally, both mobile and sessile dislocation densities evolve with plastic deformation [19,40]:

ρ̇
(s)
m =

1
b(s)

[
C(s)

1 Dg

b(s)
− 1

L(s)

] ∣∣∣γ̇(s)
∣∣∣ , (11)

ρ̇
(s)
f =

1
b(s)

[
1

L(s)
− 2k(s)c b(s)ρ(s)f

] ∣∣∣γ̇(s)
∣∣∣ . (12)

The negative terms in Equation (11), which correspond to mobile dislocation immobilization,
appear as positive terms in Equation (12) and stand for storage of forest dislocations. The mean free
path of mobile dislocations L(s) is assumed to depend on reactions with other mobile dislocations,
which are considered through the parameter C(s)

2 , and interactions with forest dislocations, which are
taken into account through the interaction coefficients a(sl) and the constant K(s):

1
L(s)

= b(s)C(s)
2 ρ

(s)
m +

√
∑l a(sl)ρ

(l)
f

K(s)
. (13)

k(s)c b(s) represents the annihilation distance between dislocations and the term associated to it thus
accounts for dynamic recovery.

In Equation (11), the mobile dislocation density production is related to the term C(s)
1 Dg and thus

is set proportional to the grain diameter. The idea underlying this formalism is that the expansion of
dislocation loops (e.g., from a Frank–Read source) is less constrained in larger grains. In smaller
grains, dislocation loops will pile-up (as observed in cp Ti [41]) or will be absorbed [42–44] at
the grain boundary sooner, i.e., for a smaller increase of dislocation length (= smaller increase of
dislocation density). The mechanism of loops expansion should be preserved in cp Ti down to
grains of 1 µm or lower (the obstacles spacing d for line tension strengthening may be estimated as
d = 2µ(s)b(s)/τ(s), which gives d ≈ 0.3 µm for prismatic systems with τ(s) = 150 MPa). Furthermore,
with decreasing grain size, the ratio of grain boundary area over grain volume increases. Hence,
the probability of dislocation absorption by grain boundaries should increase when the grain size
decreases. Through Equations (11)–(13), it is observed that the grain size, by influencing the increase
rate of mobile dislocation densities, will also affect the evolution of forest dislocation densities
and hence the hardening behavior. Finally, one may argue that the mean free path of dislocations
(Equation (13)), in addition to being dependent on dislocation density, should also depend on the grain
size. Accordingly, a term that scales as 1/Dg could have been added in Equation (13) as well, as was
done for instance in [4]. However, by doing so, one would get higher forest dislocation densities,
and thus stronger work hardening in small grain samples, which is the opposite of what is observed
(see Figure 1 and further). Hence, our modelling assumption is that the main effect of grain boundaries
in cp Ti is to act as barriers or sinks for dislocations [41–44] which, as a consequence, restricts the
expansion of dislocation length, rather than having a significant contribution to the creation of forest
dislocations, which is mainly accounted for by dislocations’ interactions.

2.2.3. Model Parameters

The model is coded in Fortran and solved in an explicit way using very small time steps. It was
checked that convergences of the solutions were indeed reached. The values of the model’s parameters
are given in Table 2 (parameters specific to slip families) and Table 3 (parameters not specific to slip
families). Except for τ

(s)
0 , ρ f0 , C1 and kc, these values are identical as in [19]. It was shown in [19]

that the above described constitutive setting (without the incorporation of grain size effects) was able
to explain the opposite effect of strain rate with regard to the orientation of the tensile axis on the
three-stage hardening behavior of cp Ti thanks to the consideration of lower strain-rate sensitivity
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for prismatic systems. Because of the presence of the Hall–Petch type term in the expression of τ(s)c

(Equation (10), the values of τ(s)0 and ρ f0 had to be modified to retrieve CRSSs with about the same
level as in [19]. The value of the resolved Hall–Petch type slope kHP corresponds approximately to
the macroscopic Hall–Petch slope determined in [31] divided by the Taylor factor. The value of C1

was adjusted so that the product C1Dg is about the former value of C1 in [19] for a mean grain size of
10 µm.

Table 2. Model parameters that are specific to slip families (Prismatic: P, Basal: B, Pyramidal <a>:
Π<a>

1 , 1st order Pyramidal <c+a>: Π<c+a>
1 , 2nd order Pyramidal <c+a>: Π<c+a>

2 ).

P Π<a>
1 B Π<c+a>

1 Π<c+a>
2

b (Å) 2.95 2.95 2.95 5.53 5.53
µ (GPa) 35.0 37.1 46.5 47.7 49.2
τ0 (MPa) 50 90 120 75 150
C1 (m−1) 80 15 15 15 15

n 65 32 32 32 32

Table 3. Model parameters that are not specific to slip families. Cij are the stiffness constants. acoli
denotes the interaction coefficient related to collinear interactions, i.e., reactions between dislocations
with parallel Burgers vectors gliding in different planes, whereas a 6=coli refers to non-collinear
interactions (see details in [19]).

c/a C11 (GPa) C33 (GPa) C44 (GPa) C12 (GPa) C13 (GPa) kHP (MPa.m0.5)
1.587 160 181 46.5 90 66 0.1

v0 (ms−1) ρm0 (m−2) ρ f0 (m−2) C2 K acoli a 6=coli kc
3× 10−5 1× 1010 2× 1012 75 80 0.7 0.1 10

3. Results and Discussion

The tensile curves of the seven specimens were simulated using the same set of model parameters.
The specific set of grain orientations, volume fractions and equivalent diameters was used for each
specimen. The numbers of grains considered in the simulations were the numbers of grains of the
EBSD maps indicated in Table 1. Figures 4 and 5 show the simulated curves and their equivalent
experimental counterparts. In order to characterize further the mechanical behavior, several quantities
were collected from the tensile curves:

• the 0.2% yield stress: σe,
• the maximal engineering stress: σmax,
• the σmax corresponding engineering strain: ε∗,
• the hardening amplitude: ∆σ = σmax − σe.

Both the experimental and simulated values of these quantities are reported in Figure 6 for the
seven specimen.



Materials 2018, 11, 1088 9 of 18

Figure 4. Tensile curves (engineering stress and strain) for model predictions and experimental
measurements for the six specimens deformed along the last rolling direction.

Figure 5. Tensile curves (engineering stress and strain) for model predictions and experimental
measurements for the specimen deformed along the last transverse direction.
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3.1. Yield Stress

The experimental yield stress increases with decreasing mean grain size Dm and follows rather
well a Hall–Petch relationship (Figure 7), i.e., a scaling σe ∼ 1/

√
Dm, as it was already shown on

a larger data set of cp Ti specimens that also included partially recrystallized microstructures [31].
The calculated yield stresses follow a pretty correct trend considering the unlikely ranking of measured
yield stresses between samples RR 4.8 and RR 9.8 (Figures 6 and 7). The assumption made for the
dependence of the CRSS on the grain size (Equation (10)) thus appears relevant. As also found in
earlier works [2,4,10–13], it is confirmed that the consideration of a Hall–Petch type dependence at
the scale of slip systems enables for retrieving a Hall–Petch law at the macroscopic scale (Figure 7).
This transition may, however, not be as direct as it seems since the macroscopic Hall–Petch law deals
with the mean grain size, whereas the individual grain size is considered at the scale of slip systems.
Hence, the smallest grains of the distribution might act as limiting factors for the complete diffusion of
plasticity in the sample.

Figure 6. Comparisons between experimental and calculated values of σe, σmax, ∆σ and ε∗ (see text
for definitions).

Figure 7. Comparisons of experimental and calculated values of the yield stress σe with respect to the
mean grain size Dm for the specimens of RR type. Linear fit estimates obtained by MATLAB between
σe and 1/

√
Dm are shown in green (Model) and black (Exp.) dotted lines.
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As already observed [17,19,45], for the same mean grain size, the yield stress is higher when the
tensile axis is parallel to the transverse direction (comparisons of samples RT 9.8 and RR 9.8) due to
less-well oriented easy prismatic systems.

3.2. Local Mechanical Fields

Figure 8 shows the evolution of the tensile component of local stresses and local strains in the
grains for specimens with different average grain sizes. Each dot represents the local stress and local
strain values in a given grain. As can be seen, the clouds formed by these dots become larger and larger
with increasing macroscopic strain, while their shapes evolve from vertically elongated towards more
and more horizontally spread. This result is radically different from the predictions of a simple Taylor
model, which would give dots aligned along vertical lines at any strain (uniform strain). The results
shown in Figure 8 are in agreement with strain measurements obtained locally in polycrystalline
materials [46–48], especially for hexagonal structure [49]. The stress and strain fluctuations arise in
the present modeling because of the consideration of non-uniform distributions of grain orientations
and sizes coupled with elastic and plastic anisotropies at the single crystal level, as well as grain
size dependent CRSSs (Equation (10)) and grain size dependent dislocation density evolution laws
(Equation (11)). At 1% macroscopic strain, the fluctuations are mostly due to elastic incompatibilities.
With increasing deformation, plastic strains become rapidly larger than elastic strains and plastic
incompatibilities become predominant. Moreover, as noticed in [2,4], the grain size dispersion strongly
influences the local mechanical fields. Actually, for a same grain size dispersion, (Dmax − Dmin)/Dm,
the relative dispersion of the Hall–Petch type term, kHP/

√
Dg in Equation (10), is invariant whatever

the mean grain size is. Since the contribution of the Hall–Petch type term increases with decreasing
grain size, the absolute dispersion of the CRSSs becomes larger and larger in samples having smaller
and smaller mean grain sizes (considering that the normalized grain size distributions of our samples
are quite similar (Figure 2)). It was checked that this effect alone cannot explain totally the impressive
increase in the scattering of the local strains and stresses when decreasing the mean grain size in
Figure 8. Indeed, there is an additional effect that is related to the grain size dependence of the mobile
dislocation density evolution (Equation (11)). The latter impedes significantly the multiplication of
mobile dislocations in the smallest grains (see further Figure 11) and thus restricts the value of the
slip rates in those grains (Equation (8)). For instance, the smallest grain diameter considered in our
simulations, 0.45 µm in sample RR 2.8, is relatively close to the value of 0.14 µm below which ρ̇

(s)
m is

initially negative in Equation (11). As a result, local stresses almost as high as 1200 MPa are reached in
some grains of sample RR 2.8 at a macroscopic strain of 15% (Figure 8). These grains are very small
and act like hard particles as they exhibit very little deformation (the corresponding local strains are
barely greater than 1%). They represent, however, a very small volume fraction of the whole sample.
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Figure 8. Distribution of predicted tensile stress–strain relationships for each grain at 1% (magenta),
5% (red), 10% (blue) and 15% (green) of macroscopic strain for specimens RR 2.8, RR 4.8, RR 9.8 and
RR 21.3. The corresponding model tensile curve is superimposed on each plot (black thick line).

3.3. Slip Activity

From the simulations, it is possible to estimate the relative activity α of a slip family as:

α =
∑

ng
g=1 ∑

q
s=p fg|γ̇(s)

g |

∑
ng
g=1 ∑ns

s=1 fg|γ̇(s)
g |

, (14)

where the slip system numbers of a specific family goes from p to q. ns is the total number of slip
systems, ng the total number of grains and fg the grain volume fraction. The distribution of the slip
activity is mainly influenced by the texture, the initial values of the CRSSs and the intergranular
stresses that arise from strain incompatibilities. For tensile tests along the rolling direction, it is known
that, as a result of the texture, a vast majority of the grains have large macroscopic Schmid factors
for prismatic, pyramidal <a> and 1st order pyramidal <c+a> glide and low ones for basal slip [17,31].
On the contrary, along the transverse direction, there is no big difference of Schmid factors among the
four main slip families, 1st order pyramidal <a> and <c+a> being nevertheless the most favorably
oriented ones [17,31]. As a consequence, for deformation simulation along the last rolling direction,
prismatic slip strongly dominates at the very beginning of deformation because of its low CRSS value.
Then, it decreases to reach a quasi steady-state of about 50% of the total slip activity whatever the
mean grain size (Figure 9). The second most important contribution to plastic deformation arises from
1st order pyramidal <c+a> systems, which exhibit a maximum around 0.5% plastic strain with a rapid
initial increase before and a very slight steadily decrease after. This decrease is probably due to the
stronger hardening of <c+a> systems. Pyramidal <a> and basal systems have also non negligible
contributions, while the one of 2nd order pyramidal systems is completely unimportant due to the
much higher value of its CRSS. During the simulations, dislocations of 2nd order pyramidal systems
act thus only as a static forest. For deformation along the transverse direction, the fall of the prismatic
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activity is much stronger and occurs sooner. In steady-state, the contribution of the four main slip
families are between 20% and 35%.

Figure 9. Relative activities of slip families (α) predicted by the model for specimen RR 9.8 (left) and
RT 9.8 (right).

3.4. Hardening Behavior

It can be noticed from the tensile experimental curves (Figures 1 and 4) that the tendency to
form an initial plateau becomes more and more pronounced with decreasing mean grain size. This
general trend is in agreement with other experiments in titanium [50] and was also characterized
as such in copper [9] for instance. The model reproduces very well this trend (Figure 4). Moreover,
the evolution of the work hardening rate θ = dσ/dεP for all the simulations of RR type is plotted in
Figure 10. In agreement with the present experiments and previous tensile tests on cp Ti [17,19,29,30],
a three-stage work hardening behavior is obtained, where an initial fall of θ is followed by an increase
and a final progressive decrease. More importantly, the model predicts a growing well depth with
decreasing grain size, or, in other words, a transient low work hardening rate with smaller and smaller
value as the grain size decreases. In Figure 10, it is also noteworthy that the predicted work hardening
rates of all the specimens converge at high strains, meaning that the model correctly predicts an
insensitivity to grain size at high strains [9]. The reason is that the mobile dislocation density reaches a
saturation value (see further Figure 11).

Figure 10. Model predictions for the work hardening rate evolution for the specimens of RR type.
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Figure 11. Model predictions for the evolution of the total forest (ρ f ) and mobile (ρm) dislocation
densities for the specimens of RR type. Densities are cumulated over the 30 slip systems and averaged
over the grains’ population.

The low point of the work hardening rate precisely corresponds to the moment when the activity
of the 1st order pyramidal <c+a> systems approaches its maximum value, around 0.5% of plastic strain
(Figure 9). Hence, the appearance of a low point in the work hardening rate evolution seems to be
related to the start of multiple slip within grains, or to a kind of balance between <a> and <c+a> slip
activities. Under such conditions, plastic strain incompatibilities and the induced intergranular stresses
are strongly decreased. Along with the fast multiplication of mobile dislocations (Equation (11)),
this gives rise to an initial state with very weak hardening. In agreement with previous experiments,
when the tensile axis is parallel to the transverse direction (comparisons of samples RT 9.8 and RR 9.8),
the plateau effect is even more pronounced due to an even more balanced slip activity distribution
(Figure 9). This texture effect is very well reproduced by the model (Figure 5).

The grain size effect on the work hardening rate can be understood by analyzing the
predicted evolutions of dislocation densities in Figure 11. As expected from Equations (11) and
(12), the assumption of a mobile dislocation density production that grows with grain size makes both
mobile and forest dislocation densities increase with the grain size. This implies that the rate of CRSS
increase is more important in large grains since τ

(s)
0 and the Hall–Petch type term do not evolve with

deformation (Equation (10)). The increase of CRSSs counterbalances the previously mentioned effects,
which lead to a low point in the work hardening rate evolution. As a result, the model indeed predicts
a less and less pronounced transient low work hardening rate as the grain size increases.

The same explanation holds to interpret the effect of the grain size on the hardening capacity.
Both the observations and the model predictions indicate a hardening amplitude ∆σ that tends to
increase with the grain size (Figure 6). The CRSSs of the small grains are initially higher than those of
the large grains while the latter can display larger increases. By consequence, large grains exhibit a
higher hardening capacity.

In addition, the correct prediction of a smaller hardening amplitude obtained for sample RT
9.8 (Figures 5 and 6) results from the choice of a greater C1 value for prismatic systems compared
to other slip families (Table 2). Indeed, since the contribution of prismatic slip is less important for
deformation along the transverse direction (Figure 9), this assumption leads to much lower dislocation
densities in sample RT 9.8 compared to RR 9.8 and thus to much weaker work hardening (see [19] for
further information).

Finally, it can be observed that the model reproduces the Considere point (σmax, ε∗), i.e., a limit for
the homogeneous deformation, which matches satisfactorily the experimental results. The maximal
engineering stress, σmax, compares rather well with experiments, whereas the corresponding
engineering strain, ε∗, is slightly underestimated except for the case RT 9.8 (extension along the
transverse direction) (Figure 6). The model, with its assumptions and with the used parameters, is thus
able to account for the balance of appearing and disappearing dislocations. The value of ε∗ is mainly
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controlled by the dynamic recovery parameter kc (Equation (12)). kc is set to one unique value all along
the deformation, which obviously does not allow for capturing totally the complexity of the dynamics
of the recovery process (e.g., effect of thermally-activated cross-slip).

4. Conclusions

This study considers tensile curves of a set of cp Ti specimens with different microstructures,
especially with several mean grain sizes. It is observed that the yield stress depends on the grain size
following a Hall–Petch relationship. The hardening behavior shows also some dependence with the
grain size. The tendency of stress–strain curves to form a plateau becomes more and more pronounced
with decreasing mean grain size while the hardening amplitude ∆σ = σmax − σe increases with the
grain size. All these observations are well reproduced by an EVPSC model that incorporates grain size
effects in a crystal plasticity framework where dislocation densities are the state variables. While the
CRSSs are made dependent on the individual grain size through the addition of a Hall–Petch type
term (Equation (10)), the originality of the model comes from the fact that the multiplication of mobile
dislocation densities is also made grain size dependent (Equation (11)). Our assumption is that, due to
grain boundaries acting mainly as barriers or sinks for dislocations, the smaller the grain size, the
smaller the expansion of dislocation loops and thus the smaller the increase rate of mobile dislocation
density. As a consequence of this assumption, both mobile and forest dislocation densities increase
with the grain size, which provides an explanation for the grain size dependence of the transient low
work hardening rate and hardening amplitude. It is noteworthy, however, that, in agreement with
observations, the predicted work hardening rates of different mean grain size samples eventually
converge at high strains because the mobile dislocation density reaches a saturation value. The fact that
the model provides correct estimates of the homogeneous deformations is also quite positive and shows
that the formalism, as well as the choice of the parameters, reflects rather well the complex reality.
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