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Abstract: Functionally graded piezoelectric-piezomagnetic material (FGPPM), with a gradual
variation of the material properties in the desired direction(s), can improve the conversion of
energy among mechanical, electric, and magnetic fields. Full dispersion relations and wave mode
shapes are vital to understanding dynamic behaviors of structures made of FGPPM. In this paper,
an analytic method based on polynomial expansions is proposed to investigate the complex-valued
dispersion and the evanescent Lamb wave in FGPPM plates. Comparisons with other related studies
are conducted to validate the correctness of the presented method. Characteristics of the guided
wave, including propagating modes and evanescent modes, in various FGPPM plates are studied,
and three-dimensional full dispersion and attenuation curves are plotted to gain a deeper insight into
the nature of the evanescent wave. The influences of the gradient variation on the dispersion and the
magneto-electromechanical coupling factor are illustrated. The displacement amplitude and electric
potential and magnetic potential distributions are also discussed in detail. The obtained numerical
results could be useful to design and optimize different sensors and transducers made of smart
piezoelectric and piezomagnetic materials with high performance by adjusting the gradient property.

Keywords: evanescent wave; polynomial approach; functionally graded piezoelectric-piezomagnetic
material; dispersion; attenuation

1. Introduction

Due to the excellent coupling behavior among mechanical, electric, and magnetic fields,
piezoelectric-piezomagnetic composites (or magneto-electro-elastic material) composed of piezoelectric
and piezomagnetic phases have been increasingly applied to different engineering structures,
especially to the smart or intelligent systems as intelligent sensors, damage detectors, etc. [1]. It is
found that the smart structures made of functionally graded materials (FGM) possess a better
structural performance than traditional composite materials. The concept of FGM has been extended
to the development of new piezoelectric-piezomagnetic materials appointed functionally graded
piezoelectric-piezomagnetic materials, which can realize the smooth transition of the physical
constitutive parameters of the piezoelectric and piezomagnetic materials. FGPPMs have been used in
some devices to improve their efficiency and other features. Many applications are closely connected
with the vibration and wave propagation of FGM and FGPPM [2–5]. Dispersion relations and wave
mode shapes are very important for understanding dynamic behaviors of structures. Wave propagation
features in FGPPM plates could be also useful in designing and optimizing the high-accuracy sensors
and transducers [6,7].

With the remarkable achievements in fabrication of FGPPM during the decades, many investigators
have turned attention to the study of wave propagation in such materials. Wang and Rokhlin [8]
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presented the differential equations governing the transfer and stiffness matrices for a functionally graded
generally anisotropic magneto-electro-elastic medium and calculated the surface wave velocity dispersion.
Pan et al. [9] derived an exact solution for the multilayered plate made of functionally graded, anisotropic
and linear magneto-electro-elastic materials based on Pseudo-Stroh formalism. Bhangale et al. [10] carried
out the free vibration studies on the simply supported functionally graded magneto-electro-elastic
plate by semi-analytical finite element method. Wu et al. [11] investigated the wave propagating
characteristics in the non-homogeneous magneto-electro-elastic plates by using orthogonal polynomial
approach. By employing the power series technique, Cao [12] investigated the Lamb wave propagation
in FGPPM plates. Singh and Rokne [13] investigated the SH wave propagating in FGPPM structures.
Xiao et al. [14] investigated the dispersion properties of wave propagation in the functionally graded
magneto-electro-elastic plate by the Chebyshev spectral element method.

As is reviewed above, so far, studies on the guided wave in FGPPM structures are limited to the
propagating waves, but the evanescent waves have not been investigated. Recently, some studies on
pseudo surface acoustic waves (PSAW) in piezoelectric half-spaces find that the PSAW modes have
higher velocities and lower attenuations, compared to the classical surface acoustic waves [15,16].
Such modes make the piezoelectric device possess higher resolution. Evanescent wave modes also
have the similar features. According to the classification of Auld [17], the complete wave modes
consist of propagating modes with real wave number and evanescent modes with complex or purely
imaginary wave number. Note that evanescent modes represent local modes that would exist at
discontinuities and decay with propagating distance (so referred to as evanescent or non-propagating
wave). As early as 1955, Lyon [18] obtained the purely imaginary roots of the dispersion equation
for an elastic plate. Remarkable is the work done by Mindlin who demonstrated the presence of
complex roots of the Rayleigh-Lamb equation [19]. Freedman [20] studied the imaginary valued
Lamb mode spectra covering virtually the full range of the Poisson ratio. Quintanilla et al. [21]
calculated the full spectrum for guided wave problems in plates and layered cylinders using a spectral
collocation method. More recently, Yan and Yuan [22,23] discussed the potential application of
evanescent waves in structural health monitoring and investigated the conversion of evanescent SH
and Lamb waves into propagating waves using a semi-analytical approach. Chen et al. [24] studied
theoretically the real-valued and imaginary-valued SH waves in a piezoelectric plate of cubic crystals.
These researches focused on the simple material and purely imaginary modes. In fact, the search of
complex roots corresponding to evanescent waves is a difficult task for FGM with material properties
of variable coefficients. To the best of the authors’ knowledge, the evanescent waves in FGM or
piezoelectric-piezomagnetic composite have not been studied before, which is the motivation of
this study.

In this paper, an analytic method based on polynomial expansions is proposed to calculate guided
waves in FGPPM plates. The presented method can replace the problem of computing a transcendental
dispersion equation by a general eigenvalue problem in wave number. The complete solutions of
the dispersion equation, including the purely real, purely imaginary and complex solutions, can be
obtained. We plot the full dispersion curves in three dimensional (3D) frequency-complex wave number
space to gain a better and deeper insight into the characteristics of evanescent waves. Two known
cases are given to validate this approach. The characteristics of evanescent guided waves in various
FGPPM plates are illustrated. The effects of different graded fields on the dispersion curves and the
coupled electromechanical factor are investigated. The displacement amplitude and electric potential
and magnetic potential distributions are also discussed in detail.

2. Mathematics and Formulation of the Problem

Consider a FGPPM plate with varying material properties with regard to thickness (the z-axis).
The plate described in Cartesian coordinate system (x, y, z), is infinite horizontally but finite in the
z direction with a thickness h, occupies the region 0≤ z≤ h, as shown in Figure 1. The wave propagates
along the x direction, and the upper and bottom surface of the plate are traction free.
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For the piezoelectric-piezomagnetic medium, the governing field equations (Equation (1)) and
the generalized constitutive relations (Equation (2)) can be expressed as [12]:

σij,j = ρ
..
ui, Di,i = 0, Bi,i = 0 (1)

σij = Cijklεkl − ekijEk − qijk Hk, Di = eiklεkl+ ∈ik Ek + gik Hk, Bi = qijkε jk + gikEk + µik Hk (2)

εij =
1
2
(
ui,j + uj,i

)
, Ei = −ϕ,i, Hi = −ψ,i (3)

Generalized geometric equations under a rectangular coordinates system are in the above
Equations (1)–(3), σij is the stress tensor, Di is the electric displacement and Bi is the magnetic induction
Cijkl , ekij, qijk, ∈ik, gik and µik are the elastic, piezoelectric, piezomagnetic, dielectric, magnetic,
and magnetoelectric parameters of the FGPPM, respectively, while all of them, including the mass
density ρ, are functions of z. According to Einstein summation convention, where i, j, k and l = 1, 2, 3
corresponding to x, y, z directions, respectively. εkl , Ek and Hk are the strain tensor, the electric field,
and magnetic field, respectively. ui (i = x, y, z) denotes the mechanical displacement component in
the ith direction. ϕ and ψ are the electric potential and magnetic potential. Comma in subscripts and
superposed dot denote spatial and time derivatives, respectively.

For Lamb waves propagating along the x direction, the displacement components,
electric potential and magnetic potential can be expressed as

ui(x, z, t) = exp(ikx− iωt)Ui(z), ϕ(x, z, t) = exp(ikx− iωt)X(z), ψ(x, z, t) = exp(ikx− iωt)Y(z) (4)

where Ui (i = x, z) represents the amplitude of the displacements in the ith directions, X and Y represent
the amplitude of electric potential and magnetic potential, respectively. k is the wave number, ω is the
angular frequency, and i is the imaginary number.

Since the material properties change gradually with thickness and are the functions of z, they can
be fitted into the following form:

f (z) = f (l)(z/h)l , l = 0, 1, 2 . . . , L (5)

where f (f = ρ, C, e, ∈, q, g and µ) denotes material parameters, l is the order number, f (l) is the coefficient.
For homogeneous material, f (z) = C(0), and when l > 0, f (l) is zero.

The following boundary and continuous conditions should be satisfied as follows. For the
traction-free boundary condition, it requires that σzz

∣∣z=0,h = 0, σxz
∣∣z=0,h = 0, σyz

∣∣z=0,h = 0.
For electric and magnetic open circuit, Dz

∣∣z=0,h = 0, Bz
∣∣z=0,h = 0, and for electric and magnetic

shorted circuit, ϕ
∣∣z=0,h = 0, ψ

∣∣z=0,h = 0.
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Then take the traction-free and electrical and magnetic open-circuit boundary conditions as an example.
Considering the boundary of material, the position-dependent material parameters are given by:

f (z) = f (z)π(z) (6)

where π(z) is a rectangular window function defined by π(z) =

{
1, 0 ≤ z ≤ h
0, elsewhere

, whose derivative

is a Dirac’s delta function, δ(z − h) − δ(z). Then the boundary conditions can be automatically
incorporated in the constitutive relations [25].

To reduce the number of resolving equations, we substitute Equations (3)–(6) into Equation (2)
with following substitution into Equation (1). Consequently, the governing differential equations in
terms of the displacement, electric potential and magnetic potential components can be obtained. Here,
the case of an orthotropic FGPPM plate with the z direction polarization is given:( z

h
)l
[
C(l)

55 U′′ + lz−1C(l)
55 U′ + ik

(
C(l)

13 + C(l)
55

)
W ′ + ik

(
e(l)15 + e(l)31

)
X′ + ik

(
q(l)15 + q(l)31

)
Y′

−k2C(l)
11 U + likz−1

(
C(l)

55 W + e(l)15 X + q(l)15 Y
)]

π(z) + (δ(z− 0)− δ(z− h))
( z

h
)l
(

C(l)
55 U′

+ikC(l)
55 W + ike(l)15 X + ikq(l)15 Y

)
= − ρ(l)zlω2

hl Uπ(z)

(7a)

( z
h
)l
[
C(l)

33 W ′′ + e(l)33 X′′ + q(l)33 Y′′ + ik
(

C(l)
13 + C(l)

55

)
U′ + lz−1

(
C(l)

33 W ′ + e(l)33 X′ + q(l)33 Y′
)

+likz−1C(l)
13 U−k2

(
C(l)

55 W + e(l)15 X + q(l)15 Y
)]

π(z) + (δ(z− 0)− δ(z− h))
( z

h
)l
(

C(l)
33 W ′

+e(l)33 X′ + q(l)33 Y′ + ikC(l)
13 U

)
= − ρ(l)zl ω2

hl Wπ(z)

(7b)

( z
h
)l
[
e(l)33 W ′′− ∈(l)33 X′′ − g(l)33 Y′′ + ik

(
e(l)15 + e(l)31

)
U′ + lz−1

(
e(l)33 W ′− ∈(l)33 X′ − g(l)33 Y′

)
+likz−1e(l)31 U−k2e(l)15 W + k2 ∈(l)11 X + k2g(l)11 Y

]
π(z)

+(δ(z− 0)− δ(z− h))
( z

h
)l
(

e(l)33 W ′− ∈(l)33 X′ − g(l)33 Y′ + ike(l)31 U
)
= 0

(7c)

( z
h
)l
[
q(l)33 W ′′ − g(l)33 X′′ − µ

(l)
33 Y′′ + ik

(
q(l)15 + q(l)31

)
U′ + likz−1q(l)31 U

+lz−1
(

q(l)33 W ′ − g(l)33 X′ − µ
(l)
33 Y′

)
−k2q(l)15 W + k2g(l)11 X + k2µ

(l)
11 Y

]
π(z)

+(δ(z− 0)− δ(z− h))
( z

h
)l
(

q(l)33 W ′ − g(l)33 X′ − µ
(l)
33 Y′ + ikq(l)31 U

)
= 0

(7d)

where U and W respectively represent the amplitude of vibration in the x and z directions.
The superscript (’) is the derivative with respect to z.

The four amplitudes can be expanded into Legendre orthogonal polynomial series as:

U(z) =
∞

∑
m=0

p1
mQm(z), W(z) =

∞

∑
m=0

p2
mQm(z), X(z) =

∞

∑
m=0

p3
mQm(z), Y(z) =

∞

∑
m=0

p4
mQm(z) (8)

where pα
m(α = 1, 2, 3, 4) are the expansion coefficients, Qm(r) are an orthonormal set of polynomials in

the interval [0,h].

Qm(z) =

√
2m + 1

h
Pm(

2z− h
h

) (9)

where Pm is the Legendre polynomial of order m.
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Substituting Equations (8) and (9) into Equation (7), then multiplying both sides of the modified
Equation (7) by the complex conjugate Q∗j (z) with j running from 0 to M, integrating over z from 0 to
h, taking advantage of the orthonormality of the polynomial, yields:

k2


l A j,m

11
l A j,m

12
l A j,m

13
l A j,m

14
l A j,m

21
l A j,m

22
l A j,m

23
l A j,m

24
l A j,m

31
l A j,m

32
l A j,m

33
l A j,m

34
l A j,m

41
l A j,m

42
l A j,m

43
l A j,m

44




p1
m

p2
m

p3
m

p4
m

+ k


l B j,m

11
l B j,m

12
l B j,m

13
l B j,m

14
l B j,m

21
l B j,m

22
l B j,m

23
l B j,m

24
l B j,m

31
l B j,m

32
l B j,m

33
l B j,m

34
l B j,m

41
l B j,m

42
l B j,m

43
l B j,m

44




p1
m

p2
m

p3
m

p4
m



+


lC j,m

11
lC j,m

12
lC j,m

13
lC j,m

14
lC j,m

21
lC j,m

22
lC j,m

23
lC j,m

24
lC j,m

31
lC j,m

32
lC j,m

33
lC j,m

34
lC j,m

41
lC j,m

42
lC j,m

43
lC j,m

44




p1
m

p2
m

p3
m

p4
m

 = −ω2


l M j

m 0 0 0
0 l M j

m 0 0
0 0 0 0
0 0 0 0




p1
m

p2
m

p3
m

p4
m



(10)

or is abbreviated as
k2A · p + k1B · p + C · p = −ω2M · p (11)

where A, B, C and M are matrices of order 4(M + 1)·(M + 1), p =
[
p1

m p2
m p3

m p4
m
]T , the elements of the

matrices are as following,

l A j,m
11 = − 1

hl C(l)
11 β(m, l, 0, j)l A j,m

22 = − 1
hl C(l)

55 β(m, l, 0, j)l A j,m
23 = − 1

hl e(l)15 β(m, l, 0, j)
l A j,m

24 = − 1
hl q(l)15 β(m, l, 0, j)l A j,m

32 = − 1
hl e(l)15 β(m, l, 0, j)l A j,m

33 = 1
hl ∈

(l)
11 β(m, l, 0, j)

l A j,m
34 = 1

hl g(l)11 β(m, l, 0, j)l A j,m
42 = − 1

hl q(l)15 β(m, l, 0, j)l A j,m
43 = 1

hl g(l)11 β(m, l, 0, j)
l A j,m

44 = 1
hl µ

(l)
11 β(m, l, 0, j)l A j,m

12 = l A j,m
21 = 0l A j,m

13 = l A j,m
31 = 0l A j,m

14 = l A j,m
41 = 0;

l B j,m
12 = 1

hl {i
(

C(l)
13 + C(l)

55

)
β(m, l, 1, j) + liC(l)

55 β(m, l − 1, 0, j) + iC(l)
55 γ(m, l, 0, j)},

l B j,m
13 = 1

hl {i
(

e(l)15 + e(l)31

)
β(m, l, 1, j) + lie(l)15 β(m, l − 1, 0, j) + ie(l)15 γ(m, l, 0, j)}

l B j,m
14 = 1

hl {i
(

q(l)15 + q(l)31

)
β(m, l, 1, j) + liq(l)15 β(m, l − 1, 0, j) + iq(l)15 γ(m, l, 0, j)}

l B j,m
21 = 1

hl {i
(

C(l)
13 + C(l)

55

)
β(m, l, 1, j) + liC(l)

13 β(m, l − 1, 0, j) + iC(l)
13 γ(m, l, 0, j)}

l B j,m
31 = 1

hl {i
(

e(l)15 + e(l)31

)
β(m, l, 1, j) + lie(l)31 β(m, l − 1, 0, j) + ie(l)31 γ(m, l, 0, j)}

l B j,m
41 = 1

hl {i
(

q(l)15 + q(l)31

)
β(m, l, 1, j) + liq(l)31 β(m, l − 1, 0, j) + iq(l)31 γ(m, l, 0, j)},

l B j,m
11 = l B j,m

22 = l B j,m
33 = l B j,m

44 = 0l B j,m
23 = l B j,m

32 = 0l B j,m
24 = l B j,m

42 = 0l B j,m
34 = l B j,m

43 = 0;
lC j,m

11 = 1
hl

{
C(l)

55 β(m, l, 2, j) + lC(l)
55 β(m, l − 1, 1, j) + C(l)

55 γ(m, l, 1, j)
}

lC j,m
22 = 1

hl

{
C(l)

33 β(m, l, 2, j) + lC(l)
33 β(m, l − 1, 1, j) + C(l)

33 γ(m, l, 1, j)
}

lC j,m
23 = 1

hl

{
e(l)33 β(m, l, 2, j) + le(l)33 β(m, l − 1, 1, j) + e(l)33 γ(m, l, 1, j)

}
lC j,m

24 = 1
hl

{
q(l)33 β(m, l, 2, j) + lq(l)33 β(m, l − 1, 1, j) + q(l)33 γ(m, l, 1, j)

}
,

lC j,m
32 = 1

hl

{
e(l)33 β(m, l, 2, j) + le(l)33 β(m, l − 1, 1, j) + e(l)33 γ(m, l, 1, j)

}
lC j,m

33 = 1
hl {− ∈

(l)
33 β(m, l, 2, j)− l ∈(l)33 β(m, l − 1, 1, j)− ∈(l)33 γ(m, l, 1, j)}

lC j,m
34 = 1

hl {− g(l)33 β(m, l, 2, j)− lg(l)33 β(m, l − 1, 1, j)− g(l)33 γ(m, l, 1, j)}
lC j,m

42 = 1
hl

{
q(l)33 β(m, l, 2, j) + lq(l)33 β(m, l − 1, 1, j) + q(l)33 γ(m, l, 1, j)

}
lC j,m

43 = 1
hl {−g(l)

33 β(m, l, 2, j)− lg(l)33 β(m, l − 1, 1, j)− g(l)33 γ(m, l, 1, j)}
lC j,m

44 = 1
hl {−µ

(l)
33 β(m, l, 2, j)− lµ(l)

33 β(m, l − 1, 1, j)− µ
(l)
33 γ(m, l, 1, j)},

lC j,m
12 = lC j,m

21 = 0lC j,m
13 = lC j,m

31 = 0lC j,m
14 = lC j,m

41 = 0l M j
m = 1

hl ρ(l)β(m, l, 0, j);

with β(m, l, n, j) =
∫ h

0 Q∗j (z)z
l ∂nQm(z)

∂zn dz, γ(m, l, n, j) =
∫ h

0 Q∗j (z)z
l ∂π(z)

∂z
∂nQm(z)

∂zn dz.
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The objective is to find wave numbers k that satisfy the Equation (11). It is simple and useful for
propagating wave, by specifying real k and then solving for ω. But if interest is the evanescent wave,
the approach is useless because k is complex and the solving of Equation (11) involves a multivariable
search. In order to overcome this difficulty, we develop a new solution procedure as shown below.

We introduce two new vectors:

q = k · p, N = −ω2M. (12)

Substitution Equation (12) into Equation (11), and then multiplying both sides of the modified
Equation (11) by inverse matrix A−1, yields

A−1(N−C)p− (A−1B)q = k · q. (13)

Combining Equation (13) and the above vector q = k · p, we obtain[
Z I4(M+1)

A−1(N−C) −A−1B

][
p
q

]
= k

[
p
q

]
. (14)

where I is the identity matrix and Z is a zero matrix.
If we define R = [pq]T , then Equation (14) can be written as[

Z I4(M+1)
A−1(N−C) −A−1B

]
R = kR. (15)

Up to this stage, the problem is reduced to a typical eigenvalue problem, which can be easily
solved using an eigensolver routine that yields the complex eigenvalues k. All the developments
performed in this paper were implemented in Mathematica software (version 8.0, Wolfram company,
Champaign, IL, USA). The calculation technique in the short-circuit case is similar to that which is
used in the open-circuit case. The deduction process is not shown to save space.

3. Numerical Results and Discussion

Based on the previous formulations, the computer program in terms of the presented method has
been written using Mathematica software to calculate the dispersion and phase velocity curves for the
FGPPM plate composed of CoFe2O4 (top) and Ba2TiO3 (bottom), h = 1 mm. The material parameters
are from literature [26] and are listed in Table 1.

Table 1. Material parameters of two piezoelectric-piezomagnetic materials.

Materials
Property

C11 C12 C13 C22 C23 C33 C44 C55 C66

Ba2TiO3 166 77 78 166 78 162 43 43 44.6
CoFe2O4 286 173 170 286 170 269 45.3 45.3 46.5

Property

e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

Ba2TiO3 11.6 11.6 −4.4 −4.3 18.6 196 201 28 5.8
CoFe2O4 0 0 0 0 0 0.8 0.8 0.93 5.3

Property

q15 q24 q31 q32 q33 µ11 µ22 µ33

Ba2TiO3 0 0 0 0 0 5 5 10
CoFe2O4 550 550 580.3 580.3 699.7 −590 −590 157

Units: Cij (109 N/m2), ∈ij (10−10 F/m), eij (C/m2), qij (N/Am), µij (10−6 Ns2/C2), ρ (103 kg/m3).
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We use the Voigt-type model, as described in the literature [27], to calculate the effective material
property of the FGPPM plate:

F(z) = FBVB(z) + FCVC(z), VB(z) + VC(z) = 1 (16)

where FB and FC respectively represent the material property of the Ba2TiO3 and CoFe2O4 materials,
and VB and VC are volume fraction.

Equation (16) can be rewritten as

F(z) = FB + (FC − FB)VC(z) (17)

Similar to Equation (5), VC(z) can be expressed as a power expansion, Here we consider four
different gradient fields, VC(z) = (z/h)n, n = 1, 2 and 3, namely linear, quadratic and cubic graded
fields, and sinusoidal graded field VC(z) = sin(0.5πz/h).

3.1. Approach Validation and Convergence of the Problem

To check the validity and the efficiency of our approach, we make a comparison between our
results and the literature results. Because there is no investigation on the evanescent waves in FGPPM
so far, we compute the full spectrum of Lamb wave in a steel plate and make a comparison with the
available results in literature [17] from a spectral collocation method. The calculating parameters
are ρ = 7932 kg/m3, C11 = 281.757 GPa, C12 = 113.161 GPa, C44 = 84.298 GPa, and h = 10 mm.
The non-dimensional frequency and wave number are defined as Ω = (ωh

√
ρ/C44)/π, Ψ = kh/π,

respectively. The resulting dispersion curves are given in Figure 2. It clearly shows that the numerical
results obtained by the present polynomial approach agree well with those obtained by the spectral
collocation method, which validates our approach and program.Materials 2018, 11, x FOR PEER REVIEW  8 of 16 
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The material in the above verification example is isotropic. We calculate the dispersion curves of
Lamb wave in an orthotropic plate and make a comparison with the available results in literature [28]
from the reverberation-ray matrix method, which serves as a further validation of our approach.
The material is PZT-4, and the material parameters are listed in Table 2. Figure 3 shows the obtained
frequency spectra. Here again, the agreement is quite good between our results and those from the
reverberation ray matrix method.

Table 2. Material parameters.

Material
Property

C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT-4 139 78 74 139 74 115 25.6 25.6 30.5

Property

e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 65 65 56 7.5

Units: Cij (109 N/m2), ∈ij (10−10 F/m), eij (C/m2), ρ (103 kg/m3).
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Then we discuss the convergence of the present polynomial approach. We present dispersion
curves of propagating Lamb-like wave in a linear FGPPM plate with electric and magnetic open circuit
and h = 1 mm, when the truncation order M takes 7, 8, 9 and 15, respectively, as shown in Figure 4.
It can be seen that more and more order modes converge as M increases. When M = 7, the first three
modes are convergent. The first four when M = 8, and the first seven when M = 9. So, we can think
that at least the first (M − 1)/2 modes are convergent. Similarly, this can be concluded for the purely
imaginary modes, and we don’t present the dispersion curves of purely imaginary branches for saving
space. For evanescent Lamb-like waves, we tabulate the results in Table 3 since graph is not convenient
for comparison. These numerical results also show that the complex solutions are convergent as
M increases. When M = 10 and M = 11, the first three modes are convergent. The first four when
M = 12, the first five when M = 13, and the first six when M = 14. Obviously, the real solution is easier
to converge than the complex one. From these results, good convergence of the present approach can
be observed. We take M = 30 in this paper.
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Table 3. Convergence of complex wave numbers of the first six modes (Ω = 0.1).

M
Mode

1 2 3 4 5 6

10 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33292
+2.58928i ™

0.34536
+3.14395i ™

0.24222
+3.74226i ™

11 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33184
+2.59041i

0.34722
+3.14407i ™

0.24481
+3.73460i ™

12 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35203
+3.14418i ™

0.25047
+3.72524i

13 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25504
+3.72496i ™

14 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25561
+3.72471i ™

20 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25561
+3.72471i ™

3.2. Full Dispersion Curves of Lamb Wave

Propagating waves have received a lot of attention, and here we put the emphasis on evanescent
waves. We plot the full dispersion curves in 3D frequency-complex wave number space for a clearer
visualization of the solutions and a better understanding of the nature of the modes, when necessary,
with a different color for clarity. Figure 5a plots the full dispersion curves of Lamb wave for a linear
FGPPM plate with electric and magnetic open circuit. Since the eigenvalues are computed for one ω

at a time, the dispersion curves are constructed of unconnected dots and the points near the cut-off
frequencies become sparse. We can observe that purely real and purely imaginary solutions appear
in pairs of opposite signs and the complex ones appear in quadruples of complex conjugates and
opposite signs. Purely real wave numbers correspond to the propagating wave, and purely imaginary
and complex wave numbers correspond to the evanescent wave. For a given frequency, a certain small
number of real branches exist together with an infinite number of complex and purely imaginary
branches (mostly imaginary with few complexes in the given range). For clarity, Figure 5b shows
one quadrant dispersion curves in a small range. For complex branches, most of them start from
0 frequency and end at the minima of the purely real branches. Occasionally, one connecting two
purely imaginary branches appears. The real part of the complex branches is usually small. For purely
imaginary branches, most of them start from 0 frequency and end at cut-off frequencies with increasing
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frequency, and some with small wave numbers start from one cut-off frequency and terminate the
other one.
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Figure 6 shows the phase velocity dispersion and attenuation curves of the first three propagating
and complex branches. The dimensionless phase velocity and frequency and attenuation are defined
by Vp = ω/(Re(k) ·

√
C55/ρ), fh = ωh/(2π

√
C55/ρ) and Im(kh). We can find from these curves that

the phase velocity of a propagating mode is decreased and gradually tends to a steady value with
increasing frequency, but the velocity of an evanescent mode becomes bigger as well as the attenuation
decreases. At high frequency, the evanescent mode has a very small attenuation, and its phase velocity
is noticeably bigger than that of a propagating mode. For example, at fh = 2–3, the phase velocity of
the second evanescent mode is about 8, but that of the propagating mode is below 2. Also, the wave
dispersion is quite weak in this frequency range.
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3.3. Influences of Graded Field on Dispersion Curves and the Electromechanical Coupling Factor

Considering two graded shapes, cubic and sinusoidal graded fields. Figure 7 shows their
dispersion curves of Lamb wave. The results show that the effect of the graded field on dispersion
characteristics of Lamb wave is significant, including the propagating modes and evanescent modes.
Comparison between Figures 7 and 5b, we can notice that the imaginary part of the complex branches
for the sinusoidal graded case, at Ω = 0 plane, is bigger than that for the linear and cubic cases.
Interestingly, for the cubic graded cases, the complex branch connecting two purely imaginary branches
disappears and turns into a different one connecting a purely imaginary branch and a real branch.
For clarity, Figure 8 shows the frequency spectra and phase velocity spectra of Lamb propagating
wave for the three graded fields. Obviously, the effect of the graded field is little on the low mode,
but becomes significant with increasing the mode order and wave number. The phase velocity for
the sinusoidal graded field is bigger than that for the linear graded field, while the linear bigger
than the cubic. The reason lies in that the different graded fields result in different material volume
distributions, and the wave velocity depends on the material properties. Figure 9 gives the variation
curves of the three gradient fields in the z direction. The CoFe2O4 content for the sinusoidal graded
field is the highest, and the wave velocity of Ba2TiO3 is slower than that of CoFe2O4.Materials 2018, 11, x FOR PEER REVIEW  12 of 16 
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The magneto-electromechanical coupling factor K2 is an important parameter for designing
acoustic wave devices. A high magneto-electromechanical coupling factor is expected in engineering
applications. It is defined as [29]

K2 =
2|Voc−Vsc|

Voc
(18)

where Voc and Vsc are the phase velocities for the electric and magnetic open circuit and short
circuit, respectively.

To illustrate the effect of graded field on the K2, we calculate the K2 for S0 modes of four different
FGPPM plates, as shown in Figure 10. We can find that the K2 reaches a maximum at a certain wave
number and tend to the same little value with increasing wave number, which implies the influence
of the graded field on the energy propagation of Lamb wave in high-frequency zone is insignificant.
It reaches a maximum from 4.4% for the sinusoidal graded field to 9.5% for the cubic graded field.
They are located near kh = 2 and kh = 1.5 respectively. The K2 for the cubic graded field is always bigger
than that of the other three graded cases. Also the maximum of K2 shifts to the smaller wave number
when the graded power exponent is increasing.
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3.4. Wave Structure Analysis

The distributions of displacement and electric potential and magnetic potential fields can be
obtained according to Equations (4) and (8). Considering a special position where the complex
branch firstly collapses onto the real branch at about Ω = 1.0, as marked with a circle in Figure 5b.
Figures 11 and 12 present the distributions of the physical quantities in the z and x directions when
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Ω = 1.01115, Ψ = 0.23216− 0.04612i, and Ω = 1.01911, Ψ = 0.17938, respectively. As seen in these figures,
the real branch propagates without any attenuation, and the complex branch exhibits an oscillatory
distribution and propagates a very long distance, about a few tens of thicknesses of the plate.
The displacement uz and electric potential and magnetic potential distributions change along the
z direction in a nearly anti-symmetric manner. The displacement ux exhibits a nearly symmetric
manner. The distribution of displacement uz of the complex branch is very similar to that of the real
branch, implying the evanescent wave mode converts into the propagating wave mode.
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3.5. Merits of the Presented Method

Based on the above calculation of wave propagation in a FGPPM plate, we can summarize the
following advantages of the presented method, which makes the method attractive.

(1) The complex mathematical issue is reduced to solve an eigenvalue problem, which is capable
of accurately determining all the real, imaginary and complex solutions of a transcendental
dispersion equation.

(2) The conventional approaches (root-finding routines or finite element simulations) require
an iterative search procedure or a far greater coding effort, to find complex roots. The present
method can avoid tedious iterative two-variable search and is simple to program. It needs to
take a larger polynomial order to obtain solutions of the higher modes, which will cause more
computer memory and long time.

(3) The method is easy to implement and can be extended to complex structures such as multilayered
or curved structures.

4. Conclusions

This paper presents an analytic method based on polynomial expansions for the determination
of the full dispersion spectrum of the guided waves in the FGPPM plate. The correctness of the
present method is verified via numerical comparison with available reference results. For the first time,
the complete 3D dispersion curves of Lamb wave in a FGPPM plate are illustrated in a wide frequency
range. The characteristics of the Lamb waves including the propagating and evanescent modes in
various FGPPM plates are investigated. The emphasis on evanescent waves makes this work relevant
for applications in the nondestructive evaluation of material or structural properties. Based on the
above numerical results, some interesting conclusions can be drawn:

(1) Superior to the conventional methods that necessitate an iterative search procedure to solve the
complex roots of a dispersion equation, the presented analytic method can transform the set of
differential equations for the acoustic waves into an eigenvalue problem in the form AX = kX to
find the complex solutions.

(2) Complex branches of the Lamb wave usually collapse onto the extremum of the real branches.
They exhibit both local vibration and local propagation, and some can propagate a quite long
distance (more than ten times of the plate thickness). They will turn into the propagating modes
with increasing frequency.

(3) Some evanescent modes have a noticeably higher phase velocity than the propagating modes.
The phase velocity of the low order evanescent modes is more than four times larger than that
of the propagating modes. Also, the wave dispersion of the evanescent mode is quite weak in
a certain frequency range.

(4) The magneto-electromechanical coupling factor of the guided wave in a FGPPM plate may
be improved by adjusting the graded field. The coupling factor reaches a maximum from
4.4% for the sinusoidal graded field to 9.5% for the cubic graded field. The maximum of the
magneto-electromechanical coupling factor for the S0 mode shifts to lower frequencies with
increasing the gradient index.

Author Contributions: X.Z. and J.Y. proposed the studied problem and the corresponding solving method;
X.Z. and Z.L. conducted the theoretical derivation and the computation; X.Z. and J.Y. analyzed and discussed the
results; X.Z. and J.Y. wrote the paper.

Funding: This research was funded by the National Natural Science Foundation of China (No. U1504106),
the fundamental research funds for the national outstanding youth project of Henan Polytechnic University
(No. NSFRF140301), and the Program for Innovative Research Team of Henan Polytechnic University (T2017-3).

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2018, 11, 1186 15 of 16

References

1. Wang, J.G.; Chen, L.F.; Fang, S.S. State vector approach to analysis of multilayered magneto-electro-elastic
plates. Int. J. Solids Struct. 2003, 40, 1669–1680. [CrossRef]

2. Tornabene, F. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures
with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 2009, 198, 2911–2935. [CrossRef]

3. Kandasamy, R.; Dimitri, R.; Tornabene, F. Numerical study on the free vibration and thermal buckling
behavior of moderately thick functionally graded structures in thermal environments. Compos. Struct. 2016,
157, 207–221. [CrossRef]
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