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Abstract: Thermal stabilization is a critical, yet time- and energy-consuming process during the
preparation of PAN-based carbon fibers. In this work, automobile-grade carbon fibers with a 2.85 GPa
tensile strength and a 203 GPa modulus are continuously produced with electron-beam (e-beam)
irradiation pretreatment and 24 min thermal stabilization. Thermal and structural analyses reveal
that e-beam irradiation can lower the onset temperature of the cyclization reaction and mitigate the
heat release. Meanwhile, during the process of stabilization, e-beam irradiation can facilitate the
evolution of both the chemical structure and the crystalline structure of polyacrylonitrile (PAN) fibers.
Comparing to the industrial production of carbon fiber with a 40 min stabilization time, e-beam
irradiated PAN fibers can achieve the same degree of stabilization with a 40% time savings.
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1. Introduction

Carbon fiber composites have gained a wide range of applications from sporting products to
the aerospace industry [1,2]. In recent years, there is an increasing demand for low-cost carbon
fibers in the automobile industry, since the majority of automotive manufacturers have carried out
extensive vehicle weight reduction plans, owing to stringent environmental regulations [3]. Carbon
fiber can offer a much higher strength to weight ratio compared to steal and aluminum and has found
success in the weight reduction of vehicles. However, the automobile industry does not require the
ultra-high mechanical properties of carbon fibers, but is rather sensitive to the cost [4]. Accordingly,
the U.S. Department of Energy (DOE) has made the development of low-cost automotive-grade carbon
fiber its highest priority for materials research [5]. The DOE’s targeted mechanical properties of
automobile-grade carbon fibers are a 1.72 GPa tensile strength and a 172 GPa modulus. Meanwhile,
the DOE’s targeted price of automobile-grade carbon fiber is $11–$15.4/kg, which is around one order
of magnitude lower than current commercial carbon fibers [6]. Considering the tremendous potential
market in the automobile industry, a significant amount of industrial and academic efforts have been
devoted to lower the cost of carbon fibers.

Polyacrylonitrile (PAN) has been viewed as the most suitable precursor for making carbon fibers
among pitch, rayon and cellulose [7]. Commercial PAN-based precursor materials are commonly
produced by using polymerization mixtures of AN with more than one co-monomer, for example with
methyl acrylate and itaconic acid, to increase the spinnability and mitigate the heat evolution [1,8].
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The manufacture of PAN-based carbon fibers typically involves three steps: spinning of PAN precursor
fibers, thermal stabilization and carbonization. The thermal stabilization process is the most critical
step during which the linear PAN chains convert to thermally-stable ladder-like structures; this step
ensures efficient conversion of polymer to carbon with high structural integrity and carbon yield [9].
This process consists of a series of sophisticated chemical reactions such as cyclization of the nitrile
groups, dehydrogenation of the cross-linking chain molecules, as well as oxidation reaction [7].
The thermal stabilization reaction is exothermic, and the sudden evolution of heat can partially melt
or even ignite the fiber [10]. Thus, the reaction rate of stabilization has to be restricted by lowering
the reaction temperature. The stabilization of PAN is also a diffusion-controlled process, which is a
function of stabilization time [11]. The large diameter of PAN fibers delays the diffusion of molecules
including oxygen and stabilization by-products between the skin and the core of the fiber, and the
oxidation on the outer region of the fiber would generate a dense layer and hinder further diffusion of
oxygen into the inner region [12]. As the result of the slow reaction rate and hindered diffusion process,
thermal stabilization takes a long time (~1 h) and becomes one of the most time- and energy-consuming
steps during the preparation of carbon fibers. Thus, among various methods for lowing the production
cost of carbon fibers, new oxidation methods using radiation, plasma or ultra-violet treatments to
shorten stabilization time have become of great interest in recent years [13].

Electron-beam (denoted as e-beam) irradiation is a cost-effective and environmentally-friendly
method that has been widely used in industry for cable insulation crosslinking and sterilizing
applications [14]. As early as 1995, Hirt and co-workers had successfully applied e-beam irradiation
on PAN fibers to reduce the stabilization time, and they revealed that the e-beam can initiate
radical-induced cyclization of PAN polymer chains [9]. Since then, many efforts have been devoted
to study the effect of e-beam irradiation on the stabilization behavior of PAN fibers [2,15–19].
However, successful preparation of carbon fibers based on e-beam irradiation pretreatment is rarely
reported, and the application of e-beam irradiation to industrial production of carbon fibers is delayed.
Shin et al. prepared carbon fibers based on the combination of e-beam irradiation and short thermal
treatment, wherein PAN fibers, irradiated by 1000 kGy, were thermally oxidized at 200 ◦C or 250 ◦C for
20 or 40 min, respectively [16]. The results of Fourier transform infrared spectrometer (FT-IR) analysis
showed that the C≡N peak at 2244 cm−1 almost disappeared after 40 min at 250 ◦C, while the intensity
of the C=N peak at 1628 cm−1 was indicative of an increase in cyclization. Through differential
scanning calorimeter (DSC) analysis, thermal treatment at either 200 ◦C or 250 ◦C was found to cause a
sharp decrease in the majority of exothermic peaks. The tensile strength of resulting carbon fibers was
around 2.3 GPa. Recently, Park and co-workers carried out a comprehensive stabilization mechanism
study of e-beam-irradiated PAN fibers, and they successfully prepared carbon fibers with a tensile
strength and modulus of 2.3 and 216 GPa, respectively, based on a 30 min stabilization time [20].
However, these carbon fibers were prepared based on a batch process, which was typically finished
by placing PAN fibers in a cart under the e-beam irradiation source. In practice, research outcomes
based on the continuous production method would be more applicable for industrial production of
carbon fibers.

In this study, a 12k carbon fiber tow is continuously prepared with the process of e-beam
irradiation pretreatment, thermal stabilization and carbonization using a pilot-scale (five tons/year)
production line. The effects of e-beam irradiation on the thermal and structural evolution of PAN
fibers during stabilization are studied using DSC, FTIR, X-ray diffraction (XRD) and bulk density
measurements. Compared to the current industrial carbon fiber production with a 40-min stabilization
time, e-beam-irradiated PAN fibers are stabilized in under 24 min, and their degree of stabilization is
compared based on density and FT-IR measurements. Finally, the mechanical properties of carbon
fibers with irradiation pretreatment are characterized and compared with non-irradiated carbon fibers.
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2. Materials and Methods

2.1. Materials

PAN fibers used in this study were SAF 12K PAN copolymer fibers with 92.8 wt% of acrylonitrile
(AN), 1.2 wt% of itaconic acid (IA) and 6.0 wt% of methyl acrylate (MA) provided by the Courtaulds,
Ltd. UK. Each tow of the fibers consisted of 12,000 filaments.

2.2. Electron Beam Irradiation of PAN Fibers

PAN precursor fibers were continuously irradiated at room temperature with an electron
accelerator in air provided by CYG Electronics Co., Ltd. The equipment setup can be found in
the Supporting Information, Figure S1. The acceleration voltage used in the experiment was 1.5 MeV,
and the electron beam current was 35 mA. PAN fibers were continuously passed under the acceleration
gun. The irradiation dose of 800 kGy was determined by the irradiation time of 20 s, which was
controlled by the fiber travel speed of 6 m/min.

2.3. Stabilization and Carbonization

Carbon fibers from PAN and irradiated PAN precursors were prepared using a self-designed
pilot production line, which consisted of four oxidizing ovens, one low-temperature carbonization
furnace and one high-temperature carbonization furnace. The schematic representation of the
production line is shown in Figure 1. The temperature of four stabilization ovens was programed as
210–225–245–263 ◦C with draw ratios of 2–0–0–0, respectively. The stabilization time was controlled
by the travel distance of precursor fibers within the ovens. Carbonization was performed in a N2

atmosphere. The low-temperature carbonization furnace was divided into five temperature zones,
with a temperature setup of 400–700 ◦C. The high-temperature carbonization furnace was also divided
into five zones with a temperature setup of 1250–1350 ◦C.
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2.4. Characterizations

Differential scanning calorimetry (DSC) conducted in air atmosphere was used to monitor the
thermal behavior of two kinds of fibers by a METTLER DSC-1 differential scanning calorimeter.
The range of heating temperature was 180–400◦C, and different heating rates of 2 ◦C/min, 5 ◦C/min,
8 ◦C/min and 10 ◦C/min were applied for each sample. The activation energy (Ek) of precursor fibers
was calculated from the following Kissinger equation:

ln
β

T2 = ln
AR
Ek

− ln
Ek
R

− 1
Tpk

where Ek is the activation energy (J/mol), β is the heating rate (K/min), Tpk is the temperature of the
exothermic peak (K) and R is the ideal gas constant (8.314 J/mol·K).

A Lloyd DC-2 density gradient tube was adopted to measure the bulk density of the stabilized
fibers and the carbon fibers.
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The X-ray diffraction (XRD) was conducted to characterize the crystalline structure evolution
of both precursor fibers using a D/Max-2500 PC X-ray diffractometer with Cu Kα (λ = 0.1542 nm)
radiation at a voltage of 40 Kv, a current of 45 mA and a scanning range from 5◦–60◦.

Fourier transform infrared spectroscopy (FT-IR) with a Nicolet 8700 spectrometer was used to
analyze the functional groups of irradiated and untreated PAN fibers. Scanning from 500–4000 cm−1

with a resolution of 4 cm−1 was employed to examine the chemical changes during stabilization.
The degree of relative cyclization (RCI(%)) was calculated as RCI(%) = IC≡N

IC≡N+IC=N
× 100%, where IC≡N

is the peak intensity of the C≡N vibration at 2243 cm−1 and IC=N is the peak intensity of the C=N
vibration at 1591 cm−1.

The mechanical properties of carbon fibers were tested on the basis of the D4018–99 standardusing
an INSTRON-5567 universal testing machine at a crosshead speed of 10.0 mm/min with a gage
length of 150 mm. Eight specimens were tested for each type of carbon fiber. During the specimen
preparation, each type of carbon fibers was wound onto a rectangular framework in parallel, and the
aligned fibers were impregnated into a mixed solution (the mass ratio of acetone, epoxy 618 resin and
triethylenetetramine was set at 20:10:1). Then, samples were cured in an oven at 120 ◦C for 2 h.

3. Results

The objective of using e-beam irradiation on PAN fibers is to reduce their thermal stabilization
time. In order to identify the appropriate stabilization parameters for irradiated PAN fibers, differential
scanning calorimetry (DSC) was first employed to study the thermal behavior of irradiated and
non-irradiated PAN fibers. Figure 2 displays the exothermic curves of irradiated and non-irradiated
PAN fibers at different heating rates of 2, 5, 8 and 10 ◦C/min in air atmosphere. The comparison of
DSC curves for PAN and irradiated PAN fibers can be found in the Supporting Information, Figure S2.
In general, the first exothermic peak corresponded to the cyclization reaction [21]. The DSC curves of
untreated PAN fibers exhibited a narrow and sharp exothermic peak, indicating concentrated heat
release. On the other hand, the DSC curves of irradiated PAN fibers showed a flat and broadened
exothermic peak; this indicated that e-beam irradiation pretreatment can mitigate the exothermic
cyclization reaction of PAN fibers. To quantitatively investigate the thermal behavior of irradiated PAN
fibers, the onset temperature of exothermic reaction (Tonset), the first exothermic peak temperature (Tp.1)
and the enthalpy change (∆H) were extracted from DSC curves and summarized in Table 1. The Tonset,
Tp,1 and the baseline for calculating ∆H are shown in the Supporting Information, Figure S3. Noticeably,
the first exothermic peak (Tp.1) of PAN fibers shifted more than 30 ◦C to a lower temperature after
irradiation, and the irradiated PAN fibers released much less heat during the measurement. Similar
observations have been reported by several researchers, and they reveal that the e-beam irradiation
can weaken the dipole force of nitrile groups and produce free radicals to enhance the abilities of
cyclization between PAN molecules [16,22].
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Table 1. Characterization of DSC curves of PAN and irradiated PAN fibers at various heating
rates. Tonset: onset temperature of exothermic reaction; Tp.1: first exothermic peak temperature;
∆H: enthalpy change.

Heating Rate
(◦C/min)

PAN Fibers Irradiated PAN Fibers

Tonset (◦C) Tp.1 (◦C) ∆H (J/g) Tonset (◦C) Tp.1 (◦C) ∆H (J/g)

2 193.7 252.9 3199 186.8 224.2 1666
5 204.8 267.8 2363 189.9 235.1 1258
8 208.3 276.6 1972 181.3 242.6 1584
10 212.6 279.3 1616 182.6 244.9 1309

The activation energy (Ek) of the cyclization reaction was calculated using the Kissinger
method [23]. The Ek values served to highlight the differences in DSC profiles observed between
these two samples, and the Ek of PAN fiber decreased from 119 kJ/mol–105 kJ/mol after irradiation.
The lower Ek of irradiated PAN fiber indicated that irradiation can facilitate the cyclization reaction
of nitrile groups; therefore, the thermal stabilization can proceed with a shorter period of time.
Thus, we can design stabilization parameters with less stabilization time.

During thermal stabilization, both untreated PAN and irradiated PAN fibers were stabilized
continuously through four temperature zones, and the degree of stabilization was controlled through
adjusting the temperature and the dwelling time in each zone. To have a better understanding of the
effect of dwelling time, the temperature of each zone was kept identical for both samples. Thus, the only
difference of stabilization conditions between PAN and irradiated PAN fibers was the dwelling time
in each zone. For untreated PAN fibers, the total stabilization time was 40 min with 10 min in each
zone. The stabilization of 24 min (6 min in each zone) for irradiated PAN fiber was applied based on
the result of density and FT-IR measurements, as discussed later.

Figure 3 shows the color change of PAN fibers after being irradiation and different stages of
stabilization. It is clear that the color of PAN fibers changed from white to yellow after e-beam
irradiation. Previous studies indicate that the color change of PAN after irradiation was caused by the
formation of conjugated double bonds (C=C) or color centers associated with radical species trapped
within glassy polymer matrices [10,20]. During the course of stabilization, the PAN precursor fibers
underwent a change in color from white to yellow, browns and black; this discoloration at elevated
temperature is characteristic of acrylic fibers and is attributed to the conjugation bonds and aromatic
structures generated by the oxygen-induced reaction of dehydrogenation [24].
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The bulk density of fiber is a general reflection of cyclization, dehydration and oxidation
reactions during the stabilization process and is commonly used to trace the degree of stabilization
reaction [25,26]. The bulk density of PAN fibers before and after irradiation was 1.1871 g/cm3 and
1.1925 g/cm3, respectively. The slight increase of densities for PAN fibers after irradiation was
in agreement with the previous assumptions of irradiation-induced cyclization. For a successful
carbonization process, the stabilized fibers should achieve a precursor-dependent critical density [27].
Figure 4 shows the densities of PAN and irradiated PAN fiber after each stage of stabilization. As the
stabilization proceeded, the density of stabilized PAN fiber increased. It can be observed that the
bulk densities of PAN and irradiated PAN fibers increased gradually with the rise of stabilization
temperature. At the early stage of stabilization, the density of irradiated PAN fibers grew faster than
PAN fibers, while the density of PAN fibers grew faster at late stages of stabilization. This can be
explained by the PAN fibers being pre-stabilized by e-beam irradiation and the densities of irradiated
PAN fibers being higher than those of untreated PAN fibers. At later stages of stabilization, the reaction
was governed by the thermochemical reaction of remaining PAN molecules. The overall effect was the
similar densities of stabilized PAN fibers and stabilized irradiated PAN fibers, which suggested that
irradiated PAN fibers with a 24-min stabilization time can achieve the same degree of stabilization
compared to PAN fibers with a 40-min stabilization time.
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The crystalline structures of stabilized PAN fibers were verified by XRD patterns, as shown in
Figure 5a,b. The diffraction peaks centered at 2θ = 16.8◦ and 29.2◦ corresponded to the (100) and (110)
crystallographic planes of the PAN quasi-crystals, respectively [23]. The intensity of diffraction peaks
at 2θ = 16.8◦ and 29.2◦ gradually decreased with the increase of temperature. Simultaneously, there
was the appearance of a new diffraction peak at 2θ = 25.5◦, which corresponded to amorphous carbon.
Meanwhile, for e-beam-irradiated PAN fibers, the diffraction peaks at 2θ = 16.8◦ and 29.2◦ disappeared
earlier, which indicated that the e-beam irradiation pretreatment can expedite the conversion of the
physical stacking structure of PAN molecules.

During oxidative stabilization, two levels/types of structural conversions occurred in precursor
fibers: the first one was the conversion of nitrile groups (C≡N) into (C=N) groups, leading to the
formation of cyclic structures; while the second one resulted from dehydrogenation and/or oxidation,
leading to the formations of aromatic and supra-molecular structures. FT-IR analysis was used to
study the effect of irradiation on the chemical structure evolution of PAN fibers, and the results are
shown in Figure 5c,d. FI-IR spectra of stabilized PAN fibers contained several important characteristic
peaks at 2936 cm−1, 2244 cm−1 and 1628 cm−1, which represented the stretch vibration of methylene
(CH2), nitrile (C≡N) and (C=N) groups, respectively. With the increase of stabilization temperature,
the intensities of C–H and C≡N peaks decreased and the intensities of C=N peak increased, indicating
the progress of cyclization reaction. To quantitatively analyze the degree of cyclization reaction during



Materials 2018, 11, 1270 7 of 10

oxidative stabilization, the ring closure index (RCI) was measured and is listed in Table 2. It is clear to
see that the RCIs of PAN fibers increased from 7.85%–18.7% after irradiation at 25 ◦C, which confirmed
that irradiation can affect the chemical structure of PAN through inducing the cyclization reaction.
Meanwhile, the RCIs of fully-stabilized PAN and irradiated PAN fibers were similar, which supported
that a 24-min stabilization of irradiated PAN fibers can achieve the same degree of stabilization
compared to 40-min stabilized PAN fibers.

Table 2. The ring closure indexes (RCIs) of PAN fibers and irradiated PAN fibers at each stage of
thermal stabilization.

RCIs

25 ◦C 210 ◦C 225 ◦C 245 ◦C 263 ◦C

Irradiated PAN fibers 18.7% 38.3% 61.1% 71.3% 77.5%
PAN fibers 7.85% 22.2% 43.5% 62.7% 76.9%
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Finally, carbon fibers were prepared based on stabilized PAN and stabilized irradiated PAN fibers,
and their mechanical properties are listed in Table 3. The PAN-based carbon fibers (CFs) had a tensile
strength of 3.56 GPa and a modulus of 228 GPa, which are standard values for carbon fibers prepared
from Courtaulds SAF precursor fibers. The mechanical properties verified that the temperature profiles
for stabilization were valid for producing standard carbon fibers. On the other hand, the carbon fibers
prepared using irradiated PAN fibers (denoted as i-CFs) had a tensile strength of 2.85 GPa and a
modulus of 203 GPa. Although these mechanical properties were lower than carbon fibers prepared
from the standard stabilization method, the performance of i-CFs already met the requirements for
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automobile use. Considering the 40% decrease of stabilization time, the energy consumption and
the cost of i-CFs are expected to be noticeably lower than that of standard carbon fibers, making
i-CFs competitive for some applications where the balance of the quality and the cost is considered.
More importantly, the methods and the materials were all based on a continuous pilot production line,
which can provide practical guidance for applying e-beam irradiation to industrial production facilities.

Table 3. Densities and mechanical properties of PAN-based carbon fibers and irradiated-PAN-based
carbon fibers with the corresponding coefficient of variance (CV). i-CF, irradiated carbon fiber.

Density
(g/cm3)

Tensile
Strength (GPa) CV (%) Modulus

(GPa) CV (%) Elongation
(%) CV (%)

CFs 1.805 3.56 2.05 228 2.32 1.51 5.70
i-CFs 1.813 2.85 1.69 203 1.47 1.40 3.47

4. Discussion

The energy savings of the rapid stabilization process using e-beam irradiation was roughly
estimated based on the operation power of the pilot production line in this study. The detailed
operation power of the apparatuses is shown in the Supporting Information, Table S1. The stabilization
step accounts for ~50% of the total energy consumption of the whole production line. The rapid
stabilization process based on e-beam irradiation can save 40% of the energy cost for the thermal
stabilization step and save 18% of the total energy cost for the production line. The carbonization
process is a relatively fast step that requires less than 3 min. The spinning of PAN fiber is also very
fast, and the speed can reach 300–400 m/min. However, the speed of the overall production line
has to be limited to around 10–15 m/min due to the long stabilization time. If we can lower the
stabilization time, the total production speed can be promoted, and the capacity of each line can be
increased; this will enhance the production efficiency and thus further lower the total cost. Meanwhile,
the e-beam irradiation of PAN fiber is a fast process, which correlates well with the rapid production
of carbon fibers.

It is worth noting that for better comparison of carbon fibers prepared with/without irradiation
pretreatment, the current temperature profiles of stabilization were designed for producing standard
carbon fibers, which may not be suitable for stabilizing irradiated PAN fibers since there are noticeable
differences in the exothermic behavior between irradiated PAN fibers and commercial PAN fibers.
Meanwhile, the irradiation dose can be adjusted to further promote the irradiation effect. Thus, there
is still room for further decreasing the stabilization time and improving the mechanical properties of
i-CFs. Work along these directions is in progress.

5. Conclusions

In summary, automobile-grade carbon fibers (12k tow size) with a 2.85 GPa tensile strength and
a 203 GPa modulus were continuously prepared with a 24-min stabilization time; and this rapid
stabilization of PAN fibers was achieved with the assistance of electron beam irradiation pretreatment.
It was shown that e-beam irradiation can lower the onset temperature of the cyclization reaction and
mitigate the heat release, which provides the basis for reducing the stabilization time. During the
subsequent stabilization process, e-beam irradiation can affect the evolution of both the chemical
structure and the crystalline structure of PAN fibers. Finally, judging by the density and the ring
closure index, e-beam-irradiated PAN fibers can achieve a comparable degree of stabilization with
40% less time compared to untreated PAN fibers.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/8/1270/
s1, Figure S1. Photographs of the experimental setup, Figure S2. Comparison of the DSC curves of PAN and
irradiated PAN fibers under different heating rates, Figure S3. DSC curves of PAN and irradiated PAN fibers with
baseline, Tonset and Tp,1, Table S1. The operation power of the pilot plant.
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