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Abstract: This paper deals with the experimental and numerical study of closed-cell aluminum-based
foam under compressive loading. Experimental samples were produced by the gas blowing method.
Foam samples had an average cell size of around 1 mm, with sizes in the range 0.5–5 mm, and foam
density of 0.6 g/cm3. Foam samples were subjected to a uniaxial compression test, at a displacement
rate of 0.001 mm/s. Load and stress were monitored as the functions of extension and strain,
respectively. For numerical modeling, CT scan images of experimental samples were used to create a
volume model. Solid 3D quadratic tetrahedron mesh with TETRA 10-node elements was applied,
with isotropic material behavior. A nonlinear static test with an elasto-plastic model was used in
the numerical simulation, with von Mises criteria, and strain was kept below 10% by the software.
Uniform compressive loading was set up over the top sample surface, in the y-axis direction only.
Experimental tests showed that a 90 kN load produced complete failure of the sample, and three
zones were exhibited: an elastic region, a rather uniform plateau region (around 23 MPa) and a
densification region that started around 35 MPa. Yielding, or collapse stress, was achieved around 20
MPa. The densification region and a rapid rise in stress began at around 52% of sample deformation.
The numerical model showed both compressive and tensile stresses within the complex stress field,
indicating that shear also had a prominent role. Mainly compressive stresses were exhibited in the
zones of the larger cells, whereas tensile stresses occurred in zones with an increased number of small
cells and thin cell walls.
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1. Introduction

Closed-cell Al-based foams belong to a group of cellular materials offering a wide choice in their
design depending on the final product [1]. Their applications are versatile and significant attention has
been given to the improvement of their properties, especially in structural applications such as energy
absorbers in automotive and rail engineering [2]. Production technologies of these foams, aiming to
control cell size and distribution within the material structure, have been investigated [2,3]. Different
properties of these foams are important and those under study include: compressive mechanical
properties and energy absorption [4], multifunctional applications [5], acoustic damping and sound
absorption [6], electromagnetic shielding [7], and thermal conductivity [8]. The energy absorption
property of aluminum-based foams has been used for different applications and represents a very
important research area [9]; this is especially so for elements subjected to blast and impact [10–12], since
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these foams can efficiently mitigate shock, and absorb the energy of impulse loads. Aluminum foam
has even been studied for use in nuclear transportation due to its energy absorption capabilities [13].
Mechanical behavior under compressive loads has been studied as the most probable loading mode
for these foams [14–16], as well as at low strain regimes for high porosity foams [17]. Modeling of
closed-cell foams, related to dynamic and static loading, is important for understanding and predicting
the behavior of these structures [18,19]. Strain hardening has been suggested to initiate anisotropy,
during uniaxial compression behavior [20,21]. Studies showed improvement in foam strength and
elastic properties with an increase in relative density, under quasi-static compression [22,23]. The
deformation mechanism of closed-cell Al-based foams largely depends on several influential factors,
such as relative density, cell size and shape, cell wall thickness and void distribution, as well as
parameters and types of production routes [1,24–26]. Young modulus and shear modulus were found
to be inversely proportional to the cell size and cell wall variations [26].

Validated models showed that bending, shear, compressive and tensile stresses acting upon
cells, govern deformation of the structure [27,28]. The correlation between structural parameters and
compressive behavior has been studied to enable optimal design in relation to the elastic zone, yielding
and collapse, the plateau zone and densification regimes [28,29]. The failure behavior of aluminum
foams is under study and related numerical models have been investigated [29]. Computational
homogenization of the structure, using analytical models with idealized geometry and isotropic
properties, were applied to study possibilities of predicting the effective elastic properties of closed-cell
aluminum foams [30]. The influence of the representative volume properties on mechanical behavior
in finite element analysis is significant. Kovacik et al. [31] showed dependence of the Poisson ratio on
foam density. This is important since all finite element modeling includes the value of the Poisson
ratio as a basic material property and any changes to this affect the final numerical results.

Geometry modeling (cell shape, meshing) has a governing influence on the process of finite
element modeling (FEM) and analysis (FEA). There are numerous approaches to generate optimised
geometry and representative volume, aiming to closely resemble the real structure, but also to consider
computer resources and computational time [32–37]. Establishment of the relationship between
changes at the micro scale and their influence on macro level properties is important, since it can
enable suitable tailoring of the physical characteristics of foam. Variation in cell shapes usually results
in changes of material behavior at the macroscopic level, due to different local deformation and
failure [32,33]. Large variations in cell sizes and wall thicknesses are not favorable for good energy
absorption [34]. The strain rate also has an influence on deformation mechanisms, accompanied by a
strain-hardening effect, but it is a less influential parameter than cell wall thickness [35,36].

Computed tomography (CT) is powerful technique for characterization of real 3D structures,
capable of producing high-resolution 3D structural images with nano- and micro- level details.
Geometry modeling using CT scan images has been employed in FEA [38–41] in order to study the
influences of microscopic structural properties (cell anisotropy and strut geometry) on macroscopic
behavior. However, optimized selection of representative images, as well as the level of detail in
computer meshing, is still the topic of investigation, in order to lower the computer resources and
computational time that remain rather demanding for such modeling approaches. High-resolution
images can be converted to meshes with extremely large numbers of nodes, thus resulting in overly
demanding finite element processing.

This paper deals with finite element modeling (FEM) of closed-cell aluminum-based foam under
compressive load, based on CT scan images extracted from a real experimental sample. Closed-cell
foam was fabricated by the gas blowing method and experimental samples were subjected to
compressive loading. Numerical results were compared with experimentally obtained stress–strain
curves and analyzed.
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2. Materials and Methods

Our study realized experimental and numerical investigations, as shown in Figure 1.
Experimentally prepared samples of closed-cell aluminum foam were subjected to compressive
loading and the relationship between stress and strain was observed. Numerical modeling and
simulation of the compressive loading of the closed-cell aluminum foam were performed using
computed tomography (CT) scans obtained from experimentally prepared samples. CT scan images
can provide high accuracy and enable 3D digitization of the physical model for computer-aided design
(CAD) modeling and further creation of the volume model to be used in the numerical simulations
and modeling [40].
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Figure 1. Schematic representation of steps in experimental and numerical study.

2.1. Experimental Procedure

Closed-cell aluminum foam (Aluhab foam) was fabricated using the gas blowing method,
at Aluinvent, Hungary. Aluhab is the Aluinvent trade name for aluminum foam manufactured from a
special foamable aluminum alloy containing ultrafine sapphire particles, an Aluinvent proprietary
technology [2,42]. Gas is blown into the melt with foamable liquid, through a small orifice, and bubble
size can be adjusted by variation of process parameters. The diameter of the gas bubbles is around
1 mm according to the nozzle diameter. The average cell size of the closed-cell aluminum foam is
around 1.0 mm, with cell sizes ranging from 0.5 mm up to 5.0 mm, and foam density of 0.6 g/cm3.
Closed-cell aluminum foam samples were cut from the large block of Aluhab foam, using a bandsaw.
There was no further post-processing of the sample prior to experimental testing.

Characterization of the samples was realized using micro-CT, as described in [42]. A Hamamatsu
L8121-03 Microfocus X-ray source (Hamamatsu Photonics, Hamamatsu, Japan) with the X-Ray tube
having a focal spot size of 50 µm was used, with a maximum tube voltage of 150 kV. A Newport URS75
rotation stage (Newport Corporation, Irvine, USA) and Hamamatsu C7942SK-25 high-resolution
imaging detector (Hamamatsu Photonics, Hamamatsu, Japan) were used, with 2000 projections per
360◦ rotation of the sample. 3D tomography images of the closed-cell aluminum foam samples are
shown in Figure 2. Computed tomography (CT scan) 2D images are shown in Figure 3.

The uniaxial compression test was performed at room temperature using the universal testing
machine (Hegewald and Peschke) (Hegewald & Peschke, Meß- und Prüftechnik GmbH, Nossen,
Germany), at a displacement rate of 0.001 mm/s, in accordance with the DIN50134 standard [43]. Three
tests were performed on three samples cut from the large foam block and elastic zones, plateau stress
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and densification zones were observed. Continuous measurement of the load as a function of time and
extension, and of compression stress as the function of extension and strain was undertaken.
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scanning, showing the differences in pore sizes and arrangements, and cell wall thicknesses throughout
the 3D volume of the foam sample.

2.2. Preparation of Simulation Volume Model Using a Three-Dimensional (3D) Digitization Technique

The volume model was created using CT scan images of experimentally prepared foam samples.
A schematic representation of the preparation steps of the simulation model sample is given in Figure 4.

CT scan images have high accuracy, thus a very large number of points in the numerical point
cloud can be generated that would result in accordingly very high demands on computer time and
resources. Around 1800 CT scan DICOM (Digital Imaging and Communications in Medicine) images,
were generated from the physical sample. For numerical modeling, we selected 200 DICOM images to
represent the volume model of the foam; the differences between specific CT scan images can be seen in
Figure 3. Images selected for the creation of the volume model should enable its close resemblance to
the physical model. Appropriate selection of representative CT scan images is important for numerical
description of the physical model and creation of the volume model, as elaborated in [42]. Selection of
images was made using free open-source ImageJ CellProfiler software (Carpenter Lab, Broad Institute
of Harvard and MIT, Cambridge, USA). The segmentation process started with the conversion of



Materials 2019, 12, 1582 5 of 13

the original DICOM file format of the CT scan images to the STL, “stereolithography” file format,
followed by adjusting the pixel values and optimal meshing in terms of calculation time and computer
resources, as shown in Figure 4. The final numerical sample of the closed-cell foam is shown in
Figure 5 and its geometrical properties are given in Table 1. For the representative volume, the volume
model was cut into two symmetrical parts, as shown in Figure 4, in order to save computer time
and resources. The numerical sample had more than 10 cells (Table 1) in order to ensure a sufficient
number of cells to represent isotropic behavior and to consider the sample as a continuum, according
to recommendations [2,42].
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Figure 5. Numerical sample of the closed-cell foam based on CT scan images (Parasolid file format).

Table 1. Properties of the numerical sample.

Total Cells Cell Wall Thickness, tp (mm) Radial Cell Diameter, dp (mm) Cell Depth, Dp (mm)

38-42 9–12 50–60 45–50

2.3. Numerical Modeling of Closed-Cell Aluminum Foam

Parabolic solid tetra elements (135843) were assigned to the geometry, with a global mesh size of
0.02 in the Cartesian coordinate system. Solid 3D quadratic tetrahedron mesh with TETRA 10-node
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elements was applied, with isotropic material behavior. The material properties of aluminum used
in the finite element analysis, were as given in Table 2. In the case of metallic foam, Poisson’s Ratio
has been observed to decrease with the decrease of foam density [31]. In the case of our foam sample,
we concluded that a Poisson’s ratio of 0.3 was an acceptable value according to previous results [31].
Numerical calculations and finite element analysis were performed using Femap with NxNastran
software (Version 10.3) (Siemens, Plano, USA). Open source MeshLab software (Version 2016.12) (Visual
Computing Lab, Pisa, Italy) was used for geometry cleanup, refinement and meshing.

Table 2. Material properties of aluminum [43].

Density (tonne/mm3) Modulus of Elasticity (M Pa) Yield Stress Poisson Ratio

2.7 x 10-9 68200 55 MPa 0.3

A nonlinear static test with an elasto-plastic model was used in numerical simulation, with
von Mises criteria applied for yield stress and shear failure analysis according to the DIN 50134
standard [43]. The von Mises yield criterion was deployed due to the ductile nature of aluminum.
The material is elastic until yielding point and related equations are given in [44]. This material model
is valid for small strain and calculations were automatically stopped when the threshold value for
longitudinal strain was reached to keep the strain below 10%.

Loading was applied on one side of the symmetrical model, comprising 129 nodes, as shown in
Figure 6. Uniform compressive loading was set up over the top sample surface, in the y-axis direction
only, with a fixed zx-plane. A maximum load of 50 kN was set up in numerical calculations, based on
experimental results where a 90 kN load resulted in complete failure of the experimental sample. The
full Newton–Raphson method was used for discretization of the partial differential equations and the
iterative solution in the finite element analysis. Degrees of freedom are given in Table 3 for translation
in the x-axis direction and rotation about the y and z axes.
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Table 3. Degrees of freedom for modeling of closed-cell Aluhab foam.

Cartesian
Coordinate

Axes

Degree of Freedom

Translation
in x

Direction

Translation
in y

Direction

Translation
in z

Direction

Rotation
in x

Direction

Rotation
in y

Direction

Rotation
in z

Direction

x–symmetry 3 3 3

Fixed Node 3 3 3 3 3 3

3. Results and Discussion

3.1. Experimental Results

Three samples of Aluhab foam (A, B, C) cut from the same foam block were subjected to uniaxial
compression. Compression stress as the function of strain is shown in Figure 7. It can be seen that
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one sample (B) exhibited different behavior. This is the consequence of the random position of A, B,
and C samples within the same foam block, thus producing different sample surfaces upon which the
loading acted. The distribution of cells over the surface was not the same for each of the A, B, and C
samples due to different cutting lines. Also, the distribution of cells within the foam structure was
not uniform, containing different cell sizes and diameters, thus resulting in small differences in the
mechanical behavior of specific samples. Sample B comprised slightly more voids than samples A
and C. Accordingly, the average of the stress and strain values was considered for further numerical
calculations. Experimental tests showed that a 90 kN load produced complete failure of the sample.
The level of stress during experimental uniaxial compression is given in Table 4. Three different zones
can be observed during compression: an elastic region, a plateau region and a densification region.
Yielding, or collapse stress, was achieved around 20 MPa. A rather uniform level of plateau stress,
with very slightly increasing slope, occurred around 23 MPa, and densification started around 35 MPa.
A densification region and rapid rise of stress began at around 52% of sample deformation, thus
indicating acceptable agreement between the energy absorption behavior and results reported in the
literature [4,14,41].
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Table 4. Stress levels for specific regimes and densification strain during uniaxial compression of
Aluhab foam.

Linear Elastic
Zone (Cell
Wall Bend)

Plateau Zone – Collapse
(Cell Wall Buckle,
Yield or Fracture)

Densification
Zone (Cell Wall
Crush Together)

Densification
Strain

Sample A 0–17 Mpa 17–31 MPa 31–104 MPa 55%
Sample B 0–23 Mpa 23–37 MPa 37–105 MPa 50%
Sample C 0–14 Mpa 14–32 MPa 32–107 MPa 56%

3.2. Numerical Modeling Results

Finite element modeling was performed, based on geometrical modeling using CT scan images of
real experimental samples under compressive loading. The whole numerical sample that was subjected
to the compressive test, was divided into four sections, in the direction of loading, as given in Figure 8.
The nonlinear solid normal stress contour in the y-axis loading direction is given in Figure 9. Both
compressive and tensile stresses can be observed in Figure 9, indicating that shear has a prominent
role. As expected, the zones within the sample with the presence of larger voids, endured compression
longer without complete crushing and densification, than in the case of zones containing smaller
size cells. It can be seen that mainly compressive stresses were exhibited in zones of the larger cells,
whereas tensile stresses occurred in zones with an increased number of small cells and thin cell walls.
It can be observed that non-uniformity occurred in terms of stresses throughout the whole numerical
sample. This implies that the uniform distribution of cells within the foam is very important, as well as
uniform distribution of cell sizes, although these are difficult to control during the fabrication process.
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As indicated in the literature, having cells of similar sizes uniformly distributed throughout the
foam structure is hard to achieve, because the majority of large bubbles usually gather around the
central zones, due to centrifugal force effects in the case of foam produced from molten solutions
with foaming agents. However, compared to the literature data, there was rather good uniformity
of void distribution throughout the Aluhab foam sample, as can be seen in the CT scan images in
Figures 2 and 3. This was also confirmed also by the experimental stress–strain curves in Figure 7,
where a rather small difference in the behavior of only one sample (A) can be seen. From Figure 9
(far right column), it can be seen that tensile stresses occurred mainly within the sites of thin cell walls,
whereas the closed cells positioned within thick bulk material mainly underwent compressive strain.
It seems that material flow and shear is driven by topological heterogeneity and by spatial fluctuations
of larger sized cells and their vicinity to each other. Linul et al. [45], showed that foam anisotropy
has a significant influence on the compressive behavior of these closed-cell foams. They showed that,
at room temperature, foam anisotropy had an effect on the yielding point, end of plateau region and
start of the densification region [45]. Stress contours of the whole numerical model sample under
compressive load are shown in Figure 10, indicating complex stress fields within the whole sample.



Materials 2019, 12, 1582 9 of 13

It can be seen that higher levels of shear stress are related to the sites of thin cell walls, whereas thick
solid material exhibited almost no shear. The stress contour of maximum principal stress indicated
that large voids were subjected to the simultaneous actions of high compressive and tensile stresses,
especially if these voids were positioned near the surface. Uniform solid material zones without larger
voids, mainly exhibited moderate compressive stress. This is in accordance with findings proposed by
Edwin Raj et al. [36] who elaborated that thin wall cells of aluminum foam tended to rapidly crack and
collapse under loading, whereas thicker cell walls deformed with bending.
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Von Mises stresses in x, y, z directions, and along shear planes (xy, yz, zx), as well as the maximum
principal stress, maximum shear stress, and maximum mean stress, as a function of strain, are given in
Figure 11 (A-C). Comparisons of results obtained during experimental study and those from numerical
modeling are shown in Figure 11D. From Figure 11C, it can be seen that collapse stress occurred around
5% strain and plateau stress started from 7% strain, in accordance with experimental results as given in
Figure 7 and Table 4. Modeling was carried out under the limitation of a small strain (< 10%), thus
densification strain was not achieved for the numerical sample. Modeling of the densification region
would require a different simulation model, as shown by the authors of [14]. From Figure 11A,B, it can
be observed that shear had a prominent role in the deformation of the sample, and was especially
pronounced along the xy and yz planes. Longitudinal stress in the x-axis direction exhibited rapid
increase of the stress for 3.5%–5% strain, if compared to y- and z-axis stress (Figure 11A). This indicated
the increased presence of voids and thin structures (struts) in the x-direction, thus enabling their easy
crushing and collapse. This is in accordance with other authors [14,36], who showed that collapse
stress and plateau stress both have strong dependence on strain rate sensitivity. Thin walls and
voids decrease overall sample strength and promote localized crushing and collapse of those cells.
The stress–strain curves in Figure 11C are jagged, and especially pronounced ups and downs can
be seen for shear stress and maximum principal stress, indicating sudden brittle fracture of the cell
walls. This is also confirmed by other authors [46], who showed that under compression, high porosity
resulted in serrated stress–strain curves with local peaks, due to stress release after the localized
fracture of cell walls, whereas low porosity aluminum foams exhibited smooth curves. They also
showed that increase of porosity resulted in decrease of the yield strength [46]. Our model validation
showed acceptable agreement between experimental and numerical results as shown in Figure 11D,
within the linear elastic region.
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4. Conclusions

Numerical modeling of a uniaxial compression test of Aluhab foam was performed based on CT
scan images produced from experimental tests. Modeling was carried out under the limitation of a
small strain (< 10%), thus densification strain was not achieved for the numerical sample. Complete
failure of the sample was experimentally achieved at a 90 kN load, and accordingly 50 kN was adopted
as the maximum load in the numerical study. A rather linear elastic region (up to 17 MPa) and uniform
plateau region (around 23 MPa) were exhibited, whereas densification started at around 52% of sample
deformation. There was rather good uniformity of void distribution throughout the sample. Tensile
stresses occurred mainly within the sites of thin cell walls, whereas the closed cells positioned within
thick bulk material mainly underwent compressive strain, altogether indicating complex stress fields
within the whole sample, with shear having a prominent role. Higher levels of shear stress were
related to the sites of thin cell walls, whereas thick solid material exhibited almost no shear. Large
voids were subjected to the simultaneous actions of high compressive and tensile stresses. Numerical
results showed jagged stress–strain curves indicating sudden brittle fracture of the cell walls. It seemed
that material flow and shear were driven by topological heterogeneity and by spatial fluctuations of
larger sized cells and their vicinity to each other. The numerical and experimental results indicated
that collapse stress occurred at around 5% strain and plateau stress started from 7% strain. Within the
linear elastic region, our model showed acceptable agreement between experimental and numerical
results. Modeling related to the densification region would require a different simulation model.
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