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Abstract: A shape memory alloy (SMA) can remember its original shape and recover from strain due
to loading once it is exposed to heat (shape memory effect). SMAs also exhibit elastic response to
applied stress above the characteristic temperature at which transformation to austenite is completed
(pseudoelasticity or superelasticity). Shape memory effect and pseudoelasticity of SMAs have been
addressed by several microscopic thermodynamic and macroscopic phenomenological models using
different modeling approaches. The Tanaka and Liang-Rogers models are two of the most widely
used macroscopic phenomenological constitutive models for describing SMA behavior. In this paper,
we performed sensitivity and uncertainty analysis using Sobol and extended Fourier Amplitude
Sensitivity Testing (eFAST) methods for the Tanaka and Liang-Rogers models at different operating
temperatures and loading conditions. The stress-dependent and average sensitivity indices have been
analyzed and are presented for determining the most influential parameters for these models. The
results show that variability is primarily caused by a change in operating temperature and loading
conditions. Both models appear to be influenced by the uncertainty in elastic modulus of the material
significantly. The analyses presented in this paper aim to provide a better insight for designing
applications using SMAs by increasing the understanding of these models’ sensitivity to the input
parameters and the cause of output variability due to uncertainty in the same input parameters.

Keywords: shape memory alloy; Tanaka model; Liang-Rogers model; sensitivity analysis; uncertainty
analysis; SMA; shape memory alloy constitutive models

1. Introduction

Shape memory alloys (SMAs) have received the attention of researchers due to their unique
characteristic behavior and promising potential for various applications. The SMAs, which are
classified as smart or intelligent materials, exhibit shape memory effect (SME) and pseudoelasticity
(PE) by means of reversible thermoelastic phase transformations between parent phase (austenite)
and a product phase (martensite). Shape memory effect is further classified into two types: One-way
shape memory effect and two-way shape memory effect. If a SMA material is stressed or deformed, the
one-way shape memory effect allows it to come back to its original shape simply by heating. On the
other hand, the material exhibiting two-way shape memory effect can be trained to return to another
distinct shape by means of cooling. The material must memorize the second effect through a learning
process where it stores energy that is freed upon cooling. Shape memory alloy was first discovered by
Arne Ölander in 1932 [1] and the term “Shape Memory” was first coined by Vernon in 1941 [2]. In 1962,
Buehler and Wang discovered the shape memory effect (SME) [3,4] in a nickel–titanium (NiTi) alloy
commonly known as “nitinol”. The necessity and significance of SMAs in engineering applications
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have been recognized as they are being utilized in automotive, biomedical, and aerospace industries,
and in the design of consumer products, mini actuators, micro-electromechanical systems, and robotics.
In the automotive industry, SMAs are mainly used as actuators [5–7]. The most prominent usage area
for SMAs is in the medical field. For instance, in 1975, Andreasen utilized the pseudoelastic property
of NiTi alloy to make the first orthodontic implant [8]. Since then, NiTi wires have been extensively
utilized in orthodontic procedures [9]. These wires remain in austenitic phase at the temperature of
the buccal cavity. Here, pseudoelasticity is exploited for constant force generation after the wires are
positioned into the brackets. At the time of insertion, the physician deforms the wire, resulting in a
transformation from austenite to martensite. After placement, however, the material transforms into
the austenite phase due to increased temperature and, hence, applies constant stress to the contact
surfaces while trying to return to its original shape.

In the orthopedic field, orthopedic staples are used for treating fractures where the stress generated
by SMAs is utilized due to constrained heating [10]. The pseudoelastic effect is also exploited in the
production of NiTi intramedullary nails [11]. In orthopedics treatments, the SMA properties have
been used for physiotherapy of partially atrophied muscles [12]. SMAs are also being used in the
vascular field of biomedical applications [13–16]. In aerospace applications, a Smart Wing program
was conducted for optimizing the performance of lifting bodies using active materials including
SMAs [17–20]. Another program named Smart Aircraft and Marine Propulsion System demonstration
(SAMPSON) was designed to present the use of active materials in tailoring the inlet geometry and
orientation of various propulsion systems [21]. SME actuation was also applied to the adaptable
lifting bodies including morphing of the wing structure. In different studies, SMA elements were
integrated into the structure of an aircraft [22]. One of the projects aimed to change the configuration
of an airfoil from symmetric to cambered due to the actuation of SMA wires [23]. SMAs are used
in industry to develop safety devices that can be thermally activated using current interruption
mechanisms for the protection of high energy density batteries like lithium ion cells from uncontrollable
increase of temperature due to short circuit or overcharging [24]. NiTi SMAs are also used in high-end
eyeglass frames. The use of superelastic (or pseudoelastic) SMA components for nosepiece and
earpieces provide comfort and resistance to accidental damage. In order to achieve superelasticity
over a wide range of temperatures, the eyeglass components are highly cold-worked and then heat
treated at low temperature. This way it was possible to impart “work-hardened pseudoelasticity”
in them [25,26]. SMAs are also used in micro electro-mechanical devices (MEMS) for optical and
electro-optical systems [27]. In robotics, SMAs are mainly being used as actuators [28–30].

SMAs transform phase with the application of stress and change of operating temperature.
Numerous models have been developed to describe these characteristics. A variety of constitutive laws
have been developed including Tanaka and Nagaki [31], Tanaka and Iwasaki [32], Tanaka, Kobayashi
and Sato [33], Sato and Tanaka [34], Ivshin and Pence [35], Pence [36], Brinson [37], Brinson and
Lammering [38], Boyd and Lagoudas [39], Patoor, Eberhardt and Berveiller [40], Patoor, Eberhardt
and Berveiller [41]) and Liang and Rogers [42]. All these models rely on parameters that need to
be determined empirically for any given alloy. As a result, the models are subject to experimental
uncertainty and random variability in their parameters, which propagate with the application and
removal of stress in the material. Consequently, it is necessary to know the most influential set of
model parameters. A sensitivity analysis can give a clear idea about the parameters to which a model is
most sensitive. It involves testing the robustness of the results of a model or system in the presence of
uncertainty. It also provides an understanding of the relationships between input and output variables
in a system or model. Karadogan performed a detailed probabilistic evaluation of a one-dimensional
Brinson model for its sensitivity to uncertainty in input parameters [43]. In that study, the Brinson
model was analyzed to determine which parameters are mostly dominant at different temperature
ranges. The output variability was also determined by utilizing a thorough uncertainty analysis of
model outputs considering six different cases that included several operating temperatures and loading
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conditions. However, no work has been done for determining sensitive parameters and uncertainty
propagation of the Tanaka and Liang-Rogers models.

In this paper, the Tanaka and Liang-Rogers models were analyzed for propagation of uncertainty
to the output stress-strain curve due to the uncertainty present in the input parameters. The
sensitivity analysis of these models were also performed for presenting the most influential parameters
that contribute to the output variability significantly at various loading/unloading conditions and
operating temperatures.

2. SMA Constitutive Models

The constitutive models predict the SMA behavior. A constitutive model describes the state of
the material in terms of primary variables such as stress, strain and temperature. In this section, we
describe the Tanaka and Liang-Rogers SMA models that were used in our analyses.

2.1. Tanaka Model

One of the first SMA constitutive models was developed by Tanaka in 1986. In that study, a
thermomechanical framework was constructed that covers the transformation pseudoelasticity and
the shape memory effect that is associated with martensitic transformation induced by stress and the
reverse transformation. The Clausius–Duhem inequality was utilized to derive the thermomechanical
constitutive equations and the kinetics transformations. In this model, it was assumed that
unidirectional strain (ε), temperature (T) and martensite volume fraction (ξ) are the only state
variables. The stress (σ) is calculated as a function of these variables.

The constitutive equation derived by Tanaka [33] can be written as:

σ− σ0 = D(ξ)(ε− ε0) + θ(T − T0) + Ω(ξ)(ξ− ξ0) (1)

Here, D is the elastic modulus of the material, θ is the thermal coefficient of expansion, and Ω is
the phase transformation coefficient or the “transformation tensor”. The subscript ‘0’ indicates the
initial conditions, i.e., the initial state of the material.

The elastic modulus D is considered a linear function of the martensitic volume fraction ξ and is
expressed using the following equation:

D(ξ) = DA + ξ (DM −DA) (2)

Here DA and DM are termed as elastic constants of the austenite and the martensite. As per
Tanaka [33], it was assumed that DA = DM = D (for Cu based SMAs).

The transformation tensor, Ω, can be represented as:

Ω (ξ) = −εLD(ξ) (3)

where, εL is the maximum recoverable strain.
This model uses exponential functions to represent the martensitic fraction. The martensitic fraction

is determined during austenite (A) to martensite (M) transformation using the following equation:

ξ = 1− eaM(Ms−T)+bMσ (4)

The reverse transformation, i.e., martensite (M) to austenite (A) transformation, has been
modeled as:

ξ = eaA (As−T)+bAσ (5)
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Here As, A f , Ms and M f are known as austenite start temperature, austenite finish temperature,
martensite start temperature and martensite finish temperature, respectively. The material constants
that have been used here are determined using the following equations:

aA =
ln (0.01)
(As − A f )

bA =
aA
CA

aM =
ln (0.01)

(Ms − M f )

bM =
aM

CM

(6)

where, CA and CM are the stress-influence coefficients and are determined from the slope of the critical
stress vs. temperature plot [33].

For a certain temperature, A→M (austenite to martensite) transformation start stress (A→M_Start)
is determined as:

σ ≥

(
aM

bM

)
(T −Ms) (7)

And the A→M transformation stop stress (A→M_Stop) can be calculated by:

σ =
−2 ln 10

bM
+

(
aM

bM

)
(T −Ms) (8)

M→A (martensite to austenite) transformation starting stress (M→A_Start) can be determined by
using the following equation:

σ ≤

(
aA
bA

)
(T −As) (9)

And the M→A transformation stop stress (M→A_Stop) can be calculated by:

σ =
−2 ln 10

bA
+

(
aA
bA

)
(T −As) (10)

2.2. Liang-Rogers Model

As per the Liang-Rogers model [42], stress, strain, temperature and martensitic fraction provides
a complete set of state variables for predicting SMA behavior. The equation that Liang-Rogers use is
the rate form of Tanaka’s constitutive equation, i.e., “the unified constitutive equation”. The model
can describe the behavior of the SMA materials that have austenite start temperatures greater than
martensite start temperatures (As > Ms)—there exists another type of SMA material characterized by
As < Ms. Most commercially available SMA materials belong to the former category; as a result, the
Liang-Rogers model considers SMAs with As > Ms.

As for the transformation kinetics, Liang-Rogers described the martensite fraction during the
austenite to martensite transformation (A→M) as:

ξ =
1− ξA

2
cos(aM (T −M f ) + bMσ) +

1 + ξA
2

(11)

And for the reverse martensite to austenite transformation (M→A), the equation is

ξ =
ξM

2
cos(aA (T −As) + bAσ) + 1 (12)

Here, ξA and ξM are the initial volume fraction for A→M transformation and M→A transformation.
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The material constants are determined using the following equations:

aA =
π

(A f − As)

bA =
−aA
CA

aM =
π

(Ms − M f )

bM =
−aM

CM

(13)

where, CA and CM indicate the influence of stress on the transition temperatures (M f , Ms, As and A f )
and are generally assumed to be the same (CM = CA). They are determined from the slope of the stress
vs. temperature diagram [42].

The variables for the cosine function in the Liang-Rogers phase transformation equations are
limited to the range of 0 to π. Therefore, the martensite to austenite transformation start (M→A_Start)
and stop stress (M→A_Stop) range is given by the following equation:

CA(T −As) −
π

|bA|
≤ σ ≤ CA (T −As) (14)

And the reverse transformation start (A→M_Start) and stop stress (A→M_Stop) range can be
derived as:

CM(T −M f ) −
π

|bM|
≤ σ ≤ CM (T −M f ) (15)

3. Methods

In order to perform the sensitivity analyses of the Tanaka and Liang-Rogers models, two separate
Matlab libraries were developed. The SMA material considered in the analyses was Cu-33.31 Zn-3.17
Sn. The corresponding material properties, which are also referred to as “material constants” in this
paper, that were used in the analyses are presented in Table 1. They were determined by Tanaka [33]
from the experimental data reported by Pops [44]. The transformation points for the selected alloy
were M f = −34 ◦C, Ms = −27 ◦C As = −25 ◦C and A f = −14 ◦C. The critical stress points for the Tanaka
model have been calculated using Equations (7) to (10). For the Liang-Rogers model the critical stresses
were determined using Equations (14) and (15). Two operating temperatures and maximum loading
stresses used in the analyses are presented in Table 2 depending on the critical temperatures of the
material. Two different operating temperatures were chosen to observe the models’ behavior in two
regions (T > A f and As < T < A f ). Additionally, using two different maximum loading stress values
allowed us to observe the material behavior when the material completes the martensite transformation
upon loading.

Table 1. Material properties for Cu-Zn-Sn [44].

Parameter Description Deterministic Value Unit

T Operating temperature −10, −22.5 ◦C
D Elastic modulus value 7 × 103 MPa
Ω Phase transformation coefficient −7 × 101 MPa
θ Thermal coefficient of expansion −7 × 10−2 MPa/◦C

Ms Martensite start temperature −27 ◦C
M f Martensite finish temperature −34 ◦C
As Austenite start temperature −25 ◦C
A f Austenite finish temperature −14 ◦C

The modeling approach included calculation of the strain values for one-dimensional loading and
unloading of the material based on the constitutive equations of each model. The boundary conditions
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were such that one end of the material was considered as fixed and other end was being pulled by a
force during loading until the maximum stress was reached, which was consecutively reduced to zero
during unloading. All simulations were performed with the assumption that the material was 100%
austenite, i.e., the initial martensite fraction was zero. With every stress increment, martensitic fraction
and strain was calculated using the corresponding equations of the Tanaka and Liang-Rogers models.

Table 2. Simulated operating temperature.

Temperature, T (◦C) Maximum Stress (MPa) Region

−10 40, 36 T > A f
−22.5 21, 17 As < T < A f

The simulations were run at two operating temperatures (−10 ◦C and −22.5 ◦C) specifically
selected to perform our analyses when the material showed the two fundamental characteristics of
the SMA’s: pseudoelasticity and the shape memory effect. At −10 ◦C (T > A f ), the material showed
pseudoelasticity, whereas at −22.5 ◦C (As < T < A f ), the material exhibited the shape memory effect.

In order to observe the effect of maximum loading stress on the sensitivity and uncertainty
propagation in both models, the material was loaded up to two different maximum stress values at each
aforementioned operating temperature. One of the selected maximum stress values corresponded to the
austenite-to-martensite completion stress (A→M_Stop) which is termed as “σmax = A→M_Stop” in this
paper. The second maximum stress was chosen to be greater than A→M_Stop stress, which is termed
as “σmax > A→M_Stop”. Thus, we have considered here four cases for uncertainty and sensitivity
analyses at particular temperature and maximum stress (1) −10 ◦C with 40 MPa (σmax > A→M_Stop),
(2) −10 ◦C with 36 MPa (σmax = A→M_Stop), (3) −22.5 ◦C with 21 MPa (σmax > A→M_Stop), and
(4) −22.5 ◦C with 17 MPa (σmax = A→M_Stop).

In order to verify the results of the sensitivity analysis, two variance-based methods for global
sensitivity analysis were used: (1) Extended Fourier Amplitude Sensitivity Test (eFAST) and (2) Sobol.
The eFAST method is based on Fourier Amplitude Sensitivity Test (FAST) [45,46]. Saltelli et al. [47]
proposed the extended FAST (eFAST) to compute the total contribution of each input parameter
to the output’s variance. “Total” term here means that the main effect of the parameter as well as
the interaction terms involving the parameter are included. The extended FAST method is robust,
especially at low sample size, and computationally efficient. The Sobol sensitivity analysis [48] was
introduced in 1990s. It is based on decomposition of variance which is achieved by Monte Carlo
methods. Sensitivity measures are estimated by Sobol that summarize the model behavior. It calculates
the output sensitivity with respect to each parameter individually and the total parameter sensitivity
that includes interactions.

The input parameter values have been extracted from the constitutive equations and the phase
transformation equations. The constitutive equation (Equation (1)) considers D, θ and Ω as input
parameters since their values have significance on the resulting strain. The martensitic fraction
exponential equation during austenite to martensite transformation (Equation (4)) depends on constants
aM, bM, Ms and T. On the other hand, martensitic fraction equation (Equation (5)) during reverse
transformation (i.e., martensite to austenite transformation) depends on constants aA, bA, As and T.
Additionally, aA depends on As and A f , while aM depends on Ms and M f (Equation (6)). Consequently,
eight input parameters have been determined for this study: operating temperature (T), the material
elastic modulus (D), phase transformation coefficient (Ω), thermal coefficient of expansion (θ),
martensite start temperature (Ms), martensite finish temperature (M f ), austenite start temperature
(As) and austenite finish temperature (A f ). These parameters have been considered to have a normal
distribution probability density function with coefficient of variation (COV) of 0.01 for all parameters.
The nature of SMA materials dictates that the martensite finish temperature be less than the martensite
start temperature, and that the austenite start temperature be less than the austenite finish temperature.
The normal distributions for these parameters with a higher COV value than 0.01 caused overlaps during
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the sampling stage of the analysis. These overlaps violated the physical nature of the material and,
therefore, constitutive equations failed to explain the related phenomena under those circumstances.
Therefore, a COV of 0.01 has been considered to prevent these issues. The probability distribution of
the input parameters are provided in Table 3.

Table 3. Probability distribution for input parameters.

Parameter Distribution Mean Value Standard Deviation Unit

T Normal −10, −22.5 0.1, 0.225 ◦C
D Normal 7 × 103 70 MPa
Ω Normal −70 0.7 MPa
θ Normal −7 × 10−2 7 × 10−4 MPa/◦C

Ms Normal −27 0.27 ◦C
M f Normal −34 0.34 ◦C
As Normal −25 0.25 ◦C
A f Normal −14 0.14 ◦C

The table shows the deterministic values of the input parameters as the mean value of the
normal distribution with corresponding standard deviations. The material was stressed from zero to a
maximum stress and then the stress was reduced back to zero. The stress increment was selected to
be 0.1 MPa at all times. At every stress increment and decrement, the corresponding strain values
for each model were calculated. With these values, stress vs. strain output curves were obtained for
both the Tanaka and Liang-Rogers models. The propagation of uncertainty due to the variation in the
input parameters during loading and unloading of the material were reflected in the corresponding
stress-strain curve for both models. A total of eight normally distributed parameters were used as
inputs and corresponding stress-strain curves and sensitivity indices charts were generated as outputs
for both the Tanaka and Liang-Rogers models (Figure 1).
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Liang-Rogers models using eight model input parameters.
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4. Results

With the uncertainty present in the input parameters, output strain showed significant variability
at simulated stress and temperature values. The parallel coordinate plot in Figure 2 shows the upper
and lower limits of the normally distributed input parameters. The maximum variability for the Tanaka
model and the Liang-Rogers model are presented in Table 4 at different operating temperatures.Materials 2019, 12, x FOR PEER REVIEW 8 of 19 
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Table 4. Maximum strain variability.

Operating Temperature, T
(◦C)

Maximum Variability
Tanaka Model Liang-Rogers Model

−10 56–137% 22–28%
−22.5 82–583% 48–105%

4.1. Uncertainty Analysis

The uncertainty present in the input parameters propagated to the output stress-strain curves.
As a general observation, the model output varied with temperature and loading conditions. In this
section, uncertainty analysis results of the Tanaka and Liang-Rogers models are presented.

4.1.1. Uncertainty Analysis for Tanaka Model

Figure 3 presents the propagation of uncertainty to the output for the Tanaka model at simulated
operating temperature and loading conditions. From Figure 3a which is termed as σmax > A→M_Stop
and Figure 3b which is termed as σmax = A→M_Stop, it is observed that the loading portion of the
curves showed very low variability at the initial linear region. In the nonlinear loading portion, the
variability increased. On the other hand, in unloading linear portion, the variability decreased. The
variability increased again in the unloading nonlinear region of the curves. Maximum variability was
56–137% at −10 ◦C for both Figure 3a,b. It is observed from Figure 3c,d that the initial linear loading
region showed low variability in strain, which increased in the nonlinear loading portion. In the
unloading linear region, this variability decreased but it again increased in the nonlinear unloading
region. Maximum variability was 82–583% at −22.5 ◦C for both Figure 3c,d. Figure 3a,b shows
uncertainty propagation in “pseudoelastic” behavior of SMAs and Figure 3c,d shows uncertainty
propagation in “shape memory effect” behavior of SMAs as per the Tanaka model.
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(c) T = −22.5 ◦C, σmax = 21 MPa; (d) T = −22.5 ◦C, σmax = 17 MPa.

4.1.2. Uncertainty Analysis for Liang-Rogers Model

Figure 4 presents the propagation of uncertainty to the output for the Liang-Rogers model at
simulated operating temperature and loading conditions. In Figure 4a,b it is observed that the linear
loading region showed low variability. The variability increased in the nonlinear loading region. In the
linear unloading region, the variability decreased. The variability increased again in the beginning
of nonlinear unloading region and tended to decrease towards the end of unloading. Maximum
variability was 22–28% at −10 ◦C for both Figure 4a,b. At the temperature −22.5 ◦C, as per Figure 4c,d,
the initial linear loading region showed low variability in strain. Then, it increased in the nonlinear
loading portion. In the unloading linear region, this variability decreased but it again increased in
the nonlinear unloading region. Maximum variability was 48–105% for both Figure 4c,d. Figure 4a,b
show uncertainty propagation in “pseudoelastic” behavior of SMAs and Figure 4c,d show uncertainty
propagation in “shape memory effect” behavior of SMAs according to the Liang-Rogers model.
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Figure 4. Confidence intervals (5–95 percentile) at simulated temperatures and maximum loading
stress for the Liang and Rogers model (the deterministic curve is shown in dark color; the
deformation size is shown in the form of strain (ε) on the x-axis): (a) T = −10 ◦C, σmax = 40 MPa;
(b) T = −10 ◦C, σmax = 36 MPa; (c) T = −22.5 ◦C, σmax = 21 MPa; (d) T = −22.5 ◦C, σmax = 17 MPa.

The above statements can be verified utilizing the maximum variability data shown in Table 4. As
the Tanaka model uses an exponential function, there were sharp increases or decreases in strain values
during loading and unloading. With the uncertainty present in the input parameters, the resultant
variability is higher for the Tanaka model. The Liang-Rogers model uses a cosine function for which
the resultant stress-strain curve is convex shaped. The strain values did not increase sharply as like
Tanaka. As a result, with the uncertainty present in the input parameters, the variability was lower
in the Liang-Rogers model. It was prominent that for both the Tanaka model and the Liang-Rogers
model, the maximum variability was higher for −22.5 ◦C than −10 ◦C in all conditions. The maximum
variability in a certain temperature for the Tanaka model and the Liang-Rogers model was the same
for both σmax > A→M_Stop and σmax = A→M_Stop.

4.2. Sensitivity Analysis

Variance-based global sensitivity analyses were performed to determine the most influential
parameters of the Tanaka and Liang-Rogers models. Figure 5 and Figure 8 show the stress-dependent
sensitivity index distributions at simulated temperatures for the Tanaka and Liang-Rogers models,
respectively. It was observed that the sensitivity index varied with temperature and loading region
as expected. Main and total sensitivity indices were also calculated for each parameter at 0.1 MPa
stress increment. In the next subsections, Tanaka and Liang-Rogers sensitivity analysis results are
presented individually.
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Figure 5. Extended Fourier Amplitude Sensitivity Test (eFAST) stress-dependent sensitivity index
distribution at simulated temperatures for the Tanaka model (the corresponding stress values
during loading and unloading are shown in horizontal axis and inputs are shown in vertical axis):
(a) T = −10 ◦C, σmax = 40 MPa; (b) T = −10 ◦C, σmax = 36 MPa; (c) T = −22.5 ◦C, σmax = 21 MPa;
(d) T = −22.5 ◦C, σmax = 17 MPa.

4.2.1. Sensitivity Analysis for Tanaka Model

Figure 5a,b show that the elastic modulus D was dominant during the linear loading region.
Phase transformation coefficient Ω showed contribution during austenite to martensite transformation.
Austenite start temperature As showed some significance during nonlinear unloading region where
martensite was converted to austenite. Figure 5c,d show the significance of elastic modulus in the
initial loading portion. During the austenite to martensite phase transformation region and then in the
unloading region, elastic modulus and phase transformation coefficient played significant roles as
evidenced by their sensitivity indices.

From the Sobol sensitivity analysis, the main effect and the total effect sensitivity indices were
obtained and the average sensitivity indices were calculated with the resulting data. Sobol average
sensitivity index vs. input parameters are presented in Figure 6 for the Tanaka model. It was observed
that, apart from the main effect, there were no significant interactions between the parameters. Hence,
the total effect was in close agreement with the main effect. The parameters θ, M f and A f had no effect
in the output variability as per the Sobol analysis for the Tanaka model. In order to verify these results
for the Tanaka model, the sensitivity analysis were repeated by using the eFAST method. The resulting
average sensitivity indices are presented in Figure 7.
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Figure 6. Sobol average sensitivity indices at simulated temperatures and maximum loading
stress for the Tanaka model: (a) T = −10 ◦C, σmax = 40 MPa; (b) T = −10 ◦C, σmax = 36 MPa;
(c) T = −22.5 ◦C, σmax = 21 MPa; (d) T = −22.5 ◦C, σmax = 17 MPa.
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4.2.2. Sensitivity Analysis for Liang-Rogers Model

Figure 8a,b show that the elastic modulus (D) remained influential in the initial loading region
for the Liang-Rogers model. Martensite finish temperature M f was also a parameter for which the
model was sensitive during austenite to martensite transformation region and at the ending portion of
unloading. Figure 8c,d show high sensitivity index for elastic modulus in the loading region. Then,
the phase transformation coefficient Ω became dominant as shown in Figure 8c. Figure 8d reveals that
the operating temperature T and martensite finish temperature M f were influential parameters.
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Figure 8. eFAST stress-dependent sensitivity index distribution at simulated temperatures for the
Liang-Rogers model (the corresponding stress values during loading and unloading are shown
in horizontal axis and inputs are shown in vertical axis): (a) T = −10 ◦C, σmax = 40 MPa;
(b) T = −10 ◦C, σmax = 36 MPa; (c) T = −22.5 ◦C, σmax = 21 MPa; (d) T = −22.5 ◦C, σmax = 17 MPa.

Main effect and the total effect sensitivity indices were obtained using Sobol sensitivity analysis
for the Liang-Rogers model, and the average sensitivity indices were calculated with the resulting data.
Sobol average sensitivity index versus input parameters are presented in Figure 9 for the Liang-Rogers
model. θ had no effect in all simulated conditions. Figure 9c,d present that A f had also no effect for
model sensitivity. M f showed contribution for the conditions presented in Figure 9b,d.

From these analyses, it is observed that the most significant parameter was the elastic modulus,
D, which contributes to the output variation during the initial loading region, at the end of phase
transformation from austenite to martensite and in the beginning and mid-region of unloading. In order
to verify these results for the Liang-Rogers model, the sensitivity analysis were repeated by using the
eFAST method. The resulting average sensitivity indices are presented in Figure 10.
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5. Discussion

In this paper, Tanaka and Liang-Rogers shape memory alloy constitutive models were analyzed
for sensitivity to input parameters and uncertainty propagation in the output stress-strain curves. We
employed a probabilistic evaluation approach that is operated by assigning probability distributions
to the input parameters and provides insight into the most influential set of parameters for a given
model. The methodology and results presented in this paper can benefit the real life experimentation or
applications of SMAs with these models as it reveals the most influential parameters for the considered
models. Without proper understanding of these simulations and results, real-life applications may
have performance discrepancies. For example, when SMAs are used as dental braces, the recovery
effect of the SMAs is utilized for aligning and straightening the teeth. The body temperature causes
the braces to put constant recovery stress on the teeth. The design of these braces is done following
an SMA model. The deterministic parameters which are the model inputs may effectively provide
an expected output. When uncertainty is present in the input parameters, however, the resulting
output can go outbound and eventually fail to align and straighten the teeth. In the next paragraphs,
the results obtained from the analysis are discussed for simulated cases and recommendations are
provided for making use of the Tanaka and Liang-Rogers models in SMA applications.

As per the Tanaka model, at temperature −10 ◦C with maximum stress of 40 MPa, the linear
loading region shows very low variability. In this region, the material is initially at 100% austenite
phase, i.e., no phase transformation is present in this region and the martensitic fraction is always
zero. Therefore, T, θ and Ω are not utilized in the constitutive equations. Therefore, low variability is
present in the output strain.

The most variability is observed in the phase transformation regions. These are the regions during
transformation of austenite to martensite and vice versa. In these regions, martensite fraction comes
into effect involving the exponential function in Equations (4) and (5). These equations involve the
parameters aM, Ms, T, bM, aA , As, bA and σ. Thus, more parameters come into effect in the constitutive
equation. As a result, the variability in these regions increases. The linear unloading curve also
shows increased variability which continues from the austenite to martensite transformation region.
At temperature −10 ◦C with maximum stress of 36 MPa, the material displays similar characteristics.
At temperature−22.5 ◦C with maximum stresses of 21 MPa and 17 MPa, the linear loading region shows
low variability while the phase transformation regions exhibits higher variability. At the linear loading
region, only the parameter D is contributing, for which initial loading region shows low variability.
In the transformation region, involvement of martensitic fraction integrating other parameters like aM,
Ms, T, bM, aA , As, bA and σ causes more parameters to come into effect in the constitutive equation
(Equation (1)). Therefore, higher variability in these regions are prominent.

The sensitivity analysis of the Tanaka Model reveals that, when T > A f , the model is sensitive to
the elastic modulus D in the initial loading region. No other parameter shows influence in that region.
In that region, martensitic fraction is zero and the analysis was done in isothermal temperature. So
from Equation (1), it is clear that elastic modulus D is the only parameter for which the model is most
sensitive. The parameter martensite start temperature Ms shows low significance in the austenite to
martensite phase transformation region. It comes into effect due to the fact that transformation of
austenite to martensite starts at that region. In the loading phase transformation region, the model
is sensitive to the phase transformation coefficient Ω. Martensitic fraction starts increasing at this
zone from its zero value due to phase transformation. Therefore, phase transformation coefficient Ω is
influential in this region. In the nonlinear unloading region, austenite start temperature As becomes an
influential parameter. In this region, martensite to austenite transformation starts, so the significance
of As is expected.

For temperature region As < T < A f , the sensitivity analysis of the Tanaka model shows that D
is the most influential parameter in the initial loading region. But compared to T > A f , the average
sensitivity index of elastic modulus D is lower for As < T < A f . This is because austenite to martensite
transformation stress is higher for T > A f than As < T < A f . Also, the span of stress is higher for
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T > A f . It can be observed from Figure 5a, for example, stress span is 0 to 40 MPa and then 40 MPa
to 0. On the other hand, stress span is lower for Figure 5c. Phase transformation coefficient Ω is the
second most influential parameter as per the average sensitivity index. Temperature T and martensite
start temperature Ms show low significance for As < T < A f temperature region. Their Sobol total
indices are greater than main indices which shows that interaction effects are higher for them than
other parameters (Figure 6c,d). The total indices here refers to the main effect of the parameter as
well as the interaction terms involved. Higher total indices thus signify higher interaction among the
parameters including the main effect of a particular parameter.

The Liang-Rogers model utilizes a cosine function for calculating martensitic transformation
during the transformation regions. As a result, the stress-strain curve is convex-shaped for this model
whereas it is concave-shaped for the Tanaka model. In the Liang-Rogers model, at temperature −10 ◦C
with maximum stress of 40 MPa and 36 MPa, linear loading region shows low variability compared to
the nonlinear loading region. The significant variability is seen in the phase transformation regions
where austenite is transformed to martensite and vice versa. In the linear loading region, the material
is initially at 100% austenite phase, i.e., no phase transformation is present in this region and the
martensitic fraction is always zero. Therefore, T, θ and Ω were not contributing in the constitutive
equations. In the phase transformation regions, martensite fraction comes into effect involving the
cosine function in Equations (11) and (12). These equations involve the parameters ξA, ξM, aM, M f , T,
bM, aA , As, bA and σ. Thus, more parameters come into effect in the constitutive equation (Equation (1)).
As a result, the variability in these regions increases.

At a temperature of −22.5 ◦C with maximum stresses of 21 MPa and 17 MPa, the Liang-Rogers
model shows increased variability in the phase transformation regions than the initial loading region.
This is because of the fact that martensitic fraction is zero in the initial loading region and the loading
and unloading were done isothermally. As a result, as per Equation (1), only the elastic modulus D
contributes to the output variability. This is the cause of low variability in the initial loading region.
In the phase transformation regions, martensitic fraction can increase or decrease as prescribed by
Equations (11) and (12). These equations involve the parameters ξA, ξM, aM, M f , T, bM, aA , As, bA and
σ. Thus, more parameters come into effect in the constitutive equation (Equation (1)) including phase
transformation coefficient Ω. As a result, variability in these regions increases.

As per the sensitivity analysis for the Liang-Rogers model, for all four cases, the material is
initially sensitive to elastic modulus D in the linear loading region. Then, upon further loading, the
material enters into the phase transformation region where it transforms from austenite to martensite.
From the sensitivity index distribution in Figure 8a, it can be seen that the martensite start and finish
temperatures show some contribution to the model sensitivity. Equation (10) shows that martensitic
fraction is a function of martensite finish temperature that causes M f to come into effect. Martensite
start temperature Ms shows contribution as austenite is being converted to martensite at that region.
So, the temperature associated with martensite formation comes into effect. However, Figure 9a infers
that the contribution of Ms and M f are not significant.

At the end of the loading and in the linear unloading region (Figure 8a), both elastic modulus
D and phase transformation coefficient Ω show contribution to the model sensitivity. Also, As and
A f shows contribution to the model sensitivity during martensite to austenite phase transformation
region. It is due to the fact that martensite is being converted to austenite in that region. However, it is
seen that from the average sensitivity indices (Figure 9a), they are not significant through the total span
of loading and unloading. From Sobol average sensitivity indices (Figure 9a,b) and eFAST average
sensitivity indices (Figure 10a,b), it is observed that elastic modulus D is the most significant parameter.
The second most influential parameter is the martensite finish temperature M f . This is the case for
temperature −10 ◦C (T > A f ).

For temperature −22.5 ◦C (As < T < A f ), it can be observed from Figure 9c that phase
transformation coefficient Ω is the second influential parameter T and operating temperature is
the third influential parameter. Both of them show some contribution. Figure 9d presents that elastic
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modulus D is the most influential parameter. Then operating temperature T is the second contributing
parameter and martensite finish temperature M f is the third influential parameter.

Based on the discussions above, the significant parameters have been listed in Table 5 for Tanaka
and Liang-Rogers models. For engineering applications or further research utilizing these SMA models,
it is recommended to observe the parameters listed here, and the associated uncertainty in them should
be kept least in order to avoid failure or unbounded output.

Table 5. Most influential parameters for Tanaka and Liang-Rogers models.

Temperature, T (◦C) Tanaka Model
Parameters

Liang-Rogers Model
Parameters SMA Behavior

−10 (T > A f ) D, As, Ms D, M f Pseudoelastic Effect

−22.5 (As < T < A f ) D, Ω, T, Ms D, Ω, T, M f Shape Memory Effect

Finally, the results obtained from Sobol sensitivity analysis for the Tanaka and Liang-Rogers
models were verified using the extended FAST (eFAST) analysis, which can be observed from
Figures 7 and 10. They match closely, validating the Sobol sensitivity analysis for both models.

6. Conclusions

In this study, sensitivity and uncertainty analysis have been performed on two of the most widely
used shape memory alloy constitutive models: the Tanaka and Liang-Rogers models. It was observed
that any variability present in the input model parameters can have a significant impact on the output.
The propagation of uncertainty has been presented at different operating temperatures and loading
conditions. In order to determine which parameters have the most significance in the output variability,
two different sensitivity analyses have been conducted. From these analyses, the most influential
parameters for each model have been identified. The outcome of the study will help in designing
real-life engineering applications by preventing failure which can be caused due to the uncertainty
present in the design parameters. The models analyzed are for a particular material with certain
loading and operating temperature conditions. This study can be extended by considering another
SMA models or changing the material, loading conditions and the operating temperatures.
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