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Abstract: The manufacturing technology for adhesive joints is not yet fully optimized, as proved
by a large number of papers that have been published in recent years. Future studies on innovative
techniques for fabricating adhesive joints should investigate the influence of parameters such as:
(1) The shape of adhesive protrusion, (2) lap dimensions, and (3) cohesive layer reduction in the most
efforted regions of the joint. With the application of additional mechanical connectors (e.g., rivets,
screws, and welds) in adhesive joints, new hybrid connections can be fabricated. The number of
publications in this new field is still relatively small. To fill the gap, this paper presents the results of a
numerical analysis of different single lap geometries in (1) pure adhesive and (2) hybrid joints. A total
of 13 different models with the same surface area of the adhesive layer were considered. In the case of
hybrid joints, the adhesive surface before the application of mechanical connectors was assumed to
be the same in every tested case. The numerical analysis of pure adhesive and hybrid joints revealed
that the differences in strength led to a 30% decrease in the load capacity of these joints. Therefore,
when designing pure adhesive and hybrid joints, special attention should be paid to the shape of the
lap between the joined elements.
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1. Introduction

Mechanical connections can be formed by welds [1], rivets [2,3], clinch joints [4–6], or bolts [7].
Their main disadvantage is a highly concentrated load transfer at fastener points. This causes a very
high stress concentration and, moreover, requires the application of hole drilling. These drawbacks
can be overcome by introducing an adhesive layer to the connection and thus creating a hybrid joint
(HJ) (e.g., [8–18]). The introduction of the adhesive when fabricating clinch joints may have another
advantage due to the reduction of friction coefficients between the sheets [13,14]. A proper introduction
of the adhesive to the mechanical joint is a difficult process. An example of this can be a spot-welded
joint of aircraft skin and stringer in the form of an angle bar [11,18]. In this case, the adhesive must
have adequate viscosity and curing time to fill the very narrow space between the stringer and the skin.

On the other hand, pure single-lap adhesive joints (SLJs) under uniaxial tension exhibit significant
peel stress concentrations at the ends of the bonded region, which can lead to failure initiation in the
connection [19]. These peel stress concentrations can be reduced in a number of ways. They include:
Creating an adhesive fillet [20–22], changing the adhesive layer thickness or width [23], tapering
adherends in the overlap region [20,24], changing the lap geometry by increasing its length [23], using
the mixed-adhesive technique [25] to create an adhesive layer with the application of two adhesives with
different properties to manufacture functional gradation [26], or fabricating multistep-lap joints [27].

Apart from comparing pure adhesive and hybrid joints, future studies should focus on the
optimization of the manufacturing technology and modeling of SLJs and other more complex joints
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of structural elements, e.g., [28,29]. Solutions must be found to assess the influence of different
geometric parameters and technological aspects [30–36]. In general, it is necessary to develop damage
tolerant designs of (1) simple joints (SLJs) or (2) more complex structural joints that will have a higher
toughness against crack propagation and will be less prone to scatter in strength [37]. Other vital
issues include optimization, fracture characterization, and comparisons of FEM models with laboratory
results [38–41].

Future solutions will require more applications for the hybrid joining technique, which entails the
use of two or more methods in manufacturing, ideally with a synergistic increase in strength and/or
toughness [9]. Hybrid joints have properties that are desired in specific applications for joined structural
elements, including: High stiffness and static strength, longer fatigue response and higher amplitude
of forces, multi-stage damage and cracking process, higher energy absorption to the final failure,
elimination of sealing operations, higher corrosion resistance, enhanced reliability and durability, and
reduced manufacturing costs.

The fundamental challenge for industrial applications is to ensure high reliability and durability
of adhesive or hybrid joints over the entire service lifetime of the connected structural elements.
The satisfaction of these requirements will lead to optimization and further improvement regarding
the following: Enhanced strength and toughness of adhesive joints by the addition of nanoparticles,
fibers, or woven mats, e.g., [42,43], or the introduction of a “stop hole” to blunt the tip of a crack [37];
the application of more effective mechanical fastening, e.g., “z-pins” [37]; the modification of the lap
joint area geometry; the use of modern joining techniques, such as friction stir welding, e.g., [44], laser
beam welding, or electron beam welding.

The strength, damage tolerance, and energy absorption capacity of HJs can be increased in many
ways. These include: Finding the optimal overlap size [23,30]; proper surface treatment of the adherend,
e.g., [30]; the use of heterogeneous adhesives with silica particles [45] or different nano-reinforcements
(graphene flakes or rubber particles); the application of non-flat interfaces or adherend curvature,
e.g., [46,47], i.e., the generation of an additional compressive residual stresses to considerably increase
load capacity (however, it is more difficult to achieve this geometry and widely use it in complex
structural elements); the introduction of a compression to hybrid joints by the use of prestressed
mechanical fasteners [8] in order to significantly increase their load capacity, as well as by designing
new types of fasteners that allow for adjusting the down force; and, finally, a proper fitting tolerance
design for the rivets in HJ holes, which is a very important technological problem [16].

The literature on the subject offers very few studies on the effect of geometric and technological
parameters in HJ design. In light of the above, the present research will discuss the influence of the
shape of the adherend lap with a constant area on the behavior of SLJs and HJs created with the
application of rivets.

2. Analyzed Models and Their Designs

Given numerous papers within an international scope, the problem of single-lap adhesive joints
has not lost its relevance. However, to this day there is no wider reference to HJs. The analytical
and numerical analyses [15] show that the most strain is carried by the lap edges. Traditionally,
the lap edges form straight lines perpendicular to the load direction when the lap has a rectangular
shape. Therefore, the aim of the numerical analysis is to determine how the lap shape affects the
force value causing damage and further failure of the joint. Different types of lap shapes can be
used for repair, e.g., in aviation or sports equipment. Sometimes aesthetic considerations must be
satisfied, e.g., by introducing a smooth radius, and at other times, technical aspects must be considered,
e.g., through bypassing some elements of the structure. These types of lap shape were developed
following consultations with Wit-Composites, a company specializing in the production and repair of
laminate products.
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For this purpose, 13 different lap shapes were proposed (Figure 1a), for both adhesive and hybrid
joints. The most important assumption of this study was that the surface of the adhesive layer would
be maintained the same in every tested case. The adherends had a thickness of 2 mm, the joint width
was 30 mm, and the adhesive layer thickness was 0.1 mm. Model 1 with a rectangular lap shape
(30 mm × 60 mm) was adopted as a reference. The outer diameter of the rivet was 4 mm and the inner
diameter was 2 mm (Figure 2). In all cases, the length between the lap edge and the sample end was
80 mm.
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one end and had a displacement “u” applied to the other end.
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Every adherend was modelled using 23,600 C3D8R elements with four elements through the
thickness. C3D8R elements were also used for the rivet model, the mesh of which was made more
dense (15,000 elements). The adhesive layer was modelled using 2,113 cohesive elements, COH3D8.
A damaged elastic–plastic material model (Mode I fracture) was adopted for 2 mm thick aluminum
sheets. The adhesive layer with a thickness of 0.1 mm was modeled with cohesive elements and
described with the Mode II fracture of the joint. The numerical analysis was performed using the
Abaqus software. The considered material properties are given in Tables 1–3.
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Table 1. Material properties of aluminum plates.

Yield Stress
σy

Tensile Strength
σt

Elongation at Break
A

Young’s Modulus
E

Poisson’s Coefficient
ν

470 MPa 540 MPa 0.08 70 GPa 0.3

Table 2. Material properties of aluminum rivets.

Yield Stress
σy

Tensile Strength
σt

Elongation at Break
A

Young’s Modulus
E

Poisson’s Coefficient
ν

400 MPa 450 MPa 0.5 70 GPa 0.3

Table 3. Material properties of epoxy adhesive [24].

Young’s Modulus
E

Kirchhoff’s Modulus
G

Shear Strength
τu

Normal Strength
σu

Fracture Energy
GI

0.1 GPa 0.038 GPa 25 MPa 18 MPa 200 J/m2

Due to the presence of mechanical fasteners in the HJ, this model could not be realized as 2D.
The only simplification that could be applied was to consider half of the joint along the axis of symmetry.
This step, however, was not taken because such models could be used in the future to investigate
complex load cases. For a better comparison between pure adhesive and hybrid joints, the first models
were realized as three-dimensional, even though many authors [19–21] treat them as 2D. However,
in the case at hand, the stress distributions in the adhesive layer measured across the width did not
suggest that this should be done here (see, e.g., Model 1 just before damage).

Figure 3 shows that only the σxz stresses have a constant value, whereas the normal stresses σzz

take minimum values at the start and the end of the path, assuming a constant value over a distance of
approximately 20 mm. This is due to the fact that the plane strain occurred in the center of the sample,
while the plane stress occurred on the side surface. In addition, the shear stresses σyz changed their
sign along the path length, and there was a zero value in the axis. The discussion of stress distribution
shows that these connections should not be treated as 2D models.
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3. Results Analysis

The proposed models can be grouped as follows:

• Model 1: Reference model to which other models are compared;
• Models 2, 3, 4: Models with 45◦ chamfers;
• Models 6, 7, 8: Models with different values of the fillet radius;
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• Models 11, 12, 13: Models with a lap formed by the arcs.

Other models which cannot be assigned to any of the above groups include: Model 5 with an
elliptical lap, Model 9 with pleated lap boundaries, and Model 10 with a diamond-shaped lap.

Given the maximum force values that can be carried by pure adhesive joints (Figure 4, Table 4),
one can draw the conclusion that almost any alteration to the lap shape resulted in a decreased strength
of the joint. The only exception was Model 12 which exhibited a slight strength increase amounting
to 0.57%. The worst results were obtained for Model 10 in which the strength decreased as much as
33.6%. Therefore, when designing a single lap joint, special care must be taken to ensure that the lap
edges form straight and perpendicular lines to the axis of the load.
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Table 4. Failure force of adhesive joints.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13

Failure
force (kN) 13.88 12.70 12.64 12.27 10.26 11.22 11.53 12.42 12.01 9.25 13.85 13.96 13.71

The effects of changing the values of individual shape parameters, i.e., the chamfer (L), the fillet
radius (R1), and the thinning radius (R2), are shown in Figure 5 and Table 5. The “L” parameter chart
showed that a smaller “L” (bigger chamfer) yielded worse results; however, these differences did not
exceed 3.4%. By increasing the “R1” parameter (lap fillet radius), we obtained an increase in strength.
In this case, the difference amounted to 9.7%. When analyzing Models 11–13 with the arc parameter
“R2” it should be noted that the difference between the lap lengths amounted even to 33.7% (relative
to Model 10). Nevertheless, taking into account the changes in force values, the difference was only
1.89%, which made it the least important parameter with respect to the maximum strength.

Regarding HJs, it should be mentioned that the area of the adhesive layer between the mechanical
joint axis and the lap edge was maintained the same in every tested case, i.e., A1 = A2. In all cases the
sum of the area was maintained constant (A1 + A2 + B = const). As a result, in every tested case we
observed a difference in length between the rivet axis and the lap edge (Figure 1b).

Table 5. Failure force of hybrid joints (HJ).

Model 1 2 3 4 5 6 7 8 9 10 11 12 13

Failure
force (kN) 15.18 15.55 14.93 14.92 15.15 14.92 14.93 14.87 15.28 15.78 15.10 14.58 13.93



Materials 2019, 12, 1884 6 of 12Materials 2018, 11, x FOR PEER REVIEW  6 of 12 

 

 

Figure 5. Influence of: (a) the chamfer (L), (b) the fillet radius (R1), and (c) the thinning radius (R2) 
parameters in pure adhesive joints. 

Table 5. Failure force of hybrid joints (HJ). 

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 
Failure 

force (kN) 
15.18 15.55 14.93 14.92 15.15 14.92 14.93 14.87 15.28 15.78 15.10 14.58 13.93 

Analyzing the forces obtained for individual joints (Figure 6), one can draw the conclusion that 
the hybrid joints were much less sensitive to changes in the lap edge shape than pure adhesive joints. 
In this case, the maximum difference was about 8.2%. 

 
Figure 6. Force–displacement graphs for hybrid joints. 

The influence of individual parameters such as “L”, “R1”, and “R2” is shown in Figure 7. 
Considering the “L” parameter, it can be observed that a large chamfer was the most advantageous, 
as the difference was about 3.6%. The second parameter, “R1”, yielded a difference of 0.5%, while 
the third parameter, “R2”, had the most significant effect with the difference amounting to 8.3%. 

Figure 5. Influence of: (a) the chamfer (L), (b) the fillet radius (R1), and (c) the thinning radius (R2)
parameters in pure adhesive joints.

Analyzing the forces obtained for individual joints (Figure 6), one can draw the conclusion that
the hybrid joints were much less sensitive to changes in the lap edge shape than pure adhesive joints.
In this case, the maximum difference was about 8.2%.

Materials 2018, 11, x FOR PEER REVIEW  6 of 12 

 

 

Figure 5. Influence of: (a) the chamfer (L), (b) the fillet radius (R1), and (c) the thinning radius (R2) 
parameters in pure adhesive joints. 

Table 5. Failure force of hybrid joints (HJ). 

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 
Failure 

force (kN) 
15.18 15.55 14.93 14.92 15.15 14.92 14.93 14.87 15.28 15.78 15.10 14.58 13.93 

Analyzing the forces obtained for individual joints (Figure 6), one can draw the conclusion that 
the hybrid joints were much less sensitive to changes in the lap edge shape than pure adhesive joints. 
In this case, the maximum difference was about 8.2%. 

 
Figure 6. Force–displacement graphs for hybrid joints. 

The influence of individual parameters such as “L”, “R1”, and “R2” is shown in Figure 7. 
Considering the “L” parameter, it can be observed that a large chamfer was the most advantageous, 
as the difference was about 3.6%. The second parameter, “R1”, yielded a difference of 0.5%, while 
the third parameter, “R2”, had the most significant effect with the difference amounting to 8.3%. 

Figure 6. Force–displacement graphs for hybrid joints.

The influence of individual parameters such as “L”, “R1”, and “R2” is shown in Figure 7.
Considering the “L” parameter, it can be observed that a large chamfer was the most advantageous, as
the difference was about 3.6%. The second parameter, “R1”, yielded a difference of 0.5%, while the
third parameter, “R2”, had the most significant effect with the difference amounting to 8.3%.
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Figure 8 shows the energy stored in the samples until failure. The HJs were modeled with
three-stage damage and cracking processes in:

1. The adhesive layer: Modeled by cohesive elements [3–19];
2. The rivets: The ductile damage model with damage parameters [3,5,8,12,16,48–51];
3. The adherends: The ductile damage model with damage parameters [3,5,8,12,16,48–51].
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The worst results were obtained for Models 10 and 5, with the differences ranging between 35 and
37%. Importantly, these connections underwent damage with much less displacement at failure,
when compared to Reference Model 1. In contrast, the “R2” parameter played an important role.
The thinning of the arc-formed central part of the lap led to an increased lap length, joint strength
(similarly to [23]), and absorption energy until final failure. This was due to decreased rigidity and the
joint may now undergo greater displacements until the adhesive layer is totally damaged. The energy
increase in Model 13 was about 18.5%.
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The use of cohesive elements for modeling the adhesive layer allowed us to analyze the time point
of damage initiation, in relation to Model 1. This relationship is illustrated in Table 6. One can observe
that damage occurred the earliest in Model 10, for which the lowest damage force was also obtained.
In all models with the thinning in the central part of the lap, the adhesive layer damage occurred later
than in the reference model.

Table 6. Time of damage initiation and final failure, expressed in percentages, in relation to Reference
Model 1.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13

Start (%) 100.0 72.9 82.9 82.1 74.3 82.9 85.0 90.7 64.3 47.1 103.6 110.7 119.3

End (%) 100.0 100.0 94.3 87.1 81.4 84.3 85.7 90.7 90.0 86.4 104.3 110.7 119.3

4. Laboratory Tests

To verify the numerical results, laboratory tests were conducted for one type of connection. Four
models were selected for the experiments: 1, 11, 12, and 13. Model 1 was used as a reference. The lap
geometries were identical to those in Figure 1a, however, two fundamental changes were made in
the construction of the joints. First, a double-sided tape, TESA 51571, was used instead of the epoxy
adhesive in order to prevent the influence of flash and to maintain a uniform thickness of the adhesive
layer. Both parameters affected the strength of the connection. Second, in the laboratory tests, a linear
elastic material was used to eliminate the potential influence of plastic deformation of the adherends.
Specifically, a polymer matrix composite (PMC) was used. The reinforcement consisted of six layers of
plain fiberglass fabric, and an epoxy resin was used as the matrix. The adherend thickness was set
equal to 1 mm. The samples were cut using a water-jet plotter. Prior to the application of the adhesive
tape, the sample surfaces were cleaned with the 3M degreaser (surface cleaner sachets). Five samples
were made for each model (Figure 9).
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Figure 9. Samples before testing: (a) Model 1, (b) Model 11, (c) Model 12, (d) Model 13.

Next, the samples were subjected to uniaxial tensile testing at 2 mm/min using the MTS 25kN
testing machine. The first three sample batches underwent damage without audible acoustic effects.
Samples from the last batch (Model 13) were damaged with a characteristic crack. The graphs showing
uniaxial tensile test results are given in Figure 10. It can be observed that the samples had non-linear
characteristics. Once the maximum force was reached, the connection underwent damage.

The maximum forces and energy leading to damage are listed in Table 7. Naturally, these values
were much lower than the results of the numerical analysis wherein the epoxy adhesive was used.
Nevertheless, at this point of the study, the percentage relationships between force and energy relative
to the reference model were of key importance.
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Table 7. Maximum force and energy.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Mean Value

Model 1

Max force (kN) 1.59 1.47 1.55 1.75 1.68 1.60

Energy (J) 1.45 1.42 1.37 1.74 1.63 1.52

Model 11

Max force (kN) 1.73 1.80 1.67 1.64 1.81 1.73

Energy (J) 1.60 1.64 1.62 1.60 1.86 1.67

Model 12

Max force (kN) 1.31 1.29 1.42 1.11 1.73 1.37

Energy (J) 1.23 1.18 1.36 1.15 1.62 1.31

Model 13

Max force (kN) 1.51 2.00 2.01 1.81 1.73 1.81

Energy (J) 1.51 2.08 1.98 1.91 1.87 1.87

These relations are presented in Table 8 for changes in the damage energy of individual models
with reference to Model 1. For Models 11 and 13, the same trend of energy increase can be observed.
This trend was more visible for the experimental models, especially Model 11, wherein the increase was
almost double. Regarding Model 13, the difference between the experimental and numerical energy
increases was only 4.18%. This experimentally confirmed that the lap shape also affected the strength
of the adhesive joint. Only for Model 12 was an opposite trend observed, with reduced strength and
damage energy relative to the laboratory reference model.

This trend did not occur in the numerical model, in which the energy increased with the thinning
of the central part of the lap. All samples for the laboratory tests were made using the same joining
technology. The connections were made carefully using double-sided tape to prevent flash and variations
in the thickness of the adhesive layer. One of the reasons for the negative energy obtained in Model 12
could be the hand clamp after joining two halves of the sample. To prevent the influence of pressure,
samples for subsequent studies will be made using an adhesive film cured on a press with heated plates.
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Table 8. Results comparison.

Model 11 Model 12 Model 13

Experiment 9.49% −13.96% 22.64%

FEM 4.35% 11.61% 18.46%

5. Conclusions

In this paper, 26 models of joints (13 pure adhesive and 13 hybrid) were analyzed numerically.
The results showed a significant difference between the maximum forces obtained for pure adhesive
and hybrid joints. The largest differences exceeding 70% were observed for Model 10, which means
that, in a case like this, it is most reasonable to use an additional rivet joint. On the other hand, in the
case of Model 13, with thinning in the lap center, the use of additional mechanical connectors is not
advisable because the force increase was only 1.6%.

The failure of hybrid joints took place in two stages. In the first stage, the adhesive layer was
damaged to the rivet boundary, which was indicated by a slight decrease in force. In the second stage,
the force increased until damage of the mechanical and adhesive joints occurred. This phenomenon
can be used to monitor the connection status, e.g., by using a strain gauge or piezoelectric sensor that
will react to a decrease in strength and trigger an alarm procedure.

Other conclusions that can be drawn from this research were as follows:

• The chamfer parameter “L” had a similar effect in pure adhesive and hybrid joints alike, its value
ranging from 3.4% to 3.6%;

• The fillet parameter “R1” had a significant effect only in pure adhesive joints, amounting to 9.7%
for pure adhesive joints and to 0.5% for hybrid joints;

• The opposite was observed for the “R2” parameter, which was insignificant in pure adhesive
joints (1.8%), but its effect on energy amounted to 8.3% in hybrid joints;

• In the case of Model 13, the difference between the experimental and numerical energy increased
values was only 4.18%.
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