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Abstract: The full-scale static testing of wind turbine blades is an effective means to verify the
accuracy and rationality of the blade design, and it is an indispensable part in the blade certification
process. In the full-scale static experiments, the strain of the wind turbine blade is related to the
applied loads, loading positions, stiffness, deflection, and other factors. At present, researches focus
on the analysis of blade failure causes, blade load-bearing capacity, and parameter measurement
methods in addition to the correlation analysis between the strain and the applied loads primarily.
However, they neglect the loading positions and blade displacements. The correlation among the
strain and applied loads, loading positions, displacements, etc. is nonlinear; besides that, the number
of design variables is numerous, and thus the calculation and prediction of the blade strain are quite
complicated and difficult using traditional numerical methods. Moreover, in full-scale static testing,
the number of measuring points and strain gauges are limited, so the test data have insufficient
significance to the calibration of the blade design. This paper has performed a study on the new
strain prediction method by introducing intelligent algorithms. Back propagation neural network
(BPNN) improved by Particle Swarm Optimization (PSO) has significant advantages in dealing
with non-linear fitting and multi-input parameters. Models based on BPNN improved by PSO
(PSO-BPNN) have better robustness and accuracy. Based on the advantages of the neural network in
dealing with complex problems, a strain-predictive PSO-BPNN model for full-scale static experiment
of a certain wind turbine blade was established. In addition, the strain values for the unmeasured
points were predicted. The accuracy of the PSO-BPNN prediction model was verified by comparing
with the BPNN model and the simulation test. Both the applicability and usability of strain-predictive
neural network models were verified by comparing the prediction results with simulation outcomes.
The comparison results show that PSO-BPNN can be utilized to predict the strain of unmeasured
points of wind turbine blades during static testing, and this provides more data for characteristic
structural parameters calculation.

Keywords: wind turbine blade; full-scale static test; PSO-BP Neural Network; strain prediction

1. Introduction

Both the reliability and stability of wind turbine blades affect the safety of the whole machine
directly. In order to check the rationality of blade design and verify the safety of manufacturing, static
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experiments of prototype blades have been performed as a necessary part of the blade certification
process [1]. Through static experiments of wind turbine blades, the verification of the designed loading
capacity of the blades can be built, and the information about structural characteristics, strain and
deformation under the test load can be obtained [2]. Existing literature reports substantial researches
on the structural testing of wind turbine blades. For example, Jensen et al. [3] continuously loaded a
34-m-long blade in the flap-direction until the blade failed, recorded the displacements throughout the
loading history by local displacement measurement equipment, and found that the peeling of the skin
and the box girder were the main cause of blade instability. Through the full-scale fatigue experiment
of a 3 MW wind turbine blade directed by IEC 61400-23, Lee et al. [4] found that delamination failure
will happen at the blade root and figured out the causes of the delamination failure and problems
of the conventional design approach by simulating the situations experienced by the blade. During
the conditional monitoring on the trailing edge in a full-scale fatigue experiment of a 2 MW wind
turbine blade, Pan et al. [5] found that the stress concentration will lead to delamination between GFRP
and the balsa wood, and then proposed a method to increase the core materials in the trailing edge
by computing the local stress distribution and stability factors, based on finite element calculations.
Lee and Park [6] carried out static testing on a 48.3-m-long blade which had initial static testing and
fatigue testing. They found that the blade collapsed when the applied load surpassed 70% of the target
value. In addition, Lee and Park [6] proposed an improved laminate pattern to enhance the residual
strength of the wind turbine blade.

The references as above are mainly related to the analysis of the failure modes as well as
failure causes of wind turbine blades. Moreover, measurement and calculation methods of structural
characteristic parameters have also been intensively studied, including the influence of defects and
size effect [7–9]. Based on the method of finite differences and an arbitrary beam bending and moment
theory, Choi et al. [10] proposed a tip deflection calculation method based on the measured strains data
analysis for wind turbine blades, and in order to verify the proposed method, they conducted static
testing on a 100 kW wind turbine blade with FBG sensors embedded in its shear web; the average
calculation error of the proposed method was proved to be within 2.25%. Before performing a
static experiment with a 100 kW wind turbine blade, Kim et al. [11] installed FBG sensors into the
bonding line among the shear web and spar cap to collect the strain data and then they found that
the collected strain data can be effectively used to evaluate the deflections of the wind turbine blades.
Roczek-Sieradzan et al. [12] preformed a full-scale static test of a certain wind turbine blade under the
combined loadings of flag and edgewise directions, with the overall and local deformation information
measured and recorded during the experimental process and proved that the measurement results can
be effectively used to analyze the structural performance of wind turbine blades. On the basis of the
digital image analysis technology, Dou [13] proposed a deformation testing method for the full-scale
static experiment for wind turbine blades and completed the data measurements and analysis of the
three-dimensional deformation field. Shi et al. [14] studied the impact of time-varying environmental
temperature and humidity on the test results on the basis of a fatigue experiment of a 1.5 MW wind
turbine blade; this research could provide a basis for the development and structure testing of wind
turbine blades. Pan [15] studied the influence of structure nonlinearity on the experimental results of
full-scale wind turbine blades static testing, analyzing the relationship among bending moment, strain,
stiffness, and deflection, among others, and provided a more accurate stiffness data for numerical
loading calculations. Yan et al. [16] tested and recorded the frequency, deflection and strain of a
48-m-long wind turbine blade, compared the test results with the design value and found that the
error range satisfied the DNV-GL2015 specifications.

The above-mentioned researches have made significant achievements in the analysis of blade
failure causes, blade load-bearing capacity, and the measurement methods of the full-scale blade static
testing, and there are also some researchers who have investigated the blade structural characteristics
analysis from the physics of failure mechanisms [17–22]. However, studies on the correlation
analysis of the strain, the applied loads, the loading positions, and displacements in static testing are
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scarce. Actually, in the static testing, the relationships of the strain with the applied loads, loading
positions, displacements, etc., are nonlinear, and the number of design variables is numerous [15,23],
thus the calculation and prediction of blade structural characteristics are very complicated. Moreover,
the number of measuring points and strain gauges in full-scale wind turbine blade static testing are
usually limited, thus the structural characteristics of unmeasured points cannot be directly obtained,
so that the static testing has little significance for the calibration of blade design [15]. Considering this
problem, the methods of Particle Swarm Optimization (PSO) and Neural Networks are considered in
this paper. Actually, there are a few studies regarding Particle Swarm Optimization (PSO) and Neural
Networks applied to the wind turbine blades analysis. Andrew Kusiak [24] proposed that Neural
Networks improved by PSO were applied in the adaptive control of a wind turbine. Cynthia [25]
introduced PSO and Neural Networks optimization methodology to optimize the wind velocity and
attack angle of a horizontal axis wind turbine in order to obtain the maximum power coefficient. Milad
Fooladi [26] applied Neural Networks improved by PSO to assess the different factors affecting flicker
in wind turbines. So, the Neural Networks improved by PSO used to solve the problems of wind
turbine blades is effective and efficient. However, there are fewer researches about PSO-BPNN in
the wind turbine blades studies. Wang Lei [27] applied PSO-BPNN to perform a structural analysis
approximation of wind turbine blades, and the effectiveness of the approach was demonstrated.

As a result of a literature review and the concerns raised above, this paper aims at presenting a
study on new strain prediction methods by introducing intelligent algorithms. As mentioned above,
PSO-BPNN has significant advantages in dealing with non-linear fitting and multi-input parameters,
and the models constructed by PSO-BPNN have better robustness and accuracy [28]; thus, PSO-BPNN
has been introduced to predict the strain of wind turbine blades in this paper and a new strain-predictive
PSO-BPNN model for full-scale wind turbine blades static behavior to be established. The new model
can be used to predict the strain values of the unmeasured points and provide more strain data for
structural characteristic parameters calculation.

The structure of this paper is organized as follows: Section 2 introduces the conditions and
test procedures for the full-scale static testing of a wind turbine blade; the basic concepts of Neural
Networks as well as PSO-BPNN are introduced in Section 3; in Section 4, the strain-predictive method
for the central of pressure side based on PSO-BPNN is studied; Section 5 presents the conclusions of
this research.

2. Full-Scale Static Testing of a Certain Wind Turbine Blade

2.1. The Wind Turbine Blade Introduction

In this research, a blade produced with a box beam structure for the main girder was used.
The matrix material is alkali-free glass fibers impregnated with epoxy resin, and the reinforcing phase
material is impregnated glass fibre. The mass of this blade is 15,982 kg with an inherent natural
frequency of 1.41 Hz, and the main information regarding the turbine blade is listed in Table 1. In the
structure of the wind turbine blade, 0◦ fibres are applied to increase flap-wise bending stiffness, while
± 45◦ fibres are applied to increase torsional stiffness. Figure 1 illustrates the structure of the wind
turbine blade.

Table 1. The main information of the turbine blade.

Rated power 3.0 MW Maximum chord length 4.32 m
Design life 20 years Maximum twist angle 15.6◦

Blade length 66.5 m Mass 15,982 kg

Matrix material Alkali-free glass fibers
impregnated with epoxy resin Reinforcing phase material Impregnated glass fibre

Main girder stucture Box beam (2-ply beam)
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2.2. Strain Gauges Arrangement

According to Figure 2, 56 strain gauges were attached to the surface of the wind turbine blade
along the pressure side (PS), suction side (SS), and the leading edge in addition with the trailing edge,
before static testing.
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Figure 2. The strain gauges arrangement in the turbine blade.

2.3. Testing Process

In this study, two static tests are successively carried out from different directions, edgewise+ and
edgewise−, as shown in Figure 3. This paper will establish the strain prediction models to predict the
strain values of the unmeasured points on the center of the pressure side in the two static tests.
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Figure 3. Full-scale static experiments of the wind turbine blade. (a) Side pulling in the full-scale
static experiment of the wind turbine blade; (b) Lifting in the full-scale static experiment of the wind
turbine blade.

By means of 64 bolts, the root of the blade is installed on the test platform. For the static testing
of edgewise+ and edgewise−, five loading positions were chosen and the loading points arranged
according the distances of 18.00 m, 30.00 m, 42.00 m, 50.00 m, and 60.00 m measured from the root of
the blade, respectively, as shown in Figure 4. It is worth noting that a crane is used to avoid the blade
tip landing in the test of edgewise+ for large deflection. In addition, the limit load is performed by
the side pull, and the target load of each loading point is shown in Table 2. For every loading point,
the loading direction is perpendicular to the normal direction of the loading part. In Figure 4, P1–P5
are the positions of the tensile machine, P6 is the crane, and S1–S5 are the load application points.
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Table 2. The target load for the five loading positions.

Distances from the Loading Positions to the Blade Root (m)

18.0 30.0 42.0 50.0 60.0

The target load of edgewise+ (kN) 111.5 62.8 45.0 34.5 22.0
The target load of edgewise− (kN) 45.9 81.0 30.0 23.5 24.0

Before starting the test, the applied load, displacement and strain of the blade have been cleared.
Then, using the lateral loading device, the blade was loaded by 0%, 40%, 60%, 80%, and 100% of the
target load, step by step, while the displacement data and the strain gauge data were recorded during
the loading process. After the loading process was completed, the blade was unloaded to the zero
state, step by step. The load of each stage on directions of edgewise+ and edgewise− are shown in
Tables 3 and 4.

Table 3. The applied load of each stage when loaded on edgewise+.

The Load Applications (kN)

Distances from the Loading Positions to the Blade Root (m) 0 40% 60% 80% 100%

18.00 0 44.92 66.81 89.35 111.95
30.00 0 25.64 37.73 50.68 62.88
42.00 0 18.56 27.87 36.07 45.37
50.00 0 14.05 20.88 27.65 34.53
60.00 0 8.88 13.41 17.74 22.11
66.50 81.14 73.87 70.98 68.20 65.35

Table 4. The applied load of each stage when loaded on edgewise−.

The Load Applications (kN)

Distances from the Loading Position to the Blade Root (m) 0 40% 60% 80% 100%

18.00 0 19.01 27.60 36.79 46.02
30.00 0 32.69 48.94 65.22 81.65
42.00 0 12.28 18.67 24.29 30.49
50.00 0 9.64 14.18 18.97 23.59
60.00 0 9.62 14.50 19.24 23.99

3. BPNN Improved by PSO

3.1. The Brief Principles of BPNN

The feed-forward BPNN with three layers is proposed for predicting the wind turbine blade
static test strain. The first layer is the input layer describing the input data such as values in terms
of the distances of points measured from the root of the blade, the applied load of each stage in flap
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and so on. The second layer is the hidden layer comprising Neurons. The third layer is the output
layer describing the output variables such as values of the strain predictions. The data are processed
through the second and third layer with the activation function [29]. The relationship model between
input set {Xm|m = 1, 2, · · · , J } and strain Y is established using an improved neural network algorithm.
With samples X1, · · · , Xm as the input values, and Y1, · · · , YL as the output values, the strain prediction
model is trained. The network architecture of BPNN predicting the wind turbine blade static test strain
is illustrated by Figure 5.

Materials 2019, 12, x FOR PEER REVIEW 6 of 16 

 

so on. The second layer is the hidden layer comprising Neurons. The third layer is the output layer 

describing the output variables such as values of the strain predictions. The data are processed 

through the second and third layer with the activation function [29]. The relationship model between 

input set  1,2, ,mX m J and strain Y is established using an improved neural network 

algorithm. With samples  1, , mX X as the input values, and 1, , LY Y as the output values, the 

strain prediction model is trained. The network architecture of BPNN predicting the wind turbine 

blade static test strain is illustrated by Figure 5. 

 

Figure 5. The topology of BPNN. 

3.2. The BPNN Optimization Principles Based on PSO 

The traditional BPNN utilizes the gradient descent method generally, so the PSO-BPNN in our 

research is improved by Levenberg-Marquart. The convergence of BPNN is mainly dependent on the 

initial weights and thresholds and it is likely to obtain the local minimum. According to these 

characteristics of the BPNN, it is a kind of popular and effective method to overcome the defects that 

the naturally inspired algorithms have [30]. In this research, the weight and threshold values of 

BPNN, which can effectively prevent the training from falling into the local optimal situation, are 

optimized by PSO, which means errors of this neural network training are minimized. In addition, 

PSO is easy to use and perform its function because it is not necessary to set parameters for evolving 

such as crossover operator and mutational operator [31]. The improved BPNN process based on PSO 

is shown in Figure 6. Many possible initial values can be set by PSO, which updates them in a range 

of continuous iterations. The different conditional combinations can be achieved in each iteration 

until the biggest fitness function value is obtained and the output values are computed. The 

optimization process of PSO-BPNN is shown in Figure 6. 

PSO has good global search capability, accordingly updating the velocities and positions of 

particles, the global best particle is found. The weight and threshold of BPNN are optimized, then 

the BPNN is trained. After that, the optimization structure of BPNN is completed. The steps of BPNN 

improved by PSO are summarized as follows [32]: 

First of all, the size of the population is set. The frontier  max max,X X , the biggest velocity 

 max max,V V , inertia weight coefficient w, the maximum iterative number, and the acceleration 

constants 1c , 2c are set. The position Xi and velocity Vi are initialized. 

 

 

 

X1

Xm

Y1

YL

Work Signal Forward Propagation

Error Back Propagation

Input Variable
Output Variable

Input Layer Hidden Layer Output Layer

XJ

(Input 1)

(Input J)

(Input m)

(Output 1)

(Output k)

(Output L)

Yk

Figure 5. The topology of BPNN.

3.2. The BPNN Optimization Principles Based on PSO

The traditional BPNN utilizes the gradient descent method generally, so the PSO-BPNN in our
research is improved by Levenberg-Marquart. The convergence of BPNN is mainly dependent on
the initial weights and thresholds and it is likely to obtain the local minimum. According to these
characteristics of the BPNN, it is a kind of popular and effective method to overcome the defects
that the naturally inspired algorithms have [30]. In this research, the weight and threshold values
of BPNN, which can effectively prevent the training from falling into the local optimal situation, are
optimized by PSO, which means errors of this neural network training are minimized. In addition,
PSO is easy to use and perform its function because it is not necessary to set parameters for evolving
such as crossover operator and mutational operator [31]. The improved BPNN process based on PSO
is shown in Figure 6. Many possible initial values can be set by PSO, which updates them in a range of
continuous iterations. The different conditional combinations can be achieved in each iteration until
the biggest fitness function value is obtained and the output values are computed. The optimization
process of PSO-BPNN is shown in Figure 6.

PSO has good global search capability, accordingly updating the velocities and positions of
particles, the global best particle is found. The weight and threshold of BPNN are optimized, then the
BPNN is trained. After that, the optimization structure of BPNN is completed. The steps of BPNN
improved by PSO are summarized as follows [32]:

First of all, the size of the population is set. The frontier [−Xmax, Xmax], the biggest velocity
[−Vmax, Vmax], inertia weight coefficient w, the maximum iterative number, and the acceleration
constants c1, c2 are set. The position Xi and velocity Vi are initialized.

Second, the fitness values of each particle are calculated. According the fitness function, all the
fitness values are obtained. The higher the fitness values are, the better the performance in particles is.
Meanwhile, the individual best positions Pbest and the global optimum positions of particles Gbest are
updated and recorded.
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Third, the velocity and position of every particle updated can be obtained using Equations (1)
and (2) [33]:

Vk+1
i j = wVk

i j + c1r1
(
Pk

i j −Xk
i j

)
+ c2r2

(
Gk

j −Xk
i j

)
(1)

Xk+1
i j = Xk

i j + Vk+1
i j , 1 ≤ i ≤ n, 1 ≤ j ≤ d (2)

where k represents discrete time index, w represents inertia weight factor, c1 and c2 represent
acceleration constants, and r1 and r2 are uniformly distributed random numbers on the interval [0, 1].
Pk

i j is dimension j of the best point vector found by the i-th particle in the k-th iteration, and Gk
j is

dimension j of the global best point in the k-th iteration. Xk
i j represents dimension j of the position

vector found by the ith particle in the k-th iteration, and Vk+1
i j is dimension j of the velocity vector

found by the i-th particle in the (k + 1)-th iteration.
Generally, if the velocities of the flying swarms are not restricted appropriately during the PSO

calculation, the swarms may fly into the local optimization, which means the flying particles cannot
reach the global optimum. For the purpose of the particles based on the restricted velocity to obtain the
optimal solution, Vmax as the velocity threshold is introduced, and the limited conditions are imposed
as follows:

If Vi j
(k+1) > Vmax, then Vi j

(k+1) = Vmax;

If Vi j
(k+1) < −Vmax, then Vi j

(k+1) = −Vmax; else Vi j
(k+1)unchanged.

If Xi j
(k+1) > Xmax, then Xi j

(k+1) = Xmax; If Xi j
(k+1) < Xmin, then Xi j

(k+1) = Xmin.

Fourth, if the algorithm reaches the maximum iteration or the precision of error is smaller than
the setting value, the point of the current optimization swarm is outputted. Otherwise, this process
should return to the third step and continue to train the PSO model.
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Fifth, Gbest outputted depending on the fourth step are as the initial inputted values of the weight
and threshold of BPNN. In the PSO-BPNN algorithm, every dimension of the vector xi = (xi1, xi2, · · · , xis)

represents the weight or threshold values of BPNN; s is the amount of weights and thresholds in BPNN.
The fitness functions of particle swarms are as Formulae (3) and (4) [32]:

Li =
s∑

j=1

(yi j −Yi j)
2 (3)

LpopIndex =
1
m

m∑
i=1

Li (4)

where m is the number of particles describing population size, Yi j is the ideal outputted value j of the
i-th particle, Yi j is the actual outputted value j of the i-th particle; popIndex = 1, 2, · · · , m. LpopIndex is the
fitness of particle popIndex.

Sixth, the established training set is applied to the optimized BPNN algorithm. The transfer
function is the tangent S-type transfer function between the input layer and the hidden layer too, and the
transfer function is also set as a linear transfer function between the hidden layer and the output layer.

4. Strain Prediction Model Based on PSO-BPNN for the Wind Turbine Blade Static Behaviour

4.1. Strain Prediction Modeling for the Central of Pressure Side on Edgewise+

When the wind turbine blade bears unilateral tension, the relationship among the strain and
the applied loads, loading positions and displacements is nonlinear. The PSO-BPNN methods have
outstanding advantages to characterize the nonlinear relationship, thus the strain values of the
unmeasured points of the wind turbine blade can be predicted by the PSO-BPNN models. In the
PSO-BPNN models for strain predicting, the values of the applied loads, the loading positions and the
displacements are used as training inputs, and the strain values are outputted. The 51 sets of strain
testing data of the center of the pressure side when loaded on edgewise+ were taken as training samples
and five sets of strain testing data were used as test samples, thus a strain predictive PSO-BPNN model
for the central of PS was established. The training samples and test samples of the PSO-BPNN model
are shown in Tables 5 and 6, respectively.

Table 5. The training samples used by BPNN and PSO-BPNN model.

Items Locations of Strain Gauges
Load Applications (kN)

F1 F2 F3 F4 F5 F6

1 2000 44.9 25.6 18.6 14.1 8.9 73.9
2 6000 66.8 37.7 27.9 20.9 13.4 71
3 12,000 89.4 50.7 36.1 27.7 17.7 68.2
. . . . . . . . . . . . . . . . . . . . . . . .
50 45,000 112 62.9 45.4 34.5 22.1 65.4
51 33,000 44.9 25.6 18.6 14.1 8.9 73.9

Items
Displacements of the Loading Positions (mm) Strain (µε)

s1 s2 s3 s4 s5 s6 f

1 88 245 504 742 1093 1284 −55.2
2 135 379 736 1083 1594 1874 −85.4
3 188 507 973 1430 2104 2472 −140.1
. . . . . . . . . . . . . . . . . . . . . . . .
50 240 635 1220 1794 2633 3091 −231.7
51 88 245 504 742 1093 1284 −140.2

The PSO-BPNN model is operated with the following settings: the maximum number of PSO
iterations is 120; both the acceleration constants c1 and c2 are set to 2; the maximum particle velocity is
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0.8 × Xmax and the minimum particle velocity is 0.6 × Xmin; the inertia weight is 0.2. The inputting
dimensions are set to 13, and the outputting dimension is set to 1. There are 17 neuron nodes in the
hidden layer of the network. The maximum number of network training epochs allowed is 5000;
the speed of network learning is 0.1; the minimum convergence error of the training target is set
to 0.001. Then, the learning procedure depending on the project samples was calculated. In order
to verify the validity and superiority of the PSO-BPNN model, the BPNN algorithm is used solely
for the strain predictions to compare with the PSO-BPNN model. The parameters settings of the
BPNN algorithm running are shown as follows: The number of inputting dimensions is set to 13 in
addition with the number of outputting dimension setting to 1; there are 17 neuron nodes set into the
hidden layer, too; the maximum number of network training epochs allowed is set to 5000; the speed
of network learning is set to 0.1; the minimum convergence error of the training target is set to 0.001;
and the frequency of displaying results is set to every 50 steps. Then, the learning procedure of the
project samples was operated. The results of comparisons calculated are illustrated in Figures 7 and 8.

Table 6. The test samples used by BPNN and PSO-BPNN model.

Items Locations of Strain Gauges
Load Applications (kN)

F1 F2 F3 F4 F5 F6

1 36,000 89.4 50.7 36.1 27.7 17.7 68.2
2 9000 66.8 37.7 27.9 20.9 13.4 71
3 2100 89.4 50.7 36.1 27.7 17.7 68.2
4 12,000 66.8 37.7 27.9 20.9 13.4 71
5 15,000 44.9 25.6 18.6 14.1 8.9 73.9

Items
Displacements of Loading Positions (mm) Strain (µε)

s1 s2 s3 s4 s5 s6 f

1 88 245 504 742 1093 1284 −71.1
2 135 379 736 1083 1594 1874 −91.5
3 188 507 973 1430 2104 2472 −271.2
4 135 379 736 1083 1594 1874 −106.9
5 88 245 504 742 1093 1284 −105.5
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the training set by PSO-BPNN; (c) errors comparison of test set by BPNN and PSO-BPNN.

Figure 7a,b plots the linear regression of BPNN and PSO-BPNN respectively. The regression
coefficient of PSO-BPNN, measuring the correlation between outputs and targets, is closer to 1 than
that of BPNN, which means the PSO-BPNN training has better performance than the BPNN training.
Figure 7c,d shows the training state of BPNN and PSO-BPNN, respectively; the PSO-BPNN ran 49
epochs whereas BPNN ran 5000 epochs to the ideal values, so the network trained by PSO-BPNN has
higher efficiency than BPNN. In Figure 7e, the fitness values of PSO are shown. When the number of
iteration times reaches the early 30s, the fitness values achieve the ideal results in the PSO process.

Figure 8a,b presents the comparison of fitting effects based on the training samples analyzed
by BPNN and PSO-BPNN, respectively. They show that the fitting effects of PSO-BPNN are better
compared to BPNN. Besides, in order to verify the fitting and predictive abilities of the PSO-BPNN and
BPNN algorithms, the result of errors comparison with the true values is shown after the test samples
are trained by the two different algorithms in Figure 8c. In Figure 8c, we can see that the PSO-BPNN
model has much higher accuracy according to the test results, and its rates of relative errors outputted
according to the test sample training are below 6%, while the relative error rates of BPNN models are
below 18%, so PSO-BPNN shows a better performance of predictive ability than BPNN.

4.2. Strain Prediction Modeling for the Central of Pressure Side on Edgewise−

The methodology is the same as that used in Section 4.1. A strain-predictive PSO-BPNN model for
the center of the pressure side loaded on the direction of edgewise− is established. The training samples
and test samples of the strain-predictive PSO-BPNN model are shown in Tables 7 and 8, respectively.

Table 7. The training samples trained by BPNN and PSO-BPNN model.

Items Locations of Strain Gauges
Load Applications (kN)

F1 F2 F3 F4 F5

1 6000 19 32.7 12.3 9.6 9.6
2 12,000 27.6 48.9 18.7 14.2 14.5
3 21,000 36.8 65.2 24.3 19 19.2
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
51 51,000 46 81.7 30.5 23.6 24

Items
Displacements of the Loading Positions (mm) Strain (µε)

s1 s2 s3 s4 s5 s6 f

1 66 198 419 616 912 1079 11.3
2 103 307 629 924 1368 1618 40.9
3 141 417 838 1230 1822 2152 140.8
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
51 181 528 1054 1544 2286 2697 76.9
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Table 8. The test samples trained by BPNN and PSO-BPNN model.

Items Locations of Strain Gauges
Load Applications (kN)

F1 F2 F3 F4 F5

1 33,000 19 32.7 12.3 9.6 9.6
2 36,000 27.6 48.9 18.7 14.2 14.5
3 27,000 27.6 48.9 18.7 14.2 14.5
4 39,000 36.8 65.2 24.3 19 19.2
5 45,000 36.8 65.2 24.3 19 19.2

Items
Displacements of the Loading Positions (mm) Strain (µε)

s1 s2 s3 s4 s5 s6 f

1 66 198 419 616 912 1079 34.6
2 103 307 629 924 1368 1618 52.9
3 103 307 629 924 1368 1618 70.5
4 141 417 838 1230 1822 2152 70.2
5 141 417 838 1230 1822 2152 54.9

Figure 9a,b shows the linear regressions of BPNN and PSO-BPNN respectively; the regression
R-value of the PSO-BPNN model training is 0.99971, which is also closer to 1. It means that the training
results of PSO-BPNN show closer correlation with targets than that of BPNN, so the performance of
PSO-BPNN training is better than that of BPNN algorithm. Figure 9c,d shows the training state of
BPNN and PSO-BPNN, respectively. Figure 9e presents the fitness value graph of PSO. The fitness
value levels off between the 165th and the 175th iteration time.

Materials 2019, 12, x FOR PEER REVIEW 11 of 16 

 

Items Locations of Strain Gauges 
Load Applications（kN） 

F1 F2 F3 F4 F5 

1 6000 19 32.7 12.3 9.6 9.6 

2 12,000 27.6 48.9 18.7 14.2 14.5 

3 21,000 36.8 65.2 24.3 19 19.2 

… … … … … … … 

… … … … … … … 

51 51,000 46 81.7 30.5 23.6 24 

Items 
Displacements of the Loading Positions (mm) Strain (με) 

s1 s2 s3 s 4 s5 s6 f 

1 66 198 419 616 912 1079 11.3 

2 103 307 629 924 1368 1618 40.9 

3 141 417 838 1230 1822 2152 140.8 

… … … … … … … … 

… … … … … … … … 

51 181 528 1054 1544 2286 2697 76.9 

Table 8. The test samples trained by BPNN and PSO-BPNN model. 

Items Locations of Strain Gauges 
 Load Applications (kN)  

F1 F2 F3 F4 F5 

1 33,000 19 32.7 12.3 9.6 9.6 

2 36,000 27.6 48.9 18.7 14.2 14.5 

3 27,000 27.6 48.9 18.7 14.2 14.5 

4 39,000 36.8 65.2 24.3 19 19.2 

5 45,000 36.8 65.2 24.3 19 19.2 

Items 
Displacements of the Loading Positions (mm) Strain (με) 

s1 s2 s3 s4 s5 s6 f 

1 66 198 419 616 912 1079 34.6 

2 103 307 629 924 1368 1618 52.9 

3 103 307 629 924 1368 1618 70.5 

4 141 417 838 1230 1822 2152 70.2 

5 141 417 838 1230 1822 2152 54.9 

Figure 9a,b shows the linear regressions of BPNN and PSO-BPNN respectively; the regression 

R-value of the PSO-BPNN model training is 0.99971, which is also closer to 1. It means that the 

training results of PSO-BPNN show closer correlation with targets than that of BPNN, so the 

performance of PSO-BPNN training is better than that of BPNN algorithm. Figure 9c,d shows the 

training state of BPNN and PSO-BPNN, respectively. Figure 9e presents the fitness value graph of 

PSO. The fitness value levels off between the 165th and the 175th iteration time. 

  
(a) (b) 

Materials 2019, 12, x FOR PEER REVIEW 12 of 16 

 

   
(c) (d) (e) 

Figure 9. (a) Plotting linear regression of BPNN; (b) plotting linear regression of PSO-BPNN; (c) 

training state of BPNN; (d) training state of PSO-BPNN; (e) the Fitness value graph of PSO iteration. 

According to Figure 10a,b, the fitting figure of the set trained by PSO-BPNN is more precise than 

that set trained by BPNN. In addition, the test samples are utilized to prove the recognition ability of 

the trained PSO-BPNN, and the comparison results are shown in Figure 10c. In Figure 10c, we can 

find that test results of the PSO-BPNN model are much more accurate, the average error rate of PSO-

BPNN is less than that of BPNN, and all of the error rates regarding test samples output are below 

5.8%, while the relative error rates analyzed by BPNN are all within 6%. 

   
(a) (b) (c) 

Figure 10. (a) Fitting results comparison of the training set by BPNN; (b) fitting results comparison of 

the training set by PSO-BPNN; (c) test set errors comparison of BPNN and PSO-BPNN. 

4.3. Predicted Results and Verification 

In order to demonstrate the effectiveness and feasibility of the proposed PSO-BPNN strain-

predictive method, the prediction results based on BPNN methods are used to compare with the FE 

simulation results. For unmeasured points on the center of the pressure side, 17 points located at 

11.00 m, 14.00 m, 16.00 m, 19.00 m, 20.00 m, 20.64 m, 23.00 m, 25.00 m, 33.00 m, 35.00 m, 38.00 m, 41.00 

m, 42.00 m, 43.00 m, 46.00 m, 49.00 m, and 52.00 m are chosen to predict their strain value by PSO-

BPNN and BPNN methods. 

When loaded on edgewise+, the prediction strain values of the 17 unmeasured points are shown 

in Figure 11. From Figure 11, we can see that the strain value decreases a lot at the early stage, stays 

flat for a period of time, and then increases. This result is in accordance with the structural 

characteristics of blades, owning to a reinforced structure set near the maximum chord length. 

Besides, the predicted results of all BPNN models are very close to the simulation results, and that 

means BPNN strain-predictive methods have a high accuracy to predict the strain. Compared with 

the traditional BPNN method, the PSO-BPNN method has the smallest error, thus the strain-

predictive model based on PSO-BPNN is scientific and reasonable. 

g
ra

d
ie

n
t

10
-5

10
0

10
5

Gradient = 0.0028996, at epoch 174

m
u

10
-6

10
-4

10
-2

Mu = 1 10-6 , at epoch 174×

174 Epochs

0 50 100 150

va
l 
fa

il

-1

0

1
Validation Checks = 0, at epoch 174

Figure 9. (a) Plotting linear regression of BPNN; (b) plotting linear regression of PSO-BPNN; (c) training
state of BPNN; (d) training state of PSO-BPNN; (e) the Fitness value graph of PSO iteration.

According to Figure 10a,b, the fitting figure of the set trained by PSO-BPNN is more precise than
that set trained by BPNN. In addition, the test samples are utilized to prove the recognition ability of
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the trained PSO-BPNN, and the comparison results are shown in Figure 10c. In Figure 10c, we can find
that test results of the PSO-BPNN model are much more accurate, the average error rate of PSO-BPNN
is less than that of BPNN, and all of the error rates regarding test samples output are below 5.8%, while
the relative error rates analyzed by BPNN are all within 6%.
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Figure 10. (a) Fitting results comparison of the training set by BPNN; (b) fitting results comparison of
the training set by PSO-BPNN; (c) test set errors comparison of BPNN and PSO-BPNN.

4.3. Predicted Results and Verification

In order to demonstrate the effectiveness and feasibility of the proposed PSO-BPNN
strain-predictive method, the prediction results based on BPNN methods are used to compare
with the FE simulation results. For unmeasured points on the center of the pressure side, 17 points
located at 11.00 m, 14.00 m, 16.00 m, 19.00 m, 20.00 m, 20.64 m, 23.00 m, 25.00 m, 33.00 m, 35.00 m,
38.00 m, 41.00 m, 42.00 m, 43.00 m, 46.00 m, 49.00 m, and 52.00 m are chosen to predict their strain
value by PSO-BPNN and BPNN methods.

When loaded on edgewise+, the prediction strain values of the 17 unmeasured points are shown
in Figure 11. From Figure 11, we can see that the strain value decreases a lot at the early stage,
stays flat for a period of time, and then increases. This result is in accordance with the structural
characteristics of blades, owning to a reinforced structure set near the maximum chord length. Besides,
the predicted results of all BPNN models are very close to the simulation results, and that means BPNN
strain-predictive methods have a high accuracy to predict the strain. Compared with the traditional
BPNN method, the PSO-BPNN method has the smallest error, thus the strain-predictive model based
on PSO-BPNN is scientific and reasonable.Materials 2019, 12, x FOR PEER REVIEW 13 of 16 

 

 

Figure 11. Comparisons of BPNN methods with the FEA. 

When loaded on edgewise−, the strain values of the above 17 unpredicted points are shown in 

Figure 12. The conclusion is the same as the analysis results: When loaded on the direction of 

edgewise+, all strain-predictive BPNN models have high accuracies, and the PSO-BPNN has the 

smallest error.  

 

Figure 12. Comparisons of BPNN methods with the FEA. 

According to the prediction result of comparisons among BPNN models and the FE simulation 

results, all BPNN models can predict the strain effectively, while the PSO-BPNN method has higher 

accuracies compared with traditional BPNN method, and it is more suitable to predict the strain of 

unmeasured points in the full-scale static testing of wind turbine blades. 

5. Conclusions 

In the full-scale static testing of wind turbine blades, the correlation among the strain and 

applied loads, loading positions, displacements, etc., is nonlinear, and the number of design variables 

is numerous, thus the calculation and prediction of the blade strain are very complicated and difficult 

by traditional numerical methods. Considering these reasons, a strain-predictive PSO-BPNN method 

is proposed: 

(1) Taking the advantages of the BPNN methods in dealing with the nonlinear relationship, a strain-

predictive PSO-BPNN model for the full-scale static testing of wind turbine blades was 

established; 

(2) The accuracy of the strain-predictive PSO-BPNN model was verified by comparisons with the 

traditional BPNN models as well as the ANSYS simulation test. When loaded on the direction 

of edgewise+, the relative error rate of the strain-predictive PSO-BPNN model is within 6%. 

Similarly, when loaded on the direction of edgewise−, the relative error rate is also within 6%, 

which satisfies the blade certification requirements. 

(3) The applicability and usability of the strain-predictive BPNN models were verified by 

comparing with the AYSYS simulation test for 17 unmeasured points. From the comparison 

results, we can see that all BPNN models have high accuracies to predict strains, and the PSO-

Figure 11. Comparisons of BPNN methods with the FEA.

When loaded on edgewise−, the strain values of the above 17 unpredicted points are shown
in Figure 12. The conclusion is the same as the analysis results: When loaded on the direction of
edgewise+, all strain-predictive BPNN models have high accuracies, and the PSO-BPNN has the
smallest error.
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According to the prediction result of comparisons among BPNN models and the FE simulation
results, all BPNN models can predict the strain effectively, while the PSO-BPNN method has higher
accuracies compared with traditional BPNN method, and it is more suitable to predict the strain of
unmeasured points in the full-scale static testing of wind turbine blades.

5. Conclusions

In the full-scale static testing of wind turbine blades, the correlation among the strain and applied
loads, loading positions, displacements, etc., is nonlinear, and the number of design variables is
numerous, thus the calculation and prediction of the blade strain are very complicated and difficult by
traditional numerical methods. Considering these reasons, a strain-predictive PSO-BPNN method
is proposed:

(1) Taking the advantages of the BPNN methods in dealing with the nonlinear relationship,
a strain-predictive PSO-BPNN model for the full-scale static testing of wind turbine blades
was established;

(2) The accuracy of the strain-predictive PSO-BPNN model was verified by comparisons with the
traditional BPNN models as well as the ANSYS simulation test. When loaded on the direction
of edgewise+, the relative error rate of the strain-predictive PSO-BPNN model is within 6%.
Similarly, when loaded on the direction of edgewise−, the relative error rate is also within 6%,
which satisfies the blade certification requirements.

(3) The applicability and usability of the strain-predictive BPNN models were verified by comparing
with the AYSYS simulation test for 17 unmeasured points. From the comparison results, we can
see that all BPNN models have high accuracies to predict strains, and the PSO-BPNN method has
the smallest error. Thus, the PSO-BPNN method is much more suitable to predict the strain of
unmeasured points in the full-scale static testing of wind turbine blades.

A strain-predictive PSO-BPNN model for full-scale static testing of the wind turbine blade was
established in this paper and more strain values can be predicted for unmeasured points in the full-scale
static testing of wind turbine blades. This study can provide more data to verify the rationality of
blade design and correct the blade defects; the outputs can also be used for life prediction for wind
blades, which will be considered as the next work. Moreover, the number of test samples is chosen
on the basis of the static test, while the relation between sample number and accuracy will also be
considered and studied in the future.
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