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Abstract: The paper presents the identification of the destruction process in a quasi-brittle composite
based on acoustic emission and the sound spectrum. The tests were conducted on a quasi-brittle
composite. The sample was made from ordinary concrete with dispersed polypropylene fibers.
The possibility of identifying the destruction process based on the acoustic emission and sound
spectrum was confirmed and the ability to identify the destruction process was demonstrated. It was
noted that in order to recognize the failure mechanisms accurately, it is necessary to first identify
them separately. Three- and two-dimensional spectra were used to identify the destruction process.
The three-dimensional spectrum provides additional information, enabling a better recognition of
changes in the structure of the samples on the basis of the analysis of sound intensity, amplitudes,
and frequencies. The paper shows the possibility of constructing quasi-brittle composites to limit the
risk of catastrophic destruction processes and the possibility of identifying those processes with the
use of acoustic emission at different stages of destruction.

Keywords: acoustic emission AE; acoustic spectrum; quasi brittle cement composites;
destruction process

1. Introduction

The application of acoustic emission (AE) measurements in determining the cracks, maximum
load, and failure of reinforcement in cement composites has been widely presented in the literature.

The continuous AE evaluation in composites was earlier reported [1–3] and this technique has
been applied to determine crack propagation in the fracture process in cement composites with and
without reinforcement [4,5]. The acoustic emission (AE) events sum was also recorded for easier
recognition of the first crack and crack propagation process [6–8].

It was also noticed that at the preliminary stage of degradation, the damage of the concrete
elements was possible to detect with the application of the AE method [9,10]. The effectiveness of
acoustic emission (AE) measurements in determining the critical stress of cement composites was
tested [11], which enables the accurate definition of the elastic range corresponding to Hook’s law.
Previously conducted tests have shown that AE is a good method for crack formation monitoring in
mechanically loaded specimens [12–18] and has been successfully used to monitor structures [19,20].
Most of the papers have used AE to identify the destruction process of materials in structures [21–28]
including crack orientation [29–31]. The AE method is still used and improved for the purpose of the
identification of failure processes [32–34].

Previous works, however, have not focused on the correlation between AE and the individual
failure processes of each of the different composite components based on the sound spectrum. These
papers [10,11] showed that for the accurate recognition of composite failure processes, the AE (and the
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AE events sum) recording should be expanded to include the analysis of each sound separately and
the analysis of the range of sounds corresponding to a given mechanical effect with the use of acoustic
spectrum. The acoustic spectrum should be correlated with the load-deflection curve and with other
acoustic effects, which enables the identification of the failure process (of the structure or the applied
reinforcement) [10,11,18]. The quasi-brittle ESD cement composites (ESD—elastic range, strengthening,
deflection control) are characterized by a higher load and absorbed energy in the elastic range when
compared to the sample without reinforcement (E/E0) (Figure 2). Additionally, those composites are
distinguished by a highly deflected structure damaged with macrocracks, multicracking effects, and the
ability to carry additional stress in the strengthening area. Moreover, in the deflection control area, the
samples’ ability to carry stress is higher than in the elastic range area. This paper focuses on determining
the relation between the acoustic and mechanical ESD effects, in other words, reinforcement breaking,
pull-out, macrocracks, and microcracking with the use of space spectrum. In [11], it was noted that in
order to assess the destruction process, the analysis of a single signal and the AE events sum with
the acoustic spectrum was required (each kind of the mechanical effect results in a different acoustic
spectrum). In order to conduct a more in-depth analysis of the composite destruction process, what
should be taken into account when interpreting the acoustic spectrum is not only the range of signals
corresponding to a given mechanical effect (in a wide range of frequencies corresponding to the sound
intensity), but also a single signal in a very small range of frequencies.

It was confirmed that there is a possibility of correlation between AE and the failure process in
ESD composites. That correlation enables a determination of the stage of damage in cement composites
increasing the safety in the use of the composite and the decision of whether or not the damaged
composite can be repaired.

2. Materials and Methods

The materials for the concrete (matrix—sample without reinforcement) consisted of: Portland
cement CEM I 42.5R—368.7 kg/m3, silica fume 73.75 kg/m3, fly ash 73.75 kg/m3, sand and coarse
aggregates 0/16 mm–1640 kg/m3, superplasticizer (SP), tap water 188.6 kg/m3, w/c = 0.51.

The ESD concrete was reinforced with polypropylene fibers (curved/wave), minimum tensile
strength 490 MPa, E = 3.5 GPa, equivalent diameter d = 0.8–1.2 mm, l = 54 mm. The reinforcement was
randomly dispersed Vf = 1.5%.

Concrete was mixed in the concrete mixer and then used to mold samples. Beams (600 mm ×
150 mm × 150 mm) were cast in slabs and then cured in water at 20 ± 2 ◦C. After 180 days of ageing,
beams were prepared for the bending test (Figure 1). The samples were not notched.
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Figure 1. Four-point bending test.

Acoustic emission effects were recorded in order to monitor the progress of the fracture process
in correlation with the load-deflection curve. The crosshead displacement was continuous and the
rate was 1 mm/min. A seismic head HY919 (Spy Electronics Ltd.) was used to record the acoustic
emission effects in the range from 0.2–20 kHz. The head was placed on the side in the central part of
the loaded beams (Figure 1). The acoustic emission effects were presented as a 2D and 3D acoustic
spectrum (amplitude of the frequency depending on sound intensity). The mechanical effects of the
ESD composites were correlated with the recorded acoustic spectrum effects. The 2D sound spectrum
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was achieved with the use of the Audacity program (free digital audio editor) and the 3D spectrum
using SpectraPLUS-SC (Pioneer Hill Software LLC, USA).

Figure 2 presents the mechanical effects of the ESD (Eng. elastic range, strengthening, deflection
control) cement composites with the corresponding acoustic effects and compiled acoustic spectra with
various amplitudes corresponding to different mechanical effects (reinforcement breaking, pull-out,
macrocracks, and microcracking).

The ESD reinforcement effect is presented by characteristic points fx(Fx-load, εx-deflection,
Wx-work) and areas AX under the load-deflection curve.
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Figure 2. ESD composite: (a) load-deflection curve, (b) AE—acoustic emission effects, (c) 2D acoustic
spectrum (frequency amplitude depending on sound intensity) [11].

3. Results

Figure 3 presents the testing area for the four-point bending test with the AE acoustic emission
measurements. Subsequent pictures show the characteristic stages of the ESD concrete failure process.
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Figure 3b indicates a crack occurring at the fcr point, Figure 3c shows the multicracking (micro- and
macrocracks), Figure 3d shows the progressing crack propagation, and Figure 3e shows the sample
after the completed test.

The load-deflection curve of the ESD composite and matrix (concrete without the dispersed
reinforcement) is presented in Figure 4a. Above the curves, there are the results of the AE measurement
with characteristic failure process events.

The ESD effects in the quasi-brittle composite were described with the use of the formula defining
any points on the load-deflection curve fx (load; deflection; absorbed energy). This formula enables the
description and assessment of the ESD effects in the elastic range, strengthening, deflection control,
and propagation areas. The matrix is characterized by fmax (Table 1).
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Figure 3. Four-point bending test: (a) sample before the test, (b) first crack at fcr point, (c) multicracking
(micro- and macrocracks), (d) destruction - propagation process, (e) view after the test.

Table 1. Mechanical properties of the matrix (concrete without reinforcement) and ESD composite.

Composite Load
F [N]

Deflection
ε [mm]

Work
W [kJ] Ratio Load Deflection Work

matrix fmax 32.9 1.42 23.0 - - - -

ESD
fcr 38.9 1.87 36.3 AE/Ematrix 1.2 1.3 1.6
ftb 49.7 3.46 106.7 AS/E 0.3 0.9 1.9
fd 38.9 4.06 133.3 AD/E - 0.4 0.7



Materials 2019, 12, 2266 5 of 11

For the ESD composite, the following results were achieved: fcr, fmax, fd, (Table 1, Figure 4).
Comparing the elastic range area of the ESD composite and the matrix, an x-time improvement was
achieved for load, deflection, and absorbed energy AE/AEmatrix. AS/E and AD/E are the comparison of
the strengthening AS and deflection control AD areas to the elastic range AE. The amount of absorbed
energy in the strengthening area was considerably larger than in the deflection control area. The
failure process propagation range following the deflection control area was not important in the ESD
composites and was omitted.
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Figure 4. Matrix and ESD composite: (a) load-deflection curve, (b) 2D spectra of the matrix and ESD
composite, (c) 2D spectrum of the ESD composite.
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Two-dimensional (2D) spectra of the matrix and ESD composite in the frequency range of 0–22 kHz
are presented in Figure 4. Figure 4b shows the matrix spectrum for a crack fcr = fmax, additional spectra
of the ESD sample for the first crack, fcr, and subsequent cracks, fx1, fx2, and fmax. Figure 4c presents
the ESD concrete spectra compared to the spectra of background noise, multicracking, and the fiber
failure process. Three-dimensional (3D) spectra of the ESD composite are presented in Figures 5 and 6.
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The spectrum frequency range was limited to 200–6000 Hz as the greatest changes were observed
within this frequency range in the sound spectra connected with the failure process. Figure 5a shows
the background noise spectrum for the ESD composite recorded during the test, Figure 5b presents the
first crack, fcr, and Figure 5c shows the multicracking. Figure 6a displays the macrocrack spectrum,
Figure 6b shows the reinforcement destruction, and Figure 6c presents the fiber pull-out effect.
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4. Discussion

The existing provisions in the ASTM 1018 standard concerning the identification of characteristic
points LOP, MOR, and ASTM indices I5, I10, I15 [35–37] have been extended by adding the possibility of
describing any area or point fx (load, deflection, energy). The introduced fcr, fmax, and fd points enable
a precise description of the elastic range, strengthening, deflection control, and propagation areas as
well as their comparison with one another with respect to the same sample or different samples.

The obtained results indicate that the ESD composite achieved the best effects in the strengthening
area As. The improvement of properties in the elastic range AE was not good enough, which resulted
from a low elasticity module of the fibers, causing a more significant deflection in this area. The
deflection control range in the AD area could be improved by increasing the fiber-matrix bond of the
dispersed reinforcement. That effect may be achieved by increasing the strength of the composite or
modifying the surface and geometry of the fibers.

2D and 3D spectra in the lowest frequency range did not record well (due to the head’s measurement
range from 0.2 to 20 kHz) and were not taken into account in the interpretation of the results (2D spectrum
0–0.2 kHz). The 3D spectrum frequency range was limited to 200–6000 Hz. Within that frequency
range, the greatest changes were observed in the sound spectra connected with the failure process.

Concrete without reinforcement (matrix) is characterized by a catastrophic destruction process.
The appearing crack causes a destruction—breaking in halves—of the sample. The sound spectrum
(within the range from −20 to −40 dB) corresponding to that process was positioned the highest when
compared to other spectra characterizing various destruction processes, as shown in Figure 4a and is
characterized by a small range of amplitudes. The background noise spectrum of the matrix has not
been presented here, but was similar to the background noise spectrum of the ESD composite.

The ESD composite in the elastic range showed 2D and 3D spectra of background noise located low
and within the range of the lowest amplitudes, as seen in Figures 4c and 5a. The sound corresponding
to fcr was characterized by significant sound intensity, and the corresponding spectrum was located
high, immediately below curve fcr for the matrix, and the range of amplitudes was much larger
(Figures 4a and 5b).

Subsequent cracks, fx1 and fx2, were situated at the level of background noise spectrum, but with
the greatest amplitude range (Figure 4b).

The sound intensity of the multicracking was similar to background noise spectrum, but with
a slightly greater range of amplitudes and significant amplitudes in a narrow frequency range
(Figures 4c and 5c).

Macrocracks showed the highest sound intensity. What is worth noting is the fact that the
corresponding spectra were not characterized by the greatest amplitude range. The spectra were
located the highest (Figure 4b).

The fiber pull-out process was characterized by a small range of amplitudes with a wide range of
wavelengths (Figure 6c).

The sound spectrum corresponding to fiber failure was positioned low. The lower position of that
spectrum when compared to that of the background noise may result from the manner of determining
that spectrum. The background noise spectrum was determined with respect to a long period of time
before the first crack and refers to a number of background noises in that period, whereas the fiber
failure spectrum refers to a single signal. The sound spectrum for fiber failure was characterized by
great amplitudes with a strong spike at 12–15 kHz. The average sound intensities of the fiber failure
and the background noise were on a comparable level. The analysis of the background noise spectrum
for a single sound in a short period of time resulted in a slight decrease in the sound intensity, but the
amplitudes did not change significantly.

Frequency spike 12–15 kHz is an interesting, recurring correlation that may be used in the future
for the identification of the failure process (Figure 4b,c). It is worth noting that that spike did not occur
in the case of a catastrophic fracture fcr (in a sample without reinforcement) in a short period of time.
Frequency spike 12–15 kHz occurs in the case of defects generating acoustic effects that last for a longer
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period of time such as fiber failure, fiber pull out, and micro- and macrocracks that are blocked (stop
propagating) or propagate slowly.

The conducted tests confirmed the possibility of identifying the failure process in traditional
and ESD cement composites. The analysis of data showed that the 3D spectrum provided better
general information for the identification of the failure process at each stage of the process, whereas
the 2D spectrum enabled a more precise characterization of each of the sound spectra (sound intensity,
amplitudes, frequency range) and their correlation with each of the failure processes. The simultaneous
occurrence of failure processes makes their identification difficult. In order to differentiate them
accurately, it is necessary to separately identify the sounds that do not overlap.

Summarizing the conducted tests, it can be stated that the analysis of 2D and 3D spectra is a good
method of controlling the failure processes in the ESD cement composites. It increases the safety in the
use of construction elements and enables correct decision-making in whether and how they should
be repaired.

5. Conclusions

The research has allowed for the following conclusions to be formulated conclusions:

(1) The 3D sound spectrum is a good tool for the observation and identification of failure processes
in cement composites.

(2) It has been noticed that the 2D spectrum enables a more precise identification and description
of the sound spectra (sound intensity, amplitudes, frequency range) corresponding to different
failure processes.

(3) It has been suggested that for the analysis and identification of failure processes, both the 2D and
3D spectra should be used at the same time in a wide frequency range.

(4) The development of ESD cement composites and the identification of failure processes with the
use of AE and 2D and 3D spectra enables the control of failure processes (particularly useful in
seismic areas or during natural disasters) or decisions of whether and how damaged cement
composites should be repaired.
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