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Abstract: First principles calculations were carried out to study the equilibrium properties of metals,
including the electrons at bonding critical point; ebcp; cohesive energy; Ecoh; bulk modulus; B; and,
atomic volume; V. 44 pure metals, including the s valence (alkali), p valence (groups III to V), and
d valence (transition) metals were selected. In the present work, the electronic structure parameter
ebcp has been considered to be a bridge connecting with the equilibrium properties of metals, and
relationships between ebcp and equilibrium properties (V; Ecoh; and B) are established. It is easy
to estimate the equilibrium properties (Ecoh; V, and B) of pure metals through proposed formulas.
The relationships that were derived in the present work might provide a method to study the intrinsic
mechanisms of the equilibrium properties of alloys and to develop new alloys.
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1. Introduction

The design of materials with desirable properties associating with computational simulations has
currently become a normal approach. It is well known that the physical properties are controlled by
the bonding between atoms, which is strictly determined by the electronic structure of the materials.
Although the mechanical properties of materials, such as the elastic modulus, strength, toughness, and
ductility are macro-properties, they are all related to the breaking and reforming of interatomic bonds,
and therefore determined by the characteristics of electronic structures [1–4]. The understanding of
electronic factors that affect the mechanical properties can boost these search processes. So far, efforts
have been made to build a relationship between these atomistic-scale parameters and the macroscopic
mechanical behaviors, such as between bulk modulus of metals and their lattice volume [5]. It is
very convenient to evaluate the bulk modulus of materials by fitting the energy-strain or stress-strain
curve that was obtained via first principles calculations [6,7]. Metal crystals are combined by the
attractions of Coulomb forces between the metal cations and electrons. The attractions have no
directions, the closer between the metal cations, the stronger of the attractions are. The energy of
crystals will be gradually increased with the compression of crystal cell (such as under the hydrostatic
pressures). In general, the electrons in metal crystals move freely, and the repulsive force between
them can resist the compression of crystals due to the affection of Pauli’s exclusion principle. Therefore,
the distributions of electrons in metal are correlated with the bulk modulus of metals.

Many methods were proposed to analyze the distributions of electrons in materials, such as
Mulliken population analysis [8], Natural Population Analysis (NPA) [9], and Topology analysis,
the Atoms In Molecules theory (AIM), as proposed by Bader et al. [10–13]. The Mulliken population
analysis is a familiar method for analyzing the electrons with an atom, which simply separate the
electrons in crystal and help us to estimate the bonding properties of atom in molecule. However, it is
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arbitrary and strongly dependent on the employed particular basis set. The NPA of electron density is
based on the orthonormal natural atomic orbitals [9]. It improves the numerical stability and overcomes
the basis set dependence problem of Mulliken population analysis, which is better than the Mulliken
method in describing the electron distribution in metals. In AIM [10–13], molecules are divided into
atoms by the gradient of electron density. The gradient of electron density has no flux in the surfaces of
atoms. The critical points can be found by calculating the Laplacian value of electron density. The AIM
theory has been successfully applied to describe the bonding properties between the atoms in molecule.
The critical points are classified by the eigenvalues of the Hessian matrix at the point. The bonding
critical point (bcp) is a first-order saddle point in the electron density distribution. The Hessian matrix
at a bonding critical point has two negative and one positive eigenvalues, which can be denoted as
(3, −1). The bonding strength between atoms can be explained by the charge distributions.

There are some works that have been concentrated in building the relationship between the charge
distributions and the bulk properties of materials. Segall et al. established the correlations of overlap
population with covalence of bonding and bond strength, and of the effective valence charge with
ionicity of bonding by means of Mulliken analysis [14], and found that the bulk modulus increases with
the overlap populations [14]. Al-Douri et al. built an empirical model between the bulk modulus and
the charge density in semiconductors, where the bulk modulus relates with the area of the cation side
of the total valence pseudo-charge density [15]. Miedema et al. introduced an empirical relationship
between the bulk modulus (B) of several pure metals and electronic density nWS at the boundary of the
Wigner–Seitz cell: nWS = 0.82 × (B/Vm)1/2, where Vm is atomic volume [16]. Cheng et al. calculated
the values of nWS of fcc and bcc metals firstly by first principles calculations [17]. They modified the
empirical relationship of Miedema et al. to B = (1.487 × 108) Vmn2

WS. Although their calculated values
of nWS are consistent well with the values of Miedema et al., it is very hard to evaluate the nWS values
for complex metals or alloys. Li et al. [18,19] derived a simple empirical model for estimating the bulk
modulus of binary intermetallic compounds and alloys from the Miedema’s model. They found that
the bulk moduli of binary systems can be predicted (with an average error limit of 11%). However,
the average numbers of electrons at the boundary of the Wigner–Seitz cell hardly show the detailed
bonding information between atoms, and the simple average of electrons might lose some important
information, especially for the crystals with different elements.

Besides applying the first principles calculations, Wills et al. predicted the total energy of transition
metal as a function of volume and ionic configuration by extending the nearly-free-electron theory to
include the effects of transition-metal d bands, which provides a qualitative prediction of the elastic
and bonding properties of transition metals. They found that the total energy can be used to describe
the cohesive and elastic properties of metals. However, their methods included many approximations,
such as Thomas–Fermi approximation, and only empty-core pseudo-potentials are considered in
treating the conduction electrons [20]. Makino et al. found that the bulk modulus of an elemental
substance can be empirically related with the effective pseudopotential radius. Although he attempted
to consider the effects of sd and sp hybridizations in his work, the empirical parameters are, however,
different with the different types of metals. There was not a general and effective way to build clear
empirical relationship based on this work [21]. Raju et al. [22] studied the pressure derivative of bulk
modulus calculated for the entire block of d-transition metals while using a modified form of the recipe
that was proposed by Wills and Harrison [20] to represent the effective interatomic interaction. A global
correlation between the pressure derivative of bulk modulus and the bonding or the interstitial electron
density was proposed [22]. Goble et al. [23] established empirical equations between the mineral
hardness, bulk modulus, the volumetric cohesive energy (Ecoh/V), and the hardness. Singh et al. [24]
calculated the elastic constants of nine transition metals and four rare-earths and actinides while using
the ion–ion interaction. They found that the contributions of volume to bulk modulus varied between
17.1% and 62.4%, which are quite significant and important in quantitatively describing the Cauchy
ratio for the considered metals.
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So far, the bonding characteristics are generally based on “atomistic level” but not “electronic
level”, since the energy, forces, and stress parameters are usually described based on chemical element
types and positions of each atom involved in deformation. The lack of fundamental understanding on
their electronic features increases the complexity for search in the large composition parameters to
design the advanced alloys with improved mechanical properties, especially for multicomponent alloy
systems, such as high entropy alloys and many commercial alloys [25,26].

Although many works have been concentrated on studying the bulk modulus of materials, other
equilibrium properties (such as volume, cohesive energy, and structural parameters) have been rarely
referred. Furthermore, it is important to build the relationships between the electronic structures and
the macro properties of materials. Therefore, in this work, the electronic structures and the correlations
with equilibrium properties of metals are studied in detail.

2. Methodology

First-principles total energy calculations were performed for 44 pure metals with bcc, fcc, and hcp
structures within the framework of Kohn−Sham density functional theory (DFT) [27–30] while using
the projector augmented wave (PAW) approach [31,32] for the description of ion-electron interaction,
as implemented in the Vienna ab initio simulation package (VASP). Electron exchange–correlation
was treated within the generalized gradient approximation (GGA) using the PW91 functional [33]
according to the reports of Shang et al [5]. A cutoff energy of 450 eV and a Gaussian smearing
method with an energy broadening of 0.15 eV were used throughout. Self-consistent field convergence
was considered for a total energy difference of less than 10−5 eV between iterations. The conjugate
gradient algorithm was used to relax ions and the ionic relaxation was stopped when the forces
acting on ions dropped below 0.01 eV/Å. The k-points are carefully checked in the optimization of
the lattice structure of pure metals. The optimized structures are well consistent with theoretical
calculations [5]. The electronic structures of the optimized structures were recalculated by the full
potential linearized augmented plane-wave code WIEN2K [34] under the framework of generalized
gradient approximation (PBE-GGA) using the Perdew-Burke-Ernzerhof exchange-correlation potential
in order to obtain the values of electrons at the bcp. The self-consistency procedure was performed
with 2000 k points in the irreducible part of the Brillouin zone. The criterion for energy convergence is
set to be 0.0001 Ry.

3. Results and Discussions

The phase stability of crystals is evaluated by the cohesive energy defined by:

Ecoh =
N·Ea − EM

N
(1)

where N is the number of atoms in the unit cell. EM and Ea denote the energies of crystal and atom,
respectively. The energy of metal atom is evaluated by putting it in a 1 × 1 × 1 nm3 cell and the
calculated total energy of the cell is regarded as the energy of a metal atom. Table 1 shows the evaluated
cohesive energies and the experimental values [35] of studied metals. Furthermore, the atomic volume
of metal is chosen to examine the accuracy of the calculations by comparing them with experimental
measurements, as shown in Figure 1a. A strictly linear relationship, with a slope closing to unity
(1.02), between the theoretical and experimental values is illustrated in this figure. Although most
of the calculated values are much closed to the experimental values, there are some discrepancies
between theoretical and experimental values. Therefore, both the experimental and theoretical values
of volumes, cohesive energies and bulk modulus (from Ref. [5]) were used in this work to improve the
precision of our empirical formula.
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Figure 1. The relationships between calculated values and experimental values of (a) atomic volume of
metal and (b) cohesive energy Ecoh.
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Table 1. Values of valence electrons Z, Ecoh, V, ebcp, and B of pure metals in ground state.

Metals Z
Ecoh (eV/atom) V (Å3/atom) ebcp (e/Å3) B (GPa)

Present Exp ** Present Shang * Exp ** Present Shang * Exp **

Lib 3 1.59 1.63 20.4 20.3 21.3 0.053 13.9 11.6
Nab 9 1.05 1.113 36.9 37.1 37.7 0.030 7.9 6.8
Kb 9 0.795 0.934 73.5 73.7 71.3 0.016 3.5 3.2
Rbb 9 0.682 0.852 91.2 90.8 87.1 0.012 2.7 3.1
Beh 2 3.69 3.32 7.9 7.9 8.01 0.280 121.1 100.3
Mgh 10 1.47 1.51 22.9 22.9 23.2 0.105 35.7 35.4
Caf 10 1.86 1.84 42.6 41.8 43.4 0.052 17.4 15.2
Srf 10 1.55 1.72 53.9 53.9 56.2 0.043 11.8 11.6
Bab 10 1.79 1.90 62.3 62.5 63.2 0.038 9.0 10.3
Sch 11 4.26 3.90 24.0 24.5 25.0 0.128 54.9 43.5
Tih 12 5.56 4.85 17.1 17.3 17.6 0.230 112.8 105.1
Vb 13 5.30 5.31 13.2 13.5 13.9 0.290 182.9 161.9
Crb 14 4.03 4.10 11.4 11.6 11.9 0.378 257.7 190.1
Mnc 13 3.91 2.92 10.7 – 10.9 0.291 120.0 120.0
Feb 14 4.49 4.28 10.5 11.4 11.8 0.336 189.3 168.3
Coh 15 4.92 4.39 10.3 10.9 11.1 0.334 212.5 191.4
Nif 16 4.77 4.44 10.7 10.9 10.9 0.321 195.6 186.0
Cuf 17 3.47 3.49 12.0 12.0 11.8 0.258 137.5 137.0
Znh 12 1.12 1.35 15.1 15.4 15.1 0.161 51.8 59.8
Yh 11 4.24 4.37 32.6 32.7 33.1 0.091 40.8 36.6
Zrh 12 6.39 6.25 23.3 23.4 23.3 0.197 95.3 83.3
Nbb 13 6.86 7.57 18.3 18.3 18.0 0.287 172.3 170.2
Mob 14 6.33 6.82 15.7 16.0 15.6 0.373 260.4 272.5
Tch 15 6.97 6.85 14.5 14.6 14.3 0.364 296.1 297.0
Ruh 16 7.06 6.74 13.9 13.9 13.6 0.367 309.4 320.8
Rhf 15 5.96 5.75 14.2 14.2 13.7 0.349 253.4 270.4
Pdf 16 3.72 3.89 15.4 15.5 14.7 0.281 163.7 180.8
Agf 17 2.52 2.95 17.9 18.0 17.1 0.207 91.3 100.7
Cdh 18 0.764 1.16 22.4 23.0 21.6 0.113 35.8 46.7
Hfh 26 6.56 6.44 22.2 22.4 22.3 0.227 109.1 109.0
Tab 27 8.28 8.10 18.1 18.3 18.0 0.312 195.3 200.0
Wb 26 8.41 8.90 16.0 16.2 15.8 0.411 302.2 323.2
Reh 27 7.82 8.03 15.0 15.0 14.7 0.414 366.8 372.0
Osh 28 8.45 8.17 14.4 14.4 14.0 0.430 395.5 418.0
Irf 29 7.55 6.94 14.6 14.6 14.2 0.424 342.8 355.0
Ptf 30 5.48 5.84 15.8 15.8 15.1 0.355 243.4 278.3
Auf 17 3.03 3.81 18.2 18.2 17.0 0.264 137.6 173.2
Alf 9 3.43 3.39 16.6 16.6 16.6 0.202 74.3 72.2
Gac 13 2.68 2.81 20.4 – 19.6 0.226 50.3 56.9
Inc 13 2.36 2.52 27.6 – 26.1 0.113 37.4 41.1
Tlh 13 2.08 1.88 30.9 31.3 28.6 0.093 27.2 35.9
Snc 14 3.16 3.14 36.7 – 34.2 0.334 111.0 111.0
Pbf 14 2.93 2.03 31.7 31.9 30.3 0.111 40.6 43.0
Bic 15 2.58 2.18 36.8 – 35.0 0.116 34.0 31.5

* Ref. [5]; ** Ref. [35]; The superscripts, b, f, h, and c stand for the bcc, fcc, hcp, and cubic structures, respectively.

Besides the above calculations, we also evaluate the numbers of electrons at the bcp, ebcp, of studied
metals, which are also listed in Table 1. As mentioned above in AIM theory the ebcp correlates with
the bond interaction between atoms in molecule. In general, the ebcp of alkali metals are very small,
while the values are much larger in transition metals, which might be related with the difference
structures of valence electrons in them. The relationships between the ebcp and micro-properties, such
as the cohesive energy, atomic volume of metal, and bulk modulus were further analyzed.

Shang et al. have calculated the equations of state (EOS) of pure elements, and they found that the
PAW-GGA could correctly describe the volume and elastic stiffness constants of most pure elements.
However, there are large differences (>3%) for the rare earth elements (Ce, Ac, and Eu), and heavy
transition metals (Ag, Au, Pb, Pd, and Pt) [5]. It is worth noting that the van der Waals corrections
should be considered for these systems in order to obtain accurate calculation results [36].
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The ebcp is slightly affected by the calculation details, such as the smearing method, k-mesh,
and exchange–correlation functionals. The calculated ebcp of vanadium using PBE-GGA, LSDA,
WC-GGA (Wu-Cohen 2006), and PBEsol-GGA (Perdew et al. 2008) are 0.2900, 0.2913, 0.2911, and
0.2914, respectively.

Figure 2 shows the relationship between ebcp and bulk modulus. The black and purple dots are the
calculated and experimental values, respectively. By fitting bulk modulus against ebcp with a parabolic
function, a relationship between them was obtained, as in Equation (2), with a coefficient, k1, around
2000 (GPa). The fitting curves overlap very well.

B = k1e2
bcp (2)

It is worth noting that the experimental bulk modulus is temperature dependent. Theoretically,
one of methods to account the temperature effect to improve the calculation accuracy is to consider the
zero-point energy and thermal phonon energy. Janthon et al. reported that the temperature effects on
the lattice parameter, cohesive energy, and bulk modulus of transition metals are about 0.003−0.022 Å,
0.01−0.06 eV, and 1−17 GPa [37], respectively. We also estimate the difference between the calculated
and experimental values of atomic volume and cohesive energy, as shown in Figures 1 and 2. We used
the experimental values of the equilibrium parameters in order to obtain more accurate correlations
between ebcp and equilibrium properties. However, the resulted fitting parameters are close using
calculated and experimental data, as shown in Figure 2. To explore the possible relationship between
ebcp and equilibrium properties of metals, we have calculated the electronic parameters and equilibrium
properties of 24 binary compounds as shown in Figure S1 and Table S1. There is linear relationship
between their bulk modulus and ebcp.
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Figure 2. The relationship between ebcp and the bulk modulus of metals in ground state.

To further clarify the influence of crystal structure, common crystal structures (hcp, bcc, and fcc,)
are employed to check and extend the empirical relationship between ebcp and bulk modulus of metals
and listed in Table 2. It should point out that, for specific metal, the crystal structure of its ground
state is affirmatory; the other two structures are hypothetical at the same equilibrium conditions.
As experimental bulk modulus is measured in the ground state of metals, here we used the theoretical
values of bulk modulus from Ref. [5]. Figure 3 shows ebcp and bulk modulus of metals in hcp, bcc, and
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fcc structures. The black, blue, and red dots denote the bulk moduli for the hcp, bcc, and fcc structures,
respectively. Generally, the parabolic relationships between ebcp and bulk modulus of metals present in
Figure 3. Although the fitting for bcc structure (purple line) is somehow a bit separation than other two
structures, the relationship between the numbers of electrons at the bcp and bulk modulus of metals
approximately obey the expression of Equation (2) with a mean squared error around 0.92, as shown in
Figure 3, building a connection between the macro bulk modulus and micro electron numbers.

Table 2. Calculated ebcp and theoretical bulk modulus of pure metals with hcp, bcc, and fcc structures.

Metal.
ebcp (e/Å3) B * (GPa)

hcp bcc fcc hcp bcc fcc

Li 0.0539 0.0535 0.0534 13.5 13.9 13.5
Na 0.0304 0.0306 0.0301 7.6 7.9 7.5
K 0.0163 0.0165 0.0163 3.5 3.5 3.5
Rb 0.0138 0.0122 0.0136 2.7 2.7 2.7
Be 0.2809 0.2558 0.2714 121.1 122.9 118.5
Mg 0.1059 0.0892 0.0979 35.7 34.9 34.7
Ca 0.0518 0.0520 0.0523 17.7 16.0 17.4
Sr 0.0435 0.0424 0.0431 11.4 12.2 11.8
Ba 0.0401 0.0388 0.0390 8.4 9.0 8.3
Sc 0.1282 0.1244 0.1232 54.9 53.2 51.8
Ti 0.2300 0.1874 0.2037 112.8 107.3 109.0
V 0.3232 0.2900 0.2755 173.2 182.9 176.0
Cr 0.3782 0.3788 0.3337 233.5 257.7 236.7
Mn 0.2998 0.2998 0.2998 279.7 241.8 278.9
Fe 0.3810 0.3362 0.4084 288.3 189.3 194.6
Co 0.3343 0.3770 0.3641 212.5 203.6 210.2
Ni 0.3194 0.3399 0.3214 193.8 189.1 195.6
Cu 0.2580 0.1939 0.2584 136.1 134.6 137.5
Zn 0.1616 0.1456 0.2004 51.8 63.3 68.4
Y 0.0915 0.0981 0.0876 40.8 39.3 39.7
Zr 0.1972 0.1546 0.1781 95.3 89.7 92.9
Nb 0.2992 0.2871 0.2529 162.8 172.3 165.7
Mo 0.3713 0.3738 0.3342 233.8 260.4 239.4
Tc 0.3648 0.4048 0.3740 296.1 290.6 294.7
Ru 0.3670 0.4015 0.3809 309.4 279.1 304.2
Rh 0.3431 0.3581 0.3493 251.1 225.9 253.4
Pd 0.2912 0.3016 0.2813 163.6 163.5 163.7
Ag 0.2067 0.1289 0.2078 91.1 88.9 91.3
Cd 0.1139 0.0920 0.1395 35.8 35.8 42.6
Hf 0.2274 0.1709 0.1974 109.1 101.8 103.6
Ta 0.3216 0.3122 0.2815 188.0 195.3 191.2
W 0.4057 0.4118 0.3641 274.3 302.2 281.9
Re 0.4146 0.4619 0.4205 366.8 357.2 365.2
Os 0.4305 0.4717 0.4435 395.5 353.0 388.8
Ir 0.4193 0.4351 0.4247 339.0 298.6 342.8
Pt 0.3832 0.3583 0.3550 235.2 233.8 243.4
Au 0.2691 0.1508 0.2646 135.0 134.9 137.6
Al 0.2014 0.1518 0.2024 70.8 65.2 74.3
Ga 0.1773 0.1070 0.1664 45.9 47.4 48.0
In 0.1231 0.0745 0.1206 34.4 34.7 36.2
Tl 0.0931 0.0603 0.1057 27.2 27.9 28.4
Sn 0.1448 0.1590 0.1355 47.6 47.5 47.2
Pb 0.1173 0.0682 0.1118 40.2 39.8 40.6
Bi 0.1286 0.0730 0.1269 52.0 52.6 51.9

* Ref. [5].
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Atomic volume is a characteristic parameter of materials. It has been illustrated that there is a
strong correlation between the bulk modulus and atomic volume of pure metals [5]. Here, we further
explore the relationship between ebcp and atomic volume of metals. Figure 4 presents the relationship
of the experimental values of atomic volume against ebcp. It could be fitted via an equation of

V = k2e−1/2
bcp (3)

where the coefficient k2 equals to 9.01 Å3. It is noted that point of metal Sn does not quite match
Equation (3). It may be mainly because metal Sn has a diamond cubic crystal structure with
relatively larger atomic volume. This phenomenon also appears in following volume related fittings
(Figures 5 and 6).
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Figure 6. The relationship between the B·Ecoh/V and ebcp.

The bulk modulus is the second derivative of cohesive energy to volume. Therefore, many
correlations exist among the cohesive energy, Ecoh, volume, V, and bulk modulus, B. However,
the relationship between Ecoh and B of metals has not been studied directly. The volumetric cohesive
energy Ecoh/V denotes the average cohesive energy of crystal, which has correlations with the bulk
modulus and hardness [23]. It is interesting to explore the relationship between Ecoh/V and ebcp for
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metals due to the ebcp shows strong correlation with bulk modulus (Equation (2)). Figure 5 clearly
shows a monotonic characteristic between ebcp and Ecoh/V, which delivers a linear relationship of

Ecoh/V = k3(ebcp − 0.03) (4)

where k3 = 1.27 eV/Å3.
As both Ecoh/V and B have correlated with ebcp (Figures 2 and 5), the relationship between the ebcp

and the products of Ecoh/V and B might be expected. Figure 6 shows the relationship between B·Ecoh/V
and ebcp. The value of B·Ecoh/V fitted well with the value of ebcp, the relationship between them is very
clear, which can be described by:

BEcoh
V

= k4e3
bcp (5)

with k4 = 2540 (GPa*eV/Å3).
From above analysis, ebcp communicates the relationships of the equilibrium properties, such as

bulk modulus (B), atomic volume (V), and Ecoh/V. Furthermore, if one of above parameters is known,
others can be estimated through the bridge of ebcp, as shown in Table 3. The equations that are shown
in Table 3 are derived from Equations (2) to (5). It is very convenient to estimate the equilibrium
properties of simple metals. Due to the relationships between the volume and the structural parameters
are definitely for the simple metals, the structural parameters can be derived from atomic volume.
Furthermore, the atomic volume of metal strongly correlates with other parameters, such as ebcp,
Ecoh/V, and B. Therefore, the structural parameters of simple metals correlate with the four equilibrium
parameters ebcp, Ecoh, V, and B.

Table 3. Empirical relationships between ebcp (e/Å3), atomic volume of metal, V (Å3), bulk modulus, B
(GPa), and volumetric cohesive energy, Ecoh/V (eV/Å3).

ebcp V B Ecoh/V

ebcp – (k2/V)2 B0.5/k1 Ecoh/(Vk3) + 0.03
V k2e−0.5

bcp – k2k0.25
1 B−0.25 k2(

Ecoh
k3V + 0.03)

−0.5

B k1e2
bcp k1k4

2V−4 – k1(
Ecoh
k3V + 0.03)

2

Ecoh/V k3(ebcp − 0.03) k3(k2
2V−2

− 0.03) k3(k−0.5
1 B0.5

− 0.03) –

k1 = 2005 GPa obtained by fitting experimental bulk modulus; k2 = 9.01 Å3; k3 = 1.27 eV/Å3.

Some studies have built relationships between the electronic parameters and equilibrium
parameters of metals. Shang et al. fitted a relationship between the bulk modulus and atomic
volume B = 20,422V−1.868 [5]. Miedema et al. introduced an empirical relationship of nWS = 0.82 ×
(B/V)1/2 [16]. Cheng et al. reported a similar relationship [17]. Dolocan et al. derived a correlation
of B = −∆Ecoh/V, in which the Au, Cd, Ir, Pb, Pd, Pt, Re, Ru, and Zn have ∆ > 4 and the Ce, Cs, Gd,
K, Li, Rb, and Zr have ∆ < 2 [38]. Tal proposed a direct relation between the charge density of a free
atom, ρ, and the cohesive energy of the corresponding metal, Ecoh ~ ρ5/3, the bulk moduli of metals
are also proportional to ρ5/3, however they do not work well for small values of cohesive energy and
bulk modulus [39]. Our derived bulk modulus B is proportional to V−4, (Ecoh/V)2, and ebcp

2. They are
similar with reported relationships, except the larger weight of volume in our derived relationships.

4. Conclusions

First principles calculations have been taken to study the equilibrium properties of pure metals in
this work. The equilibrium properties of metals, such as V and Ecoh, have been estimated based on first
principles total energy calculation and an electronic structure parameter, the number of electrons at the
bonding critical point, ebcp, was evaluated under AIM theory. In the present work, this parameter acts
as the bridge communicating with the equilibrium properties of metals. The relationships between
ebcp and equilibrium properties have been obtained through the fitting equilibrium properties against
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ebcp. Strong correlations have been achieved in these fittings. The bulk modulus obeys a parabolic
relationship with ebcp, Ecoh/V linearly follows the variation of ebcp, and V varies via ebcp in the manner of
∝ e−0.5

bcp . This work builds a connection between the macro properties of metals and their micro bonding
characteristics and provides a new way to estimate the bulk modulus (B) and volumetric cohesive
energy (Ecoh/V) of pure metals.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/18/2932/s1,
Figure S1: The relationship between bulk modulus and ebcp of binary compounds. Table S1: Values of Ecoh, V, ebcp,
and B of alloys in ground state.
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