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Abstract: Inkjet printing is an emerging technology with key advantages that make it suitable for the
fabrication of stretchable circuits. Specifically, this process is cost-effective and less complex compared
to conventional fabrication technologies. Inkjet printing has several process and geometry parameters
that significantly affect the electromechanical properties of the printed circuits. This study aims to
optimize the geometry parameters of inkjet-printed silver nanoparticle traces on plasma-treated
polydimethylsiloxane (PDMS) substrates. The optimization process was conducted for two printed
shapes, namely straight line and horseshoe patterns. The examined input factors for the straight
line traces were: the number of inkjet-printed layers and line width. On the other hand, the number
of cycles and amplitude were the examined input parameters for the horseshoe shape. First, the
optimal number of layers and line width were found from the straight line analysis and subsequently
were used in the optimization of the horseshoe pattern parameters. The optimization of the input
parameters was carried out using the response surface methodology (RSM), where the objective of the
optimization was to maximize the breakdown strain of the traces while maximizing the gauge factor
and minimizing the ink cost. The results indicate that a 1.78 mm line width and one layer are the
optimal geometry parameters for the straight line traces, while for the horseshoe pattern, the optimal
parameters are one layer, a line width of 1.78 mm, amplitude of 4 mm and one cycle. The optimal
straight line was designed to sustain up to 10% strain while the horseshoe pattern was designed to
sustain up to 15% strain.

Keywords: inkjet printing; silver nanoparticles; PDMS; stretchable circuits; response surface
methodology; optimization

1. Introduction

In the last decade, printed electronics (PE) have been extensively employed in many areas
such as biomedical and automotive systems, robotics, and military and healthcare sectors [1-3].
Several technologies that can be used for the fabrication of PE can be found in the literature. These
include screen printing [4-7], photolithography [8,9] and inkjet printing [10-13]. Compared to screen
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printing, photolithography and other fabrication technologies, inkjet printing is considered a low-cost,
contactless, fabrication technique that requires less complex fabrication steps. Hence, inkjet printing
has been utilized extensively in the fabrication of PE. In addition, inkjet printing technology has the
capability of depositing a wide range of conductive inks on PE substrates, where most of these inks
contain suspended nanoparticles such as silver, carbon, gold and copper [1,14,15]. Various materials
have been used as the base substrate of PE such as silicon wafers [16,17], polyimide [18-20], and
polydimethylsiloxane (PDMS) [4,8,17,21-25], where the base material plays a vital role in determining
the PE mechanical characteristics [10]. For instance, the use of PDMS as a base material grants PE
with the stretchability characteristics required to provide skin-like and light-weight characteristics that
enable their use in many novel applications [26].

Stretchable circuits are one of the emerging examples of PE. They are being utilized in
vast applications, especially in the biomedical field, due to their desirable characteristics. The
electromechanical properties of stretchable circuits, namely the breakdown strain and strain gauge, are
vital. In the literature, numerous research studies have investigated the optimization of these properties
extensively [7,23,27-30]. For instance, inkjet printing technology has several process parameters that
significantly affect the electrical characteristics of the printed traces, such as nozzle/cartridge and
sintering temperatures, drop spacing, printing thickness, and sintering duration [31]. Kim et al. [31]
presented thorough experimental characterization of the electrical properties as well as the uniformity
of inkjet-printed silver lines. Inkjet nozzle temperature, platen temperature, drop spacing, number of
printed layers, and sintering temperature, as well as duration, were the major printing parameters that
were investigated. The effects of these factors were solely investigated, as the study did not result in
any optimal parameters to be recommended.

In addition, the effect of these parameters is limited to the electrical characteristics of the printed
traces, while the geometry of the printed patterns, which has several variables of interest, significantly
controls the electromechanical properties of the stretchable circuits [23,27]. Abu-Khalaf et al. [27]
experimentally characterized inkjet-printed serpent shapes, namely horseshoe and sinusoidal shapes
in terms of the geometry effect on the breakdown strain. They variated the number of cycles, the
amplitude and the line width of the sinusoidal shapes. On the other hand, only the angle was variated
in the case of the horseshoe pattern. Although, the study reported some experimentally-estimated
optimal values, they were not based on optimization techniques, and hence the actual optimal values
may lay in between the examined values.

With the increase in energy need worldwide [32], industries are continuously researching
enhancements to their energy utilization and processes execution [33,34]. Other studies have
investigated various operating parameters for optimal operation [35], either for high scale power
demand [36] or a lower scale [37]; however, inkjet optimization studies presented in the literature [38—41]
were mainly concerned with optimal process parameters, such as sintering parameters and nozzle
settings. For instance, Mypati et al. [38] studied the effect of sintering parameters and the number of
layers on the electrical resistivity of inkjet-printed silver nanoparticle films. They found the optimal
parameters using central composite design of experiment (DOE) by minimizing the electrical resistance.
Sipild et al. [39] investigated the optimal printing and sintering parameters of inkjet printing of both
silver and copper nanoparticle inks. Moreover, Fauzia et al. [40] investigated optimal inkjet printing
parameters, such as waveform settings, pulse voltages, and drop spacing in order to obtain droplets of
adequate quality for organic solar cells.

In this study, the focus is shifted towards evaluating the optimal geometry parameters of
inkjet-printed silver nanoparticle (NP) traces on polydimethylsiloxane (PDMS) substrates. Moreover,
response surface methodology (RSM) based on DOE is performed while taking into consideration two
factors: line width (W) and the number of layers (NL) of straight lines. The optimization process is
based on maximizing the breakdown strain while minimizing ink cost and maximizing the gauge
factor. Subsequently, the optimal parameters from the straight line analysis (line width and number of
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layers) are used in the optimization of the horseshoe geometry parameters, namely the number of
cycles (NC) and the amplitude (A).

2. Materials and Methods

2.1. Substrate Preparation

PDMS (Sylgard184, The Dow Chemical Company, Midland, MI, USA), is a clear silicone elastomer
that is prepared by mixing two parts: a curing agent and an elastomer base (1:10 volumetric ratio).
The mixture has a viscosity of 3500 cP and a thermal conductivity of 0.27 W/m k, according to
the technical data sheet [27]. PDMS is physically and chemically stable, highly stretchable, and
biocompatible. It requires a relatively low curing temperature, and its elasticity changes slightly with
temperature and time. In addition, it is optically transparent, non-toxic, non-flammable, and chemically
inert [22,23,42-44]. Because of the aforementioned advantages, PDMS is commonly used as a substrate
for inkjet-printed traces. To prepare PDMS substrates, the liquid mixture needs to be degassed in a
vacuum chamber for 30 min. This insures that any air bubbles formed during mixing are removed.
Next, the liquid PDMS is poured into acrylic molds (100 mm x 40 mm) and cured at 70 °C for 2 h. Once
the substrates are cured they can be peeled off from the molds and are ready to be used [24,31,45].

2.2. PDMS Surface Treatment

The hydrophobic nature of PDMS inhibits ink pattern formation [25], therefore chemical or
physical methods are used to enhance the wettability of PDMS. This step is crucial; as the wettability
of the substrate affects the size and stability of the printed traces [14]. O,-plasma surface treatment has
been widely used to render PDMS hydrophilicity [25]. In this study, plasma etcher (ZEPTO Diener,
Germany) was used to improve the hydrophilicity of PDMS substrates to obtain successful patterning
of conductive traces [22,24]. Oxygen was selected as the reactive gas and the process conditions were
optimized at full power (50 W) for 20 min.

2.3. Silver NP Patterning on O,-Plasma Treated PDMS

In this study, silver nanoparticle ink (Silverjet DGP-40LT-15C, Sigma-Aldrich, Inc., St. Louis, MO,
USA), with a particle size of 180 nm on average, suspended in a solvent (30-35 weight % dispersion
in diethyleneglycol monomethyl ether) was used [46]. This ink was selected to design conductive
traces on plasma-treated PDMS substrates due to its high electrical conductivity and low curing
temperature [31,47].

A Fujifilm Dimatix Material Printer DMP-2831 (Fujifilm Dimatix Material Printer DMP-2831,
FUJIFILM Dimatix, Inc., Santa Clara, CA, USA) was utilized to perform all the experiments. This
printer uses disposable piezoelectric drop-on-demand print cartridges. Each cartridge has 16 nozzles
that are linearly spaced at 254 um and a capacity of 1.5 mL to minimize waste of costly inks. In addition,
it can be easily replaced to enable printing of a series of inks. Pattern creation and jetting resolution are
PC-controlled with nominal drop volumes of 1 or 10 pL.

The characteristics of the inkjet-printed conductive traces are affected by various significant
printing parameters (e.g., drop spacing, number of printed layers, platen and nozzle temperature).
Mainly, these parameters directly affect the conductance, resistance, durability, and dimensions of
the printed traces [14,31]. The inkjet printing process parameters were set based on optimal values
recommended in [27,31], as shown in Table 1. After the printing concluded, the resulting patterns
were cured in a conventional oven (VACUCELL, MMM Medcenter Einrichtungen GmbH, Munich,
Germany) for ink sintering purposes. The sintering process is crucial to remove the remaining liquid
solvent, which could result in fusing the silver nanoparticles [14,47].
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Table 1. Printing process parameters.

Printing Parameters Values
Droplet Speed (m/s) 8
Firing Voltage (V) 23
Nozzle/Cartridge Temperature (°C) 32
Platen Temperature for Single Layer Patterns (°C) 24 (Room Temperature)

Platen Temperature for Multiple layers Patterns (°C) 60
Sintering Temperature (°C) 110
Sintering Time (mins) 60
Jetting Resolution (pL) 10

2.4. Development of Experimental Framework

2.4.1. Background

An experimental design begins by identifying the parameters that influence the outcome of the
experiment, this is known as screening. The screening starts by including all controllable factors that
may affect the experiment’s results, then excluding the least significant ones. Next, the optimal values
for those parameters are evaluated by a process known as optimization. Depending on the desired
objectives of the experiment and the number of factors that can be examined, the experimental design
is selected [48].

For instance, a Plackett-Burman design is useful if the information provided about the examined
system is insufficient or the screening is conducted for a large number of factors. However, if the
significant factors are known and one is trying to understand the interactions between them, then a full
factorial design is preferred. This design takes into consideration all the possible combinations of all
the levels of the factors of interest and it also results in detailed interaction information. In particular,
response surface methodology (RSM), which is a multi-full factorial experimental design, utilizes
the response to find mathematical equations that describe the relationship between the independent
factors and the response [49,50].

2.4.2. Response Surface Methodology

In this study, response surface methodology (RSM) was used to study the interactions between
significant geometrical factors and the electromechanical properties of inkjet-printed stretchable circuits
represented by their breakdown strain and gauge factor. The breakdown strain is defined as the
maximum strain at which the stretchable circuit loses its electrical conductivity [23]. While the gauge
factor (GF) is defined as the relative change in the relative resistance of the printed line to the mechanical
strain as shown in Equation (1). The gauge factor represents the sensitivity of the printed circuits
where these circuits can be employed as strain gauge sensors. Generally, a conventional strain gauge
sensor (with a metal-foil substrate) has a gauge factor between 2 and 5, whereas the gauge factor of a
polymer-based strain gauge sensor could reach up to 100 [30].

(Ry=Ry)
Ry

GF =
S

)
where R; is the resistance of the printed line after applying the strain (Ohm), R; the initial resistance
(Ohm), and S the amount of applied mechanical strain (%).

In this study, RSM DOE was performed while taking into consideration two factors: line width
and number of layers for the straight line that maximize the breakdown strain and the gauge factor,
while minimizing the ink cost, which is calculated from Equation (2). The optimal parameters from the
straight line analysis (line width and number of layers) were used in the optimization of the horseshoe
pattern parameters: the number of cycles and the amplitude. We chose to neglect the effect of nozzle
and platen temperatures and set them to the constant values in Table 1. This is based on the observation
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that silver NP ink is stable, and therefore there is no need to vary the nozzle temperature. Furthermore,
heating the substrate at temperatures other than optimal would result in films that either dry too fast,
as the solvent dries too quickly, leaving behind gaps, or too slow, where the material is given time to
crystallize out of the solvent without forming a uniform film. In the case of printing multiple layers,
the temperature of the platen was set at 60 °C in order to allow the sintering of the layers one by one
without affecting the line width [31,51] and as recommended by [38]. Moreover, in order to control the
line width and based on [27], the drop spacing was set to be constant at 30 microns.

Cpr = Csi X Vi X pp ()

where Cpr is the cost of printed traces (Euro), Cs ink cost (Euro/g), Vi volume of deposited ink (L) and
p is the silver nanoparticle ink density (g/L). Csr equals 19.72 Euro, while p; equals 1.45 g/L [46]. V;
was estimated as follows;

V) = Npp X Jg x 10712 ®)

where Npp is the number of black pixels in an image of the pattern as the nozzles fire once at each black
pixel, while Jg is the jetting resolution (pL). Note that the number of black pixels was found using a
MATLAB code.

2.4.3. Pattern Design: Straight Line and Horseshoe

The optimal geometry parameters of straight line and horseshoe patterns were found using
RSM DOE, where the optimal parameters from the straight line were used as fixed inputs into the
optimization process of the horseshoe patterns. For straight line traces, the number of layers and the
line width were the parameters to be optimized. While for the horseshoe pattern, the parameters were
the number of cycles and amplitude as shown in Figure 1. The selection of the trial parameters was
based on the preliminary experimental results in [27]. Table 2 illustrates the geometry parameters of
the horseshoe and the straight line patterns used in the RSM DOE. It should be noted that, due to the
dimensions of the PDMS substrate, the number of cycles was limited to four. Moreover, each pattern
was printed at least twice in order to confirm the repeatability of the results, which was inspected using
analysis of variance (ANOVA), where SPSS 20 (IBM, Armonk, NY, USA) was used for this purpose. If
the p-value from the ANOVA test is larger than a significance level of 0.05, then the null hypothesis is
rejected, indicating that a statistical difference between experimental trials does not exist.

aE— ]

20mm

(a) (b)

Figure 1. The geometry parameters of: (a) straight line and (b) horseshoe pattern used in the RSM DOE.
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Table 2. The geometry parameters of the horseshoe and the straight line patterns.

Straight Line Horseshoe
Parameter Values Parameter Values
Line Width (W) 1,1.52,2.5354.5 Amplitude (A) 4,6,8
Number of Layers (NL) 1,2,3,4,5 Number of Cycles (NC) 1,24

The RSM DOE was performed using Minitab 16 statistical software (Minitab Inc., State College,
PA, USA). For straight line traces, the design consists of more than 60 experiments with at least two
trials at each combination of parameter levels. On the other hand, the design for the horseshoe pattern
consists of 18 experiments with at least two trials at each combination of parameter levels. The DOE
was run at an o value of 0.05, which is equivalent to a 95% confidence level.

3. Results and Discussion
3.1. Data Analysis

3.1.1. Straight Line

As previously mentioned, it is important to evaluate the statistical significance of the breakdown
strain, ink cost, and gauge factor between the experimental trials. The ANOVA test concluded that
there was no statistical significance between the experimental trials where the p-values were larger than
the significance level (0.05) and so the null hypothesis was rejected. The estimation of the breakdown
strain using the geometry parameters is vital in order to determine the optimal parameters to be used
based on the desired application. This could be limited to the circuit’s dimensions or the amount
of required maximum breakdown strain. Table 3 shows the estimated correlation parameters of the
breakdown strain, ink cost, and gauge factor. As it can be seen, the factors: line width and number of
layers, were significant in regards to the response variables (breakdown strain, ink cost, and gauge
factor) with very low p-values. Additionally, the two-way interaction components were found to
be significant.

Table 3. The estimated values of the correlation parameters of the breakdown strain, ink cost, and
gauge factor as well as their p-values for the straight line patterns.

Term Breakdown Strain (%) * Cost (Euro) ** GF ***
Coefficient p-Value Coefficient p-Value Coefficient p-Value
Constant 2.90 0 3.75x 1078 0 -9.54 0.309
W (mm) 9.58 0.417 -3.75%x 1077 0 12.79 0.027
NL -5.19 0 1.62 x 1076 0 0.295 0.001
W2 -0.742 0.081 1.49 x 1077 0.019 -1.85 0.003
NL2 1.03 0 3.75 x 1078 0.266 0.326 0.252
NL x W -1.61 0.01 1.12 x 107° 0 -1.75 0.011

*R2 = 82.44%, ** R? = 99.98%, *** RZ = 25.94%.

Moreover, the results in Table 3 indicate that the square of the line width has a more significant
effect on the breakdown strain compared to the line width alone. Increasing the line width gives the
printed pattern a higher ability to endure strain. Specifically, as the width increases (more nanoparticles),
the possibility of the particles dispatching from each other decreases (larger area) and accordingly the
line maintains its electrical conductivity. On the other hand, increasing the number of layers increases
the amount of bulk material that will ease the formulation of cracks in the printed patterns. The gauge
factor, which is related to the change in the resistance and the amount of breakdown strain, increases
as the resistance (R) decreases, which in return depends on the number of layers and line width as
indicated in Equation (4). In particular, these parameters control the cross sectional area of the line.
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From the p-values, it could be noted that the effect of the line width on the gauge factor is smaller than

the number of layers.

_pX L @
A

where p is the electrical resistivity of the conductive ink (Ohm.m), L is the length of the conductive line

(mm), A is the cross-sectional area of the line (mm?).

Additionally, the regression coefficient of the GF was low due to significant variations in the
pattern’s resistance, even at the same process conditions. This could be explained by the fact that the
resistance of the traces is highly dependent on the dispersion homogeneity of the silver nanoparticles
in the ink, where the silver nanoparticles could aggregate with time and disturb the dispersion
homogeneity. The latter affects the deposition of uniform amounts of particles in the pattern, which in
turn affects the resistance of the printed traces.

The residual plots play an important role in finding the outliers (extreme values) in the observations,
where these plots could provide a more detailed conclusion compared with box plots. Furthermore,
these plots are used to evaluate the goodness of fit of the developed regression model. Figure 2
demonstrates the residual plots of the breakdown strain of the straight line regression model, while
Table 4 presents the interpretations of the residual plots.

R
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Figure 2. The residual plots: (a) histogram, (b) residuals vs. fits and (c) normal probability of the
breakdown strain regression model of the straight line traces.
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Table 4. The interpretation of the residual plots of the breakdown strain of the straight line
regression model.

Plot Results

The histogram is roughly bell-shaped which means that the

stogram residual error data are normally distributed.

The points are randomly scattered around the zero reference

Residuals versus fitted values . - .
which supports the assumption of constant variance.

The plot confirms that the data are normally distributed with some
Normal probability plot outliers. Moreover, the data show strong correlation to one
another, resulting in a high Coefficient of Correlation (R = 82.44%).

3.1.2. Horseshoe

Similar to the straight line, the ANOVA test was used to assess the statistical significance between
the experimental trials of the horseshoe patterns, where the results indicate that there is no statistical
significance between the experimental trials. Afterwards, the correlation that describes the effect of the
amplitude and number of cycles on the breakdown strain, ink cost, and gauge factor was found using
RSM DOE. Table 5 shows the estimated correlation parameters of the breakdown strain, ink cost, and
gauge factor.

Table 5. The estimated values of the correlation parameters of the breakdown strain, ink cost, and
gauge factor, as well as their p-values for the horseshoe patterns.

Term Breakdown Strain (%) * Cost (Euro) ** GF ***
Coefficient p-Value Coefficient p-Value Coefficient p-Value

Constant 17.23 0 4.94 0 0.772 0.012
NC —-2.65 0.005 451 0 0.397 0.002
A (mm) —0.362 0.002 -0.111 0 0.148 0.278
NC? —-0.0623 0.662 —0.028 0 0.042 0.724
A? —0.0124 0.944 0.016 0.035 0.07 0.633
NC x A 0.413 0.008 2.80 0 —-0.21 0.091

*R2 =59.02%, ** R2 = 100%, *** R? = 42.36%.

It can be depicted from Table 5 that the breakdown strain of the horseshoe pattern is highly affected
by the amplitude and number of cycles, as well as the interaction between them, with p-values < 0.01,
while there was no statistical significance for the square of these parameters. The breakdown strain
coefficient demonstrates that increasing the number of cycles and the wave amplitude increases the
surface area that is exposed to the force and increases the stress applied on the traces, which in return,
decreases the ability of the pattern to sustain strain. It can be noted that only the constant, number of
cycles, and the interaction between the number of cycles and the amplitude have significant statistical
significance on the gauge factor, where increasing the number of cycles increases the sensitivity of the
pattern to the strain.

The regression coefficients of the correlations (breakdown strain and GF) for the horseshoe pattern
were lower than those for the straight line, where the deposition of the serpent shape using inkjet
printing is more complex compared to printing straight lines. Hence, uncontrolled variables, such
as the dispersion homogeneity of the silver nanoparticles in the ink, have a larger impact on the
breakdown strain and the resistance of the traces. Similar to the straight line, the residual plots were
used to evaluate the goodness of fit, as well as to examine the outliers. Figure 3 shows the residual plots
of the breakdown strain of the horseshoe regression model, while Table 6 presents the interpretations
of the residual plots.
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Figure 3. The residual plots: (a) histogram, (b) residuals vs. fits and (c) normal probability of the
breakdown strain regression model of the horseshoe pattern.

Table 6. The interpretation of the residual plots of the breakdown strain of the horseshoe
regression model.

Plot Results

The histogram is bell-shaped which means that the residual error

Histogram data are normally distributed.

The points are randomly scattered around the zero reference

Residuals versus fitted val . . .
est S versus fitted vatues which supports the assumption of constant variance.

The plot confirms that the data are normally distributed with some
Normal probability plot outliers. Moreover, the data show good correlation to one another,
with acceptable Coefficient of Correlation (R = 59.02%).

3.2. Optimization of Geometrical Parameters

3.2.1. Straight Line

The breakdown strain of the printed circuit increased by increasing the line width as shown
in Figure 4. There is no close turning point that results in geometry parameters that fit within the
dimensions of the PDMS substrate, and therefore it is essential to highlight one potential application
to limit the required maximum breakdown strain. Many vital signs can be measured with wearable
and sensitive strain gauge sensors such as respiratory rate and heart rate, where the physiological
indications of these signs usually cause a small amount of strain (<5%) [52,53]. It was reported in [30]
that thin-film nanoparticle-based strain gauge sensors usually bear up to 10% strain, therefore a 10%
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maximum breakdown strain was added to the optimization process. Figure 5 shows the RSM DOE
optimization results of the inkjet-printed straight line.

20

3

Width (mm) 1 5 Number of Layers

Figure 4. The predicted relationship between the line width, number of layers, and the breakdown
strain of a straight line.

0.92303 5w ['1.0] [110]

Composite

Desirability
0.92303

BS
Maximum
y = 10.5675
d = 1.0000

Cost
Minimum
y = 21.3600
d = 0.78640

GF
Maximum — - - - — — —
y = 4.8543 \
d = 1.0000

Figure 5. Surface response optimization plot of breakdown strain, ink cost, and gauge factor of the

inkjet-printed straight line.

The lowest ink cost in the dataset (12.61 x 10~ Euro) was entered as the minimization target of
the ink cost, whereas a gauge factor of 2 was used as the maximization target. As it can be seen in
Figure 5, the minimization of the cost had the lowest desirability among the other responses, where
the composite desirability of the outputs was satisfactory at the optimal line width of 1.78 mm with
one printed layer. The predicted breakdown strain of the line at these parameters was 10.57% with an
ink cost of 21.36 x 107° Euro and gauge factor of 4.85. The experimental validation of the obtained
results is essential in order to evaluate the accuracy of the developed model before proceeding with
these results for the optimization of the horseshoe patterns. Six straight lines with 1.78 mm line width
and one printed layer were tested in order to validate the optimization model, the average maximum
breakdown strain of these lines was 11.5% with an error of 8.83%.
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3.2.2. Horseshoe

The results indicate that there is no significant effect of the amplitude on the breakdown strain,
while the number of cycles has an inverse effect on the breakdown strain as shown in Figure 6. The
optimal horseshoe geometry parameters that maximize the breakdown strain and GF while minimizing
the ink cost were one cycle and 4 mm amplitude at the optimal line width and number of layers
(1.78 mm and 1 layer) obtained from the straight line optimization. Figure 7 shows the RSM DOE
optimization results of the inkjet-printed horseshoe pattern.

e
<5
o S et

T T e
S “:: e C I S SIS ST S5

BS(%)

3

Number of Cycles 5 1 Amplitude (mm)

Figure 6. The predicted relationship between the number of cycles, wave amplitude, and the breakdown
strain of a horseshoe pattern.

optimal e | £ 80
09824 ow| 19 'ad

Composite \
Desirability

0.98924

Strain
Maximum
y = 14.5208
d = 0.96805

Cost
Minimum
y = 20.4485
d = 1.0000

GF
Maximum
y = 2.0873
d = 1.0000

T~

Figure 7. Surface response optimization plot of breakdown strain, ink cost, and gauge factor of the

inkjet-printed horseshoe pattern.
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The lowest ink cost in the dataset (20.45 x 107® Euro) was entered as the minimization target
of the ink cost, whereas a gauge factor of 2 was used as the maximization target. As demonstrated
by Figure 7, the maximization of the breakdown strain had the lowest desirability among the other
responses where the composite desirability of the outputs was satisfactory. The predicted breakdown
strain of the line with these parameters was 14.52% with an ink cost of 20.45 x 107 Euro and a gauge
factor of 2.09. It can be noted that the horseshoe pattern sustained higher strain with lower ink cost
compared to the straight line, however, the gauge factor was smaller. The shape of the horseshoe as
reported in the literature [27] plays a major role in distributing the load on the printed traces, which
increases the ability of the serpent pattern to sustain more strain compared with straight lines.

3.3. Limitation and Future Work

The conductivity and stretchability of the silver inkjet-printed lines are not only affected by the
inkjet printing parameters, sintering, and substrate, but are also highly dependent on the amount of
silver loaded in the ink, the silver nanoparticle size, used binding agents, and the continuity of the
printed lines. In this specific experiment, we expect a resistivity of 20 u().cm for NP silver ink with a
particle size of 180 nm [46] and we aim for a desired stretchability of 10% strain. Hence, the results
found in this study are transferable to inks of similar properties. If another type of ink is to be tested,
the methodology presented in this paper can be replicated to result in the optimal dimensions of the
printed patterns [54].

4. Conclusions

This paper presents a comprehensive study of the inkjet printing geometrical parameters that
result in optimal silver NPs traces. Specifically, we aimed to print traces with a high strain and gauge
factor, and low ink cost, on PDMS substrates. While most studies in the literature have focused
on the optimization of printing parameters such as sintering temperatures and drop spacing, the
focus was shifted in this study towards the optimization of geometrical parameters. Hence, straight
lines and horseshoe patterns were examined. The printing input factors for straight lines were: the
number of inkjet-printed layers and the line width, and for horseshoe patterns: the number of cycles
and the amplitude. Although, the effect of the aforementioned parameters can be explained using
physical relationships to a certain extent, these relationships do not evaluate the significance of each
parameter, nor do they predict the effect of varying combinations of these parameters on the desired
circuit performance.

Moreover, experimental optimization does not result in precise optimal parameters but rather
gives a rough estimate depending on the examined levels of the parameters of interest. Hence,
RSM-based DOE was performed, where the results indicated that the optimal parameters for the
straight line trace are one layer of silver NPs at a 1.78 mm line width. These parameters yielded up to
10% strain. While the horseshoe pattern, at the optimal number of layers and line width, was optimized
at 4 mm amplitude and one cycle, yielding a strain up to 15%. The obtained results were supported by
explaining the physical implications behind the observed behavior. It is also worth mentioning that
this study can be replicated using other conductive inks, such as gold and copper NPs, as the factors of
interest and the desired response remain the same.
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