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Abstract: Solution-based metal oxide semiconductors (MOSs) have emerged, with their potential
for low-cost and low-temperature processability preserving their intrinsic properties of high optical
transparency and high carrier mobility. In particular, MOS field-effect transistors (FETs) using the
spray pyrolysis technique have drawn huge attention with the electrical performances compatible
with those of vacuum-based FETs. However, further intensive investigations are still desirable,
associated with the processing optimization and operational instabilities when compared to other
methodologies for depositing thin-film semiconductors. Here, we demonstrate high-performing
transparent ZnO FETs using the spray pyrolysis technique, exhibiting a field-effect mobility of
~14.7 cm2 V−1 s−1, an on/off ratio of ~109, and an SS of ~0.49 V/decade. We examine the optical and
electrical characteristics of the prepared ZnO films formed by spray pyrolysis via various analysis
techniques. The influence of spray process conditions was also studied for realizing high quality ZnO
films. Furthermore, we measure and analyze time dependence of the threshold voltage (Vth) shifts
and their recovery behaviors under prolonged positive and negative gate bias, which were expected
to be attributed to defect creation and charge trapping at or near the interface between channel and
insulator, respectively.

Keywords: metal oxide semiconductors; spray pyrolysis; thin film transistors; transparent oxide;
zinc oxide

1. Introduction

Field-effect transistors with transparent metal oxide semiconductors (MOSs) have emerged as
a promising driving component in future display applications based on their intrinsic advantages
over opaque silicon-based candidates. MOSs, in general, offer high carrier mobility, sufficient to drive
recent organic light-emitting diode (OLED)-based displays [1]. Moreover, high optical transparency of
MOSs based on the large band gap provides huge versatility in transparent electronic applications.
In particular, to be useful in display applications, they should incorporate high switching speeds [2].
In this respect, MOSs stand on a more competitive position to silicon-based and organic semiconductors
because it is hard for them to overcome either their intrinsic optical or performance limits.

MOSs also provide a wide range of processing versatility. From vacuum-based sputtering [3,4],
atomic layer deposition (ALD) [5,6], and metal-organic chemical vapour deposition (MOCVD) [7,8] to
solution processes of dip coating [9], spin-coating [10], ink-jet [11,12], and spray pyrolysis [13–15], a wide
range of processing methods have been employed to fabricate MOSs. In particular, vacuum-based
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deposition techniques have restrictions in process versatility due to their high manufacturing costs
and high process temperature. Solution process, on the other hand, has merits in its simplicity,
low cost, and potential for low process temperature, which can satisfy the increasing need for
flexible/plastic/bendable displays.

Despite their great potential, the electrical instability of MOS-based field-effect transistors (FETs)
is one of the critical issues for next-generation FETs. The electrical stability is directly related to display
performance and reliability. Especially in OLED displays driven by the drain current of FETs, it can be
more critical as it leads to fluctuation in brightness of individual pixels, resulting in nonuniformity [16].
Regardless of semiconductors, a number of potential microscopic processes affecting stability and
reliability have been generally identified, including charge trapping in the insulator, charge trapping at
or near the interface between insulator and semiconductor, and a change in the defect distribution in
the semiconductor. These vary the transfer characteristics of the FETs in the form of change in threshold
voltage, sub-threshold slope (SS), field-effect mobility (µFE), or a combination of these [17,18]. However,
the dominant mechanism can be determined by the bias stress test and the intrinsic properties of the
semiconductor and gate dielectric. Therefore, it is important to identify and characterize a number of
interfacial traps [19–21].

In this paper, we report high-performance ZnO FETs using the spray pyrolysis technique.
Vaporized ZnO precursor solution is delivered in the form of mist to a heated substrate where the
desired films are formed via the chemical reaction. Spray pyrolysis offers better electrical performance
of MOS-based FETs because the high substrate temperature during the film deposition gives rise
to rapid evaporation of impinging liquid droplets, leading to the increase of film growth [22,23].
By adapting the spray pyrolysis method, we could achieve MOS-based thin-film devices on large-area
platforms maintaining excellent material properties. Nontoxic and optically transparent ZnO film was
obtained in polycrystalline forms via the spray pyrolysis technique and later realized as FETs. Through
process optimization in spray distance, pressure, and fabrication temperature, the ZnO FETs using
spray pyrolysis present outstanding electrical characteristics of high mobility (~14.7 cm2 V−1 s−1).
The FETs also presented high-quality switching properties, showing an on/off ratio of ~109 and SS of
~0.49 V/decade. Furthermore, the electrical instabilities of our ZnO FETs, which are induced by positive
and negative gate bias stress, are examined and discussed, and the resulting, apparently distinctive,
instability tendencies of the positive and negative bias stress are explained as identifying dominant
mechanisms, defect creation, and charge trapping in positive and negative bias, respectively.

2. Materials and Fabrication

2.1. Fabrication of Zinc Oxide FETs via Spray Pyrolysis

Figure 1 shows the procedure of fabricating ZnO FETs by spray pyrolysis. In preparing the
precursor for the ZnO deposition, a 0.1 M solution of zinc acetate dihydrate (Zn(CH3CO)2·2H2O) (Sigma
Aldrich, St. Louis, MS, USA, 99.0%) was dissolved in methanol under vigorous stirring conditions for
one hour at room temperature. The standard oxygen plasma treatment was performed on the cleaned
Si/SiOx substrate with a duration time of 400 s to eliminate undesirable organic residue and increase
surface energy as well, which results in improving the wetting properties of the methanol-based ZnO
precursor. Then, the substrate was kept on a hot plate at 400 ◦C during the entire spray process. ZnO
thin films were fabricated using the spray pyrolysis method. Aerosols of the prepared ZnO precursor
solution were deposited onto the heated substrate with a distance of 15 cm from the nozzle via a
conventional hand-gun airbrush, which is described in Figure 1. All the spraying processes were
performed in a fume hood, and compressed air with controlled pressure was used to deliver aerosols
to the substrate. The spray pyrolysis process was performed with the sequence of 15 s spray and 45 s
rest at the pressure of 15 psi until obtaining a 20 nm-thick semiconducting layer. Then, the channel
layer was defined by photolithography wet etching in 0.0625 M hydrochloric acid (HCl). Aluminium
(Al) source and drain (S/D) electrodes (80 nm) were deposited using a thermal evaporator and then
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patterned by a lift-off process through standard photolithography to achieve ZnO FETs with channel
width (W)/channel length (L) = 1000 µm/50 µm.

Materials 2019, 12, x FOR PEER REVIEW 3 of 14 

 

M hydrochloric acid (HCl). Aluminium (Al) source and drain (S/D) electrodes (80 nm) were 
deposited using a thermal evaporator and then patterned by a lift-off process through standard 
photolithography to achieve ZnO FETs with channel width (W)/channel length (L) = 1000 µm/50 µm. 

 
Figure 1. Fabrication procedure of ZnO field-effect transistors (FETs) by spray pyrolysis deposition 
and an optical image of the channel region. The ZnO (purple) channel layer and Al S/D electrode 
(light grey) were sequentially deposited on the Si/SiO2 substrate (dark grey) via spray pyrolysis and 
thermal evaporation, respectively. The channel region was patterned by photolithography to 
minimize the leakage current. 

2.1.1. Patterning the ZnO Semiconducting Layer via Wet Etching 

The etching process for sprayed ZnO semiconductor film was accomplished as follows: 
AZ5412E, a positive photoresistor (PR), was spin-coated on the spray-processed ZnO film and then 
soft-baked at 100 °C on a hotplate for a minute. After being exposed for 7 s to UV light via an EVG 
620 photo aligner, the film was developed in an AZ 351 developer for 15 s and hard-baked at 120 °C 
for two minutes. After the photolithography process, the ~20 nm-thick ZnO film was etched in diluted 
HCl (0.0625 mM) for around 2 min and consequently cleaned in distilled water (DI water). After 
drying, the PR, finally, was removed through a cleaning process of acetone, isopropyl alcohol (IPA), 
and DI water in sequence. A 3D optical profiler (Wyko NT1100, Billerica, MA, USA) was used to 
confirm whether the channel layer was well-defined.  

2.1.2. Deposition and Patterning of Al S/D Electrodes 

The patterned S/D electrodes of ZnO FETs were formed via a lift-off process as follows: The same 
AZ 5412E, which was used as a positive PR for patterning ZnO semiconductor film, was employed 
here as a negative PR because it was reversible. The PR was spin-coated onto the patterned ZnO film. 
After soft baking on a hotplate at 100 °C for 1 min, UV light exposure was followed using an EVG 
aligner for 9 s. Then, we could obtain the image reverse by using a special crosslinking agent in the 
photoresistor, via activation by inversion baking at 110 °C for 2 min on a hotplate. After a flood 
exposure and developing in AZ 351B for 10–15 s, the positive PR areas were dissolved and the cross-
linked areas remained. Then, the device was cleaned by DI water and blow-dried in nitrogen before 
depositing an 80 nm-thick Al electrode layer using thermal evaporator, Edwards E306A. 
Consequently, the PR was removed by cleaning in acetone, IPA, and DI water in sequence, and the 
well-patterned S/D electrodes were achieved. 

2.2. Characterization 

Transmittance spectra were examined by a Unicam UV2 UV–Vis Spectrometer (Cambridge, 
UK). X-ray diffraction (XRD) patterns and Atomic Force Microscope (AFM) images were measured 
using a Bruker X-ray Diffraction D8 X-ray diffractometer (Billerica, MA, USA, 40 kV and 40 mA) and 
Bruker MultiMode 8 Scanning Probe Microscope from NanoScope® V controller (Billerica, MA, USA), 
respectively. A Renishaw micro Raman spectrometer (Wotton-under-Edge, Gloucestershire, UK) 
with a 325 nm He-Cd laser and 40× objective lens (NA 0.5) was employed for photoluminescence 
analysis. The laser power and grating used were 0.5 mW and 2400 grooves/mm, respectively. 

Electrical characteristics and retention measurement of the FETs were collected a by Tektronix 
Keithley 4200 semiconductor characterization system (SCS) (Beaverton, OR, USA) in a dark box at 

Figure 1. Fabrication procedure of ZnO field-effect transistors (FETs) by spray pyrolysis deposition
and an optical image of the channel region. The ZnO (purple) channel layer and Al S/D electrode (light
grey) were sequentially deposited on the Si/SiO2 substrate (dark grey) via spray pyrolysis and thermal
evaporation, respectively. The channel region was patterned by photolithography to minimize the
leakage current.

2.1.1. Patterning the ZnO Semiconducting Layer via Wet Etching

The etching process for sprayed ZnO semiconductor film was accomplished as follows: AZ5412E,
a positive photoresistor (PR), was spin-coated on the spray-processed ZnO film and then soft-baked at
100 ◦C on a hotplate for a minute. After being exposed for 7 s to UV light via an EVG 620 photo aligner,
the film was developed in an AZ 351 developer for 15 s and hard-baked at 120 ◦C for two minutes.
After the photolithography process, the ~20 nm-thick ZnO film was etched in diluted HCl (0.0625 mM)
for around 2 min and consequently cleaned in distilled water (DI water). After drying, the PR, finally,
was removed through a cleaning process of acetone, isopropyl alcohol (IPA), and DI water in sequence.
A 3D optical profiler (Wyko NT1100, Billerica, MA, USA) was used to confirm whether the channel
layer was well-defined.

2.1.2. Deposition and Patterning of Al S/D Electrodes

The patterned S/D electrodes of ZnO FETs were formed via a lift-off process as follows: The same
AZ 5412E, which was used as a positive PR for patterning ZnO semiconductor film, was employed here
as a negative PR because it was reversible. The PR was spin-coated onto the patterned ZnO film. After
soft baking on a hotplate at 100 ◦C for 1 min, UV light exposure was followed using an EVG aligner for
9 s. Then, we could obtain the image reverse by using a special crosslinking agent in the photoresistor,
via activation by inversion baking at 110 ◦C for 2 min on a hotplate. After a flood exposure and
developing in AZ 351B for 10–15 s, the positive PR areas were dissolved and the cross-linked areas
remained. Then, the device was cleaned by DI water and blow-dried in nitrogen before depositing an
80 nm-thick Al electrode layer using thermal evaporator, Edwards E306A. Consequently, the PR was
removed by cleaning in acetone, IPA, and DI water in sequence, and the well-patterned S/D electrodes
were achieved.

2.2. Characterization

Transmittance spectra were examined by a Unicam UV2 UV–Vis Spectrometer (Cambridge,
UK). X-ray diffraction (XRD) patterns and Atomic Force Microscope (AFM) images were measured
using a Bruker X-ray Diffraction D8 X-ray diffractometer (Billerica, MA, USA, 40 kV and 40 mA) and
Bruker MultiMode 8 Scanning Probe Microscope from NanoScope® V controller (Billerica, MA, USA),
respectively. A Renishaw micro Raman spectrometer (Wotton-under-Edge, Gloucestershire, UK) with
a 325 nm He-Cd laser and 40× objective lens (NA 0.5) was employed for photoluminescence analysis.
The laser power and grating used were 0.5 mW and 2400 grooves/mm, respectively.

Electrical characteristics and retention measurement of the FETs were collected a by Tektronix
Keithley 4200 semiconductor characterization system (SCS) (Beaverton, OR, USA) in a dark box at
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room temperature. The linear field effect mobility was extracted from the slope of transfer curve in the
linear regime using Equation (1) [13,24].

µe,lin =
L

CiW
∂ID

∂VG
(1)

where L and W are the length and width of the semiconductor channel, respectively, and Ci is the
geometrical capacitance of the dielectric layer.

The SS value, the inverse of the maximum slope of the transfer characteristics, was extracted
using Equation (2) [24].

SS =

(
∂VG

∂log10(ID)

)
(2)

To investigate the instability behavior of our ZnO FETs, the prolonged constant gate voltage of
±20 V were applied for 20 ks for positive and negative bias stress, respectively. For better interpretation,
the spray-pyrolysized ZnO FETs were annealed at 120 ◦C for 1 h to equilibrate the defect density in
the ZnO channel layer before electrical bias stress. During the stress test, the gate-to-source voltage
(VG) was applied as maintaining 0.1 V of drain voltage (VD) for a specific period of time. Then,
the linear regime transfer characteristics were measured. This process was repeated up to 20 ks for
both the positive and negative bias stress test. In analysing the instability behaviours of the ZnO
FETs, we focused on the electrical transfer characteristics in the linear region, which applied a low
VD to minimize the effect of drain voltage on the electric field across the dielectric. During recovery,
all terminals were left floating in ambient air at room temperature.

3. Results and Discussions

3.1. Characterization of Spray-Pyrolysized ZnO Thin Films

The ZnO films deposited by spray pyrolysis were formed as the mists of vaporized precursors
were transformed and reacted on the surface of the heated substrate. Because all the individual
precursors behaved together for the reaction, patterning and interface control was critical to achieve
lower off -state currents [23]. Therefore, we patterned the active layer via photolithography (Figure 1)
and performed oxygen plasma surface treatment on the SiO2 gate dielectric in order to improve the
performance of the ZnO FETs. The patterning of channel layer was expected to lead a high on/off ratio
as it significantly lowered the drain current in off -states compared to the previously reported results
(Table 1). Additionally, from the surface treatment, we could improve the wetting properties of the
methanol-based ZnO precursor as it eliminated undesirable organic residue and increased surface
energy. Through the process of optimization, we could conclude that the overall performance of our
spray-pyrolysized ZnO FETs was competitive with the previously reported ZnO-based FETs using a
spray pyrolysis method.

The quality of the spray-coated ZnO thin films was evaluated by analyzing crystallinity and
surface roughness via X-ray diffraction (XRD) and an atomic force microscope (AFM). Figure 2a shows
the diffraction patterns of ZnO film sprayed on a Si/SiOx substrate at 400 ◦C. For easier analysis,
the background diffraction patterns of the Si/SiOx substrate were subtracted. The XRD pattern presents
a preferred orientation of (002) with the significantly highest peak and secondary peaks of (100), (101),
(102), and (110), which indicate that our spray process produced polycrystalline ZnO films with a
hexagonal wurtzite phase. The result is also consistent with earlier reports that undoped ZnO films by
spray pyrolysis technique were highly oriented along the (002) direction [25,26]. We also extracted the
optical bandgap throughout the UV–Vis spectrum measurement in order to additionally qualify the
ZnO thin films. Figure 2b shows the UV–Vis transmission spectra of sprayed ZnO films on quartz.
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For the optical characterization, the direct optical band gap was calculated from Tauc plots from the
transmittance measurement using the following equation [27]:

α}ω = B
(
}ω− Eg

)2
(3)

whereα, }ω, and Eg indicate absorption coefficient, photon energy (E), and optical bandgap, respectively.
From a fit of the plot of (αE)2 vs. the photon energy (E) (the inset in Figure 2b), we obtained the value of
3.26 eV. This value is consistent with that of polycrystalline ZnO, ~3.3 eV, and of other spray-processed
ZnO films [28,29].
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photoluminescence (PL) spectroscopy, as it could provide information that would enable us to 
identify surface, interface and impurity levels, and interface roughness [30]. Figure 2c presents the 
PL spectra of the spray-coated ZnO films of various thickness. Sharp emissions in the UV region (~380 
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Figure 2. The properties of ZnO films formed by spray pyrolysis technique under optimized conditions
(15 psi, 25 cm, and 400 ◦C of spray pressure, distance, and substrate temperature, respectively). (a) X-ray
diffraction spectrum and (b) optical transmission (%) spectra of the ZnO film. The inset shows the
optical absorption coefficient (α) versus photon energy (E) characteristics. The horizontal intercept
of the line indicates 3.26 eV as the film’s optical band gap. Both X-ray diffraction (XRD) and optical
transmittance spectrum are from the ZnO film itself as the ones from the substrate are subtracted.
(c) Photoluminescence (PL) spectra and SEM (inset) image of the film. (d) Atomic Force Microscope
(AFM) images (phase and topography) with distribution of surface roughness of ZnO films sprayed at
various spray pressure conditions: (i) 15 psi, (ii) 30 psi; and (iii) 45 psi.

To analyse the electronic structure of ZnO thin films, we additionally adapted the
photoluminescence (PL) spectroscopy, as it could provide information that would enable us to
identify surface, interface and impurity levels, and interface roughness [30]. Figure 2c presents the PL
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spectra of the spray-coated ZnO films of various thickness. Sharp emissions in the UV region (~380 nm)
and broad emission bands in the visible region (~520 nm) are observed. Although there is artificial
interference with the PL signal in the range of 480 to 700 nm by Raman edge filter, the intensity of the
visible emission is undoubtedly low when compared with the UV emission. The emission in the UV
region was expected to be associated with the band gap emission. Meanwhile, the visible emission
involves the transition of an electron from the conduction band (or a shallow level close to the band) to
a trap level approximately 2 eV below the conduction band edge. When considering that the intensity
of the visible emission band directly corresponds to the level of defect states [31,32], we can assume
that our spray-coated ZnO films had a low concentration of defects.

Table 1. Comparisons of the electrical characteristics of previously reported metal-oxide FETs by spray
pyrolysis deposition.

Reference
Active Layer

(Process
Temperature)

Gate Dielectric S/D
Electrodes

Mobility
(cm2 V−1 s−1) On/Off

SS
(V dec−1)

This work ZnO (400 ◦C) Thermally grown
SiO2

Al ~14.7 109 0.49

Adamopoulos et al. [13] Li-ZnO (400 ◦C) spray-pyrolysized
ZrO2

Al ~85 106 -

Afouxenidis et al. [14] ZnO (400 ◦C) spray-pyrolysized
Al2x−1TixOy

Al ~10 106 0.55

Bashier et al. [15] ZnO (400 ◦C) Thermally grown
SiO2

Al ~15 106 2.9

Wang et al. [33] IZO (350 ◦C) Thermally grown
SiO2

Al ~4.5 106 -

The surface morphologies of optimized ZnO films (15 psi, 25 cm, and 400 ◦C of spray
pressure, distance, and substrate temperature, respectively) were also investigated from SEM (inset
of Figure 2c) and AFM images ((i) in Figure 2d). The measured root–mean–square (RMS) roughness
(500 nm × 500 nm) was 3.3 nm. The image, additionally, shows that grain sizes were distributed from
30 nm to 40 nm. The SEM image indicates the similar topology of the ZnO films compared to their
AFM images.

3.2. The General Electrical Characteristics of Spray-Pyrolysized ZnO FETs

The spray-coated ZnO FETs were achieved through the process of optimization by tuning
fabrication conditions, including spray pressure, the distance from the nozzle to the substrate, and
process temperature. Among those, we especially focused on the spray pressure as it presented a
critical influence on the FET properties and was directly related to the deposition rate, whilst not
relatively well established when compared with other elements such as temperature [15,28]. Figure 3a
presents the transfer characteristics of the ZnO FETs fabricated using various spray pressures of 15 psi,
30 psi, and 45 psi at a spray distance of 25 cm.

Table 2 summarizes the key parameters of the device performance as a function of spray pressure.
Overall, the FETs fabricated at a low pressure of 15 psi provided better electrical performance, higher
field-effect mobility, lower SS, and higher drain on-current and lower off-current. In particular, the
SS showed the most significant variation. The SS of the ZnO FETs formed at pressures of 30 psi and
45 psi showed some fluctuation and the level of the fluctuation became higher as the spray pressure
increased, whereas smooth transfer characteristics were observed in the FETs at a pressure of 15 psi
with high densification. This result is consistent with the previous report that the deposition pressure
in ZnO-based FETs could be strongly associated with densification [34]. Figures 2d and 3b show the
AFM images with the detailed distributions of surface roughness of each film and root–mean–square
(RMS) roughness of the ZnO films as a function of spray pressures (15, 30, and 45 psi, respectively).
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The lower spray pressure was adapted, and the lower surface roughness was achieved, which is
concomitant with an increase in densification led by low spray-pressure deposition.
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Figure 3. (a) Drain and gate current vs. VG characteristics of ZnO FETs, fabricated using various spray
pressures (15 psi, 30 psi, 45 psi) in log scale (VD = 0.1 V). (b) Root–mean–square (RMS) roughness
of ZnO thin films formed using three different spray pressures: 15 psi, 30 psi, 45 psi. (c) Transfer
characteristics (log(ID) – VG) of the staggered bottom-gate ZnO FETs using spray pyrolysis technique
at linear (at VD = 0.1 V) and saturation (at VD = 20 V) regions with the gate leakage (IG). (d) Output
characteristics (ID – VD) of the ZnO FETs.

Table 2. The morphological and electrical characteristics of ZnO FETs formed at various spray pressures
of 15 psi, 30 psi, and 45 psi.

Spray
Pressure (psi)

Surface Roughness
(nm in RMS)

Field-Effect Mobility
(cm2 V−1 s−1) V th (V) Sunthreshold Swing

(V/Decade) ID
ON (A) ID

OFF (A)

15 5.81 14.7 3.6 0.78 3.9 × 10−7 ~5 × 10−13

30 10.1 13.2 1.2 1.0 2.8 × 10−7 ~7 × 10−13

45 11.3 9.9 −7.3 2.6 1.9 × 10−7 ~1 × 10−11

SS indicates the total trap density (Nt) involving the bulk trap density (Nbulk) of the semiconductor
itself and the interface trap density (De) at or near the interface between the semiconductor and gate
dielectric material, using the following equation: [35]

Nt = Nbulk + Dit =

[{
SS log10(e)

(kBT/q)

}
− 1

]
(Ci/q) (4)

where kB is Boltzmann’s constant, T is absolute temperature, and Ci is the capacitance of the gate
insulator. This formula points out that the better SS value in low spray pressure can be directly related
to the reduction of the total trap density. It is hard to identify whether Nbulk and/or Dit contributed to
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the improvement of SS. However, based on the report that the densification was strongly affected by
Nbulk rather than Dit, [34] we can assume that the reduction of Nbulk by increased densification played
the dominant role to improve the SS value. Moreover, when considering that the field-effect mobility
and SS were related to the density of shallow traps near the conduction band and the deep-level traps,
respectively [36], the better field-effect mobility and SS for the FETs using low spray pressure indicate
that the high densification led to an overall improvement in trap density.

Figure 3c,d shows the transfer and output characteristics of the optimized spray-pyrolysized ZnO
FETs (spray pressure of 15 psi, spray distance of 25 cm, and substrate temperature of 400 ◦C) in linear
and saturation modes. In measuring the transfer characteristics, the gate-to-source voltage (VG) was
swept in steps of 0.5 V from −20 V to +40 V, while drain-to-source voltage (VD) was 0.1 V and 20 V
for linear and saturation regions, respectively. The field effect mobility, the drain current on/off ratio,
and threshold voltage (Vth) were ~14.7 cm2 V−1 s−1, ~109, and ~3.5V, respectively. These parameters
are important for FETs because field effect mobility determines the current drive of the device, and for
switching application, values greater than 106 of the on/off ratio are required for devices in conventional
display applications [37]. The FETs also presented the subthreshold swing (SS) of ~0.49 V/decade,
which describes the necessary VG to increase ID by one decade. SS is the feature that indicates how
efficiently the device can be turned on [38]. Because all the individual elements of precursors react
together on the surface of the hearted substrate to form a film, it is hard to control the channel layer,
and thus, patterning is essential in the spray pyrolysis process [23]. For this reason, we patterned the
active layer via photolithography (Figure 1), and as a result, improved the performance of the ZnO
FETs, especially in switching properties. From patterning the channel layer, we could drop our off-state
current from ~10−8 to ~10−13 A, which lead to good on/off ratio characteristics of 109 and also improved
the characteristics of SS from ~4 to ~0.49 V/decade. The gate leakage sustained in the low level also
points out that the channel layer was well controlled during the transistor operation (Figure 3c). We also
examined output characteristics of the ZnO FETs. As seen in Figure 2d, we could obtain the clean
output curve with no current crowding observed, which indicated the Ohmic contacts formation.

Through the optimization, we could obtain the overall performance of our spray-pyrolysized
ZnO FETs, unlike the previously reported ZnO-based FETs using the spray pyrolysis method (Table 1).
Particularly, several merits were superior to the others, having more advantages in switching device
application, such as the display backplane, SS ~0.49 V/decade, Vth ~3.5 V, and on/off ratio >106 when
applying a relatively small volume of VD, 0.1 V.

3.3. The Instability Behaviours of Spray-Pyrolysized ZnO FETs

Typically, the electrical instabilities of ZnO-based FETs have resulted in two proposed mechanisms.
The first is carrier trapping at or near the channel/insulator interfaces. The second mechanism is
the defect creation in the channel or at the channel/insulator interfaces that increase the density of
deep-gap states. Since the distinction between the two mechanisms in amorphous silicon-based
TFTs was experimentally reported, the state creation and the charge trapping have been studied as
dominant mechanisms of electrical instability behaviors of TFTs and they have been determined by
the degree of changes in SS [39]. Many research groups have studied sub-gap density of states (DOS)
modeling, device simulation, thermal activation energy analysis, and the sub-gap state extraction
based on electrical/optical experiments, but the mechanisms are not clearly defined yet [40–42].
To investigate the electrical instability of our ZnO FETs fabricated by spray pyrolysis, we analyzed
their bias stress-induced stretched exponential time dependence, changes of transfer characteristics
including SS and hysteresis, and their recovery behaviors of spray-processed ZnO FETs under electrical
(both positive and negative) bias stress.

3.3.1. The Electrical Instabilities of Spray-Pyrolysized ZnO FETs under Positive Bias Stress

Figure 4a presents the shifts of transfer curves as a function of time before and after positive bias
stress (+20 V) for 20 ks. The shifted transfer curve in parallel indicates that the threshold voltage
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shift (∆Vth) occurred with minimal change in SS. In both transfer characteristics before and after
electrical bias stress, a hysteresis loop with minimal shift was observed. The threshold shift induced by
positive gate bias stress followed stretched exponential behaviors, which is described by Equations (5)
and (6) [43].

∆Vth = ∆Vtho
[
1− exp

{
−(t/τ)β

}]
(5)

τ = νc
−1exp

(EA
kT

)
(6)

where τ is the time constant that exhibits an activated behaviour, and β is the exponential stretch
parameter. νc and EA indicate the speed of light and the activation energy, respectively. This tendency
has been known to be closely related with defect creation and, in case of ZnO-based FETs’ oxygen
vacancy, expected to be one of the strong candidates [44–47]. Oxygen vacancy (Vo) is widely believed to
be a donor and defects in the (uncharged) Vo state tend to be formed under electron accumulation [44].
However, based on density functional calculations, Vo is suggested as a deep donor rather than a
shallow one, despite the fact that it has the lowest formation energy among the defects that act as
donors [48–50]. In addition, there was a small degradation (10%) in the field-effect mobility observed
during the positive bias stress test. This is speculated to be predominantly related to the intrinsic defects
of the ZnO channel layer, but further investigations are needed to fully understand the behaviour.
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Figure 4. (a) The instability behaviours of transfer characteristics (log(ID) – VG and ID – VG) of the
ZnO FETs (at VD = 0.1 V) under prolonged positive (+20 V) gate bias for 20,000 s at room temperature
(R.T.). The transfer curve shifts parallel to positive direction. (b) Vth shifts as a function of stress time in
positive (+20 V) bias stress (PBS) at R.T. (c) The recovery behaviour of ZnO FETs at R.T in ambient air
after PBS. (d) The shifts of the transfer characteristics under thermal annealing (at 120 ◦C) in ambient air.

The recovery behaviours of the spray-processed ZnO FETs supported our argument. The positive
bias stress (PBS)-induced transfer characteristics of the FETs were recovered to a certain level in ambient
air as they shifted toward the prestressed one, but after a period of 12 h, they were rather far from fully
recovering, as seen in Figure 4c. On the other hand, the annealing process led the device back to the
prestress condition. With annealing at 120 ◦C for 1 h in air, the transfer characteristics of the FETs were
fully recovered. As presented in Figure 4d, further annealing did not affect the electrical characteristics
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of the ZnO FETs. This indicates that the thermal annealing only played the role of removing defects
that had been created during PBS. These results imply that the positive gate bias-induced threshold
voltage shifts as a function of stress time are induced by defects created in the deep level, and thus
require thermal energy to be recovered.

3.3.2. The Electrical Instabilities of Spray-Pyrolysized ZnO FETs under Negative Bias Stress

In negative electrical gate bias, the electrical characteristics of the spray-processed ZnO FETs
showed different tendencies when compared to the PBS ones. Figure 5a shows the threshold voltage
shift properties of the ZnO FETs induced by negative bias stress (NBS). Unlike the PBS-induced Vth

shifts following the stretched exponential fitting, the Vth shifts on NBS show A logarithmic dependence
(Equation (7)), which comes along with little change in SS [51].

∆Vth = rd log
(
1 +

t
τ

)
(7)

where rd is a decay rate constant, and τ is the time constant (Equation (6)).
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Figure 5. (a) The instability behaviours of transfer characteristics (log(ID) – VG and ID – VG) of the ZnO
FETs (at VD = 0.1 V) under prolonged negative (−20 V) gate bias for 20 ks at R.T. The transfer curve
shifts in parallel to negative direction. (b) Vth sfhit as a function of stress time in negative bias stress
(NBS) at R.T. (c) Recovery behaviour of ZnO FETs at R.T in ambient air after NBS.

These characteristics generally indicate that electron trapping at or near the channel/insulator
interface without the creation of new defects was the main mechanism of the instability behaviors [52].
Furthermore, the widened hysteresis characteristic after NBS of −20 V gate bias for 20 ks indicates
that the charge trapping with fast re-emission times (or fast state) was dominantly associated with the
NBS instability behaviours [39]. In recovery, NBS induced the different characteristics when compared
with PBS. While PBS requires thermal annealing, the shifted transfer characteristics under NBS were
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fully recoverable without additional supporting energy. After releasing at room temperature for 4 h,
the transfer characteristics returned to the pre-stress ones; Vth shifted back; and hysteresis also became
narrowed back to the pre-stress level. No further shifting was observed in the longer resting period at
room temperature, which indicates that no further electrical behaviors were involved, except when
releasing the trapped charges. Such bias-induced Vth shifts and release behaviors of the ZnO FETs
under NBS point out that the charging trapping in a fast state could have been a main mechanism for
NBS, whose energy to release the trapped interface charge was very low. The instability behaviors
under NBS are consistent with the previous studies on ZnO TFTs: Deposited by radio frequency (RF)
magnetron sputtering; logarithmic Vth shift with no effect on SS characteristics; and recovered at room
temperature (R.T.). without any additional process, where the dominant mechanism was estimated
to be the charge trapping at or near the interface of channel/insulator layers [19,51]. Although the
slightly increased field-effect mobility was also observed, similar to the behavior under the positive
bias stress, it was not a significant change when compared with the clearly changed Vth and recovery.
As aforementioned, more studies are needed to clearly explain how the prolonged gate bias affects the
mobility of ZnO FETs.

4. Conclusions

Stable and high-performance ZnO FETs were fabricated using a spray pyrolysis technique in
an ambient atmosphere. Polycrystalline film ZnO was obtained via optimization of the spray
pyrolysis process, the nature of which resulted in high field-effect mobility. Patterning using
conventional photolithography enabled sharp switching properties with a high on/off ratio and
a good SS characteristic. We examined the optical, morphological, and electrical properties of the FETs.
Furthermore, we analyzed their gate bias-induced instabilities under prolonged positive (+20 V) and
negative (−20 V) gate voltage for 20 ks. From the threshold voltage shifting with the bias stress and
following recovery behaviors, we reached the conclusion that defect creation and charge trapping
at or near the interface between semiconductor and gate insulator play a dominant role in electrical
instability behaviors by positive and negative gate bias, respectively. As there are only a few studies on
instabilities of ZnO-based FETs fabricated by spray pyrolysis, our approaches to investigate electrical
stabilities can be considered a significant step to address commercialization of the MOS FETs based on
the spray pyrolysis process.
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