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Abstract: Pentamode metamaterials have been used as a crucial element to achieve elastical
unfeelability cloaking devices. They are seen as potentially fragile and not simple for integration in
anisotropic structures due to a non-centrosymmetric crystalline structure. Here, we introduce a new
class of pentamode metamaterial with centrosymmetry, which shows better performances regarding
stiffness, toughness, stability and size dependence. The phonon band structure is calculated based on
the finite element method, and the pentamodal properties are evaluated by analyzing the single band
gap and the ratio of bulk and shear modulus. The Poisson’s ratio becomes isotropic and close to 0.5
in the limit of small double-cone connections. Stability and scalability analysis results show that the
critical load factor of this structure is obviously higher than the classical pentamode structure under
the same static elastic properties, and the Young’s modulus gradually converges to a stable value
(the infinite case) with an increasing number of unit cells.
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1. Introduction

Metamaterials are rationally designed composite structures made of building blocks (or unit cells
or even meta-atoms), which are composed of one or more constituent bulk materials. They are said to
have effective properties beyond the standard material [1,2].

For example, in optics, they have been introduced theoretically by Veselago [3] as the necessary
material for negative refraction of light. Later in 2000, Pendry proposed how to achieve such negative
refractive index slabs using a thin metal layer and to get a perfect lens [4]. Interestingly, many scientists
focused on trying to design such material but the general laws of physics (Kramer-Kronig relations)
tell us that such properties can only be found at a single frequency. In the simplest Drude-Lorenz
model, one can get a negative permittivity but one must pay the price by having a non-zero imaginary
part. More generally, having materials that are really going beyond the bounds is very often simply
impossible according to physics laws [1,2].

Now, let us look at the mechanical properties of material. They are often summarized in the
so-called elasticity tensor [1,5,6]. One generally considers that any elasticity tensor must be positive
definite. This constraint has been relaxed by the idea of convexity by Milton [7–9]. In the isotropic case,
the elasticity tensor has only two different eigenvalues. The first is proportional to the bulk modulus
of the material and the second, five times degenerated, to the shear modulus. This means that when
focusing on isotropic materials, one should only pay attention to these two moduli.
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Milton and Cherkaev [10] in parallel with Sigmund [11] asked the following question in 1995:
Which elasticity tensors are realizable? Can one for example cancel all shear related eigenvalues
of an elastic tensor? Sigmund [11] used topological optimization to find a structure corresponding
to such material with prescribed constitutive property, i.e., the Poisson’s ratio closes to 0.5. Milton
and Cherkaev [10] have proposed a structure based on intuition, group of symmetry and idealized
joins. They firstly proposed such a structure as the “pentamode” from mathematical analysis. This
pentamode structure is composed of double cones, and the joint points form a diamond lattice. Later, the
mechanical property of such pentamode structure was realized and thoroughly studied [12–23]. Kadic
et al. [12] fabricated the polymer pentamode structure using state-of-the-art dip-in direct-laser-writing
(DLW) optical lithography. Then, they took advantage of the scalability of continuum mechanics and
fabricated a much larger macroscopic version of the pentamode structure to directly perform elastic
measurements [14]. Meanwhile, they also performed a series of numerical simulation calculations,
including phonon band structure, elastic mechanic property and so on, to obtain a comprehensive
analysis of the pentamode structure from theory and experiments [13,15,16]. In addition, Amendola
et al. [17] experimentally investigated the mechanical response of an additively manufactured metallic
pentamode structure confined between stiffening plates, and also conducted finite element simulations
to study the bending dominated response of layered mechanic metamaterials alternating such
pentamode lattices and confinement plates [18]. The special mechanical property of pentamode
material, i.e., difficult to compress and easy to deform, shows promising application in meta-liquids,
shear wave band-gap systems [19,20], and innovative seismic isolation devices [17].

The pentamode structure has even also been used for practical applications, such as elastic
unfeelability [24]. The core-shell elasto-mechanical cloak shows good cloaking performance under
uniaxial pushing conditions and conceals the obstacle. Therefore, the development of pentamode
mechanical metamaterials will enable three-dimensional transformation elastodynamic architectures
and significantly improve our ability to steer waves and energy fluxes in mechanics.

Up to the present, most pentamode metamaterials are based on Milton’s diamond-like pentamode
structure. However, in the process of investigation, this structure is not very practical to fabricate nor
to be used due to two main arguments: (i) fragility due to small connections and (ii) sensibility to
scaling due to also the non-centrosymmetry. Here, in this paper we propose a new class of pentamodal
metamaterials with centrosymmetry that show better stability, better performances (stiffness and
toughness) and for which effective properties depend much less on the number of unit cells than the
previous proposals [12–22,25–27].

2. Modeling and Method

In order to design a pentamodal structure, the key element is a tetragonal element composed
of four double cones connected in a small point-like join. Then, we must carefully consider how we
connect these primitive blocks to assemble a unit cell. Here, we emphasize that a missing but important
aspect is the centrosymmetry, and we propose the unit cell shown in Figure 1.

Taking a closer look, pairs of cones are connected at their thick ends with a diameter D to form a
complete double-cone unit, just as shown in Figure 1a. The double-cone elements then make contact
with each other at their thin ends with a diameter d, and these connection points form a simple
cubic lattice. The relation between the lattice constant a and the length of the double-cone H is
H =

(
2
√

3− 3
)
a. By periodically repeating the unit cell shown in Figure 1b, the complete pentamode

structure can be obtained.
In this paper, based on the finite-element method, we performed a series of numerical simulation

calculations using COMSOL Multiphysics (Version 5.3, COMSOL, France). Specifically speaking, we
firstly numerically calculated the phonon band structure of this model in the structural mechanics
module, based on the Bloch theorem and by solving the elasto-dynamic equation. Then, combining
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the generalized Hook’s law and the elastic wave equations, we can retrieve the elasticity tensor and
then the mechanic modulus from the expressions [28]:

C44 = ρ
(
vT,z

110

)2
(1)

C12 = ρ
(
vL

110

)2
−C44 − ρ

(
vT,xy

110

)2
(2)

C11 = 2ρ
(
vT,xy

110

)2
+ C12 (3)

G = C44 (4)

B = (C11 + 2C12)/3 (5)

where ρ represents the mass density of the pentamode structure, which is given by the volume filling
fraction f times the mass density ρ0 of the constituent material, i.e., ρ = fρ0 [16,29–33]. C11, C12 and
C44 denote the three independent elastic constants of the cubic lattice. Based on the above parameters
and the expressions, we further calculated the Poisson’s ratio of the pentamode structure, and finally,
we performed stationary analysis in the structural mechanical module to study the stability of the
structure, and also, static calculations were performed for the finite metamaterial samples containing
N × N × 2N extended unit cells (see Figure 1b) to verify the scalability.

Figure 1. Model and unit cell of the pentamode structure. (a) Basic building element of a double-cone.
(b) Model of pentamode structure in a simple cubic lattice.

3. Results and Discussion

In order to quantify the performances of the new structure we first computed the dispersion
relation. The constituent material of the pentamode structure we consider here is a polymer with mass
density ρ0 = 1190 kg/m3, Poisson’s ratio ν = 0.4 and Young’s modulus E = 3 GPa.

The phonon band structure was calculated with COMSOL Multiphysics using the structural
mechanics module. The results of the pentamode structure are shown in Figure 2. To make clear
the vibration modes of the dispersion relation curves, the different modes are colored differently
(see caption of Figure 2).

The branches 1 and 2 (depicted in red) correspond to the first elastic transverse modes. Similarly,
the branch 3 (depicted in blue) corresponds to the longitudinal mode. It becomes immediately clear
that the light grey region in the phonon band structure is the single-mode band gap, in which the
transverse waves are inhibited and only the longitudinal wave can propagate.

By extracting the slope data of acoustic branches in ΓM direction, the phase velocities of transverse
waves and longitudinal wave were obtained. Then, the bulk modulus B and shear modulus G were
deduced from the expressions (1–5). Finally, the calculated B/G ratio of the pentamode structure was as
large as 311. Therefore, by combining the higher B/G ratio than traditional materials and the existence
of the single-mode band gap, we could confirm the pentamodal property of the new structure from
the aspect of physical property. Furthermore, from the aspect of mathematical analysis, five of the
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six diagonal elements of the diagonalized 6 × 6 elasticity tensor of the pentamode material were zero,
and only one was non-zero. This means that it can only support a single stress, and it satisfies the
mathematical definition of the “pentamode”.

Figure 2. Phonon band structure of the pentamode structure (with geometrical parameters D/a = 2/37.3
and d/a = 0.5/37.3). The first two branches emphasized using red dots and the third using blue dots
represent, respectively, are two transverse wave modes and a longitudinal wave mode. The light grey
region is the single-mode band gap, in which only the longitudinal wave can propagate.

Then, to check the isotropy of the new structure, we plotted the direction dependence of the
Poisson’s matrix ν of the pentamode structure with the periodic boundary conditions imposed on
the unit cell in Figure 3. The Poisson’s ratio (matrix here) ν is proportional to the length of the
vector from the origin to the depicted surface. In general, the Poisson’s ratio of the ideal pentamode
approaches 0.5, and the Poisson’s ratio of this structure, as shown in Figure 3, is in the range from
0.472 to 0.5. What is more, the difference of Poisson’s ratio for different directions is minimal. The
result shows that ν becomes more and more isotropic when d decreases, leading to the ultimate limit
of 0.5 (ideal pentamode).

Figure 3. Three-dimensional polar diagram of the effective Poisson’s ratio ν(a = 37.3 µm, D = 2 µm).
The length of the vector from the origin to the surface is proportional to the modulus of Poisson’s ratio.
The small diameter d has been used as parameter: (a) d = 2 µm, (b) d = 1.5 µm, (c) d = 1 µm, (d) d =

0.5 µm and (e) d = 0.1 µm.

Following this, we performed the stability analyses for the pentamode structure. To enable direct
comparison, we chose the new pentamode structure (a = 37.3 µm, D = 2 µm and d = 0.5 µm) in this
paper and the classic pentamode structure (a = 37.3 µm, D = 3.05 µm and d = 0.43 µm) with diamond
lattice studied by Kadic et al. [12] to compare. For the condition of the above geometrical parameters,
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the two structures have almost the same B and G. Specifically, B1 = 1.73× 106 Pa, G1 = 5.57× 103 Pa
for the new pentamode structure in this paper, and B2 = 1.90 × 106 Pa, G2 = 5.53 × 103 Pa for the
classic pentamode structure. We simultaneously applied the equal and opposite force on the top and
bottom face, the front and back face, and the left and right face of the two structures to compress
them. By exerting load on the two structures, the calculated critical load factors are 2.38× 106 for new
the pentamode structure and 1.62× 106 for the classic pentamode structure, respectively, as shown
in Figure 4. This means that the new pentamode structure can support a bigger load than the classic
structure, and thus it should be more stable.

Figure 4. Stability comparison between (a) the new pentamode structure (a = 37.3 µm, D = 2 µm
and d = 0.5 µm) in this paper and (b) the classic pentamode structure (a = 37.3 µm, D = 3.05 µm and
d = 0.43 µm). The critical load factors are (a) 2.38 × 106 and (b) 1.62 × 106, respectively.

Finally, we performed a simple compressional test based on Young’s principle by performing
compressional experiments on different sample sizes composed of the same unit cells. The compression
experiment samples included N × N × 2N extended unit cells, and N = 1, 2, 3, 4, 5. The simulation
details and boundary conditions were as follows: the bottom face of the sample is fixed, and a constant
force is applied on the top face along the z-direction. This means that we applied the normal stress on
the top face and compressed the sample along the negative z-direction. Then, we could obtain the
displacement of the top face of the sample after solving. Finally, the Young’s modulus of the sample
could be derived based on its definition, i.e., the ratio of longitudinal stress and longitudinal strain, as
is shown in Figure 5. Results show that the Young’s modulus of this pentamode structure gradually
converges to 6.82 kPa (the infinite case) for increasing N from 1 to 5, and this phenomenon indicates
that the pentamode structure shows good performance on scalability. In other words, it is not necessary
to have too many unit cells in order to mimic an effective medium close to the infinite case [2,34–36].
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Figure 5. Young’s moduli of the pentamode structure (a = 37.3 µm, D = 2 µm and d = 0.5 µm) with N ×
N × 2N extended unit cells (N = 1, 2, 3, 4, 5). The horizontal line refers to the value of Young’s modulus
for the infinite case.

4. Conclusions

In conclusion, we have shown a new class of pentamodal metamaterial with better elastic properties
and a higher stability and scalability. A ratio of B/G of more than 300 and complete single-band gap
have been obtained. The Poisson’s ratio is nearly isotropic and approaches the limit of ideal pentamode
metamaterial of 0.5 as the small internal connection d decreases. Five of the six eigenvalues of elasticity
tensor are zero, and the pentamodal property of the new structure is characterized from the two
aspects, i.e., the physical property and the mathematic definition. Moreover, under the same external
force conditions, the new pentamode structure shows a twist in the center, which allows it to support
a greater load than the previous structure. The Young’s modulus of the new structure converges to
6.82 kPa (the infinite case) for increasing N from 1 to 5, and one will not need to have too many unit
cells in order to mimic an effective medium. Therefore, the higher stability and scalability makes it
easily realizable in experiments, and it provides an available candidate for three-dimensional elastic
cloaks in the future.
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