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Abstract: In this study, the influences of chemical composition and fineness on the development of
concrete strength by curing conditions were investigated through performance evaluation of high
SO3 Portland cement (HSPC) and ordinary Portland cement (OPC). At the same fineness (3800 cm2/g),
the initial and final setting times of HSPC were 92 and 98 min less than OPC. Early mortar compressive
strength was approximately 176% higher after 24 h. After curing for 15 h, 18 h, and 24 h, the maturity
of HSPC concrete (107.4%, 109.6%, and 111.7%) and early compressive strength (146.4%, 170.7%,
and 154.5%) were higher than measured for OPC concrete. HSPC fineness was 111.8% higher than
OPC, leading to early activation of the hydration reaction. By X-ray fluorescence analysis, the SO3

content of HSPC was 107.9% that of OPC. The applicable time for HSPC concrete form removal was
shorter than that for OPC concrete. The relationships y = −10.57 ln(x) + 47.30 and y = −9.84 ln(x)
+ 44.05 were estimated for predicting the early-age strength OPC and HSPC concrete. Therefore,
applying HSPC concrete to an actual construction site is expected to shorten the construction period
and reduce the heating curing cost in winter compared to OPC concrete.

Keywords: chemical composition; fineness; setting time; early compressive strength; high SO3

Portland cement (HSPC); ordinary Portland cement (OPC); form removal time

1. Introduction

Concrete is the most commonly used construction material because of its excellent strength
and durability [1,2]. After a concrete structure has cured, the removal of the forms used to hold its
shape during hardening is the most important part of the management process at construction sites
that must adhere to the standards determined during the audit process. Therefore, predicting the
early-age strength of concrete by calculating the relationship between the curing temperature and
mechanical strength is becoming an increasingly important part of concrete research [3,4]. Several
recent publications have employed the maturity method to estimate the compressive strength of
different types of concrete, including mass concrete [5,6], steel fiber reinforced concrete [7], sprayed
concrete [8], and eco-concrete [9–11]. However, to the best of our knowledge, no previous studies have
estimated the compressive strength of field applicable high SO3 Portland cement (HSPC).

The contribution of cement particles to the strength of the concrete is closely related to their
size [12,13]. Specifically, cement particle size controls the degree of hydration in the early hydration
stage; i.e., finer cement particles lead to higher heat of hydration [14,15], with extremely fine cement
particles being completely hydrated within 24 h [16]. Conversely, finer cement grains can affect the
generation of early-age cracks in the cement matrix [17,18]. This study evaluated the performance of
cement with a higher degree of fineness than ordinary Portland cement (OPC).
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Superplasticizers are also applied to cementitious materials and concrete fabrication to realize
significant improvements in machinability, mechanical properties, porosity, and durability. They can
provide excellent workability while substantially reducing the water/binder ratio [19–22] and increasing
strength. This takes place up to a point beyond which low water/binder ratios can lead to other
problems. For example, the degree of hydration of cement minerals may be significantly reduced.
Consequently, their ability to directly contribute to cement performance will also be reduced; therefore,
the plasticizer addition level must be optimized [23].

Portland cement CEM I is a powdered material made of clinker and gypsum [24]. Gypsum is
used to control the hardening time of cement [25], and the mechanical properties (strength, shrinkage,
and expansion) of cement can change depending on the amount of gypsum in the matrix [26,27].
Gypsum may be present in small proportions as anhydrite (CaSO4) but, owing to instability, rarely
as the hemihydrate (CaSO4·1/2H2O). Gypsum is present in cement as calcium sulfate dihydrate
(CaSO4·2H2O) and is expressed in terms of trioxide sulfate (SO3) levels [28]. The SO3 content should be
less than 4% according to European standard EN 197-1 [29] because, in cementitious systems, low SO3

content cannot guarantee sufficient condensation delay, whereas high SO3 content has a significant
effect on the cement strength and dimensional stability. Optimal SO3 content ensures maximum
strength and minimum shrinkage of the matrix without excessive expansion in water [26,30,31].

According to Kurdowski [32], the optimum SO3 content (%) can be calculated using one of the
following formulas:

% SO3(Optimum) = 0.556·Na2O2 + 0.0017659·Fineness + 0.1072·Fe2O3 − 3.6004 (1)

% SO3(Optimum) = 0.093·Al2O3 + 1.71·Na2O2 + 0.94·K2O + 1.23 (2)

% SO3(Optimum) = 6.810−5
·Fineness·C3A (3)

% SO3(Optimum) = 1.841 + 0.095·C3A + 1.6364·Na2O2. (4)

However, as reported by Mohammed and Safiullah [33], and shown in Figure 1, it has been proven
through testing that the maximum hydration degree (elapsed time of 72 h) and compressive strength
(elapsed time of 48 h) are increased when SO3 content is approximately 3.0%–3.2%.
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Figure 1. Preliminary test results of the compressive strength of fine cement according to binder weight
and curing temperature.

To maximize early compressive strength and apply the findings to construction sites, the research
team added gypsum to OPC clinker, increasing SO3 to 3.1% and improving fineness by 111.8%
(400 cm2/g on 3400 cm2/g). In this study, the new HSPC was evaluated against OPC by setting time and
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early compressive strength according to cement fineness and type in a mortar test (Series I), and slump
and air content according to cement fineness and type in a concrete test (Series II). Early compressive
strength and maturity were evaluated in the Series II testing. The strength prediction of concrete and
the possibility of removing the vertical formwork according to the heat of hydration were applied to
the in-place curing of concrete samples in a field test structure.

2. Experimental Procedure

2.1. Materials

Ordinary type 1 Portland cement and type 2 fly ash (FA) that met the KS L 5201 standard (Portland
cement) [34] were used as binders (Table 1). HSPC cement with fineness increased to approximately
111.8% (400 cm2/g) was prepared by adding gypsum to a level of 3.1% SO3 content to ensure the
development of early compressive strength. Washed sea sand (40%) and crushed sand (60%) were
mixed for use as the fine aggregate. Crushed granite aggregate was used as the coarse aggregate.
Polycarboxylic superplasticizer was applied to both OPC and HSPC, as the only admixture used.

Table 1. Physical properties of the materials used in the tests. (OPC, ordinary Portland cement; HSPC,
high SO3 Portland cement.).

Materials Physical Properties

OPC Ordinary Portland cement (density: 3.15 g/cm3, fineness: 3400 cm2/g)

HSPC High SO3 Portland cement (density: 3.13 g/cm3, fineness: 3800 cm2/g)

FA Fly ash (density: 2.20 g/cm3, fineness: 3850 cm2/g)

Fine aggregate Crushed sand 60% (density: 2.63 g/cm3, absorption: 1.30%)

Washed sea sand 40% (density: 2.60 g/cm3, absorption: 1.34%)

Coarse aggregate Crushed granitic aggregate (size: 25 mm, density: 2.65 g/cm3, absorption: 0.89%)

Admixture Polycarboxylic superplasticizer-based type (density: 1.26 g/cm3)

Table 2 shows the chemical composition of binders used in the tests. HSPC was characterized
by higher SO3 content (3.13%) and loss on ignition (L.O.I.) than OPC. The particle size distributions,
obtained using a Mastersizer 2000 (Malvern Panalytical, Seongnam-si, Korea), are shown in Figure 2.
The HSPC cement had a mean diameter of 16.31 µm and fineness modulus 1.015, while OPC had a
diameter of 19.46 µm and fineness 1.175; i.e., HSPC had a smaller and finer particle size distribution
than OPC. Analysis using a Genesis-2020 scanning electron microscope (SEM, Emcrafts, Gwangju-si,
Korea) (Figure 3) confirmed this result, revealing similarly shaped particles, but smaller in the case of
HSPC. Crystallinity was analyzed by X-ray diffraction (X’pert3 Powder PW 3050, Malvern Panalytical,
Seongnam-si, Korea) (Figure 4); the samples had a very similar crystal structure, except that OPC
contained more brushite. Figure 5 shows the particle size distribution curves of the aggregates used in
this study.

Table 2. Chemical composition of binders used in the tests. (OPC, ordinary Portland cement; HSPC,
high SO3 Portland cement.).

Materials
Chemical Composition (%)

L.O.I. (1)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Other

OPC 19.82 4.85 3.30 60.34 3.83 2.90 1.08 0.86 3.02
HSPC 19.22 4.51 3.35 61.00 4.14 3.13 1.04 0.79 2.82

(1) L.O.I.: Loss on ignition.
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Figure 2. The particle size distribution of OPC (ordinary Portland cement) and HSPC (high SO3

Portland cement).
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Figure 4. X-ray diffraction patterns of OPC and HSPC.
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2.2. Experimental Parameters

Two series of setting time and early compressive strength tests were carried out: Series I (mortar
test); Series II (concrete tests). The tests, fineness level settings, and concrete curing conditions for
the two types of cement are shown in Table 3. In Series II, cement curing was set to level 3 (chamber,
indoor, sealed). All experiments were performed in an environment with air temperature 20 ±
2 ◦C and relative humidity 30%–40%, as recommended by the National Conference of Standards
Laboratories–International (NCSLI). The Series I mortar mixing proportions are summarized in Table 4.
Water/cement (W/C) and cement/sand (C/S) ratios (ASTM C778) [35] were set identically for the
two types of cement, and the same cement, water, and superplasticizer (admixture, AD) masses
were used to make the samples. The Series II concrete mixing proportions are shown in Table 5.
The quantities in these were likewise set identically. The binder unit content was fixed at 330 kg/m3,
which corresponded to the compressive strength most commonly used for a typical apartment floor
(24 MPa). The ready-mixed concrete was produced by Remicon S companies (Busan, Korea), which
delivered the concrete to the construction sites. Ten percent of the total binder quantity was replaced
with fly ash to improve durability and long-term strength, by increasing cement mix fluidity, and a
polycarboxylic superplasticizer-based admixture was used.

Table 3. Experimental parameters for setting time and early compressive strength tests using ordinary
Portland cement (OPC) and high SO3 Portland cement (HSPC).

Series Type Experimental Factors Experimental Levels Measured Parameters

I Mortar Cement fineness and type
3000 cm2/g (OPC)

Setting time (h)
Compressive strength (MPa)3400 cm2/g (OPC)

3800 cm2/g (OPC, HSPC)

II Concrete

Cement fineness and type 3400 cm2/g (OPC)

Slump (mm)
Air content (%)

Compressive strength (MPa)
Maturity (◦C·h)

3800 cm2/g (HSPC)

Curing type
Chamber (15 ◦C)

Indoor (variable temperature)

Sealed (variable temperature)

Table 4. Mixing proportions for mortar tests.

Series W/C (%) C:S (1) Cement (g) Water (g) AD (2) (B×%)

I
(Mortar)

OPC 50 1:3 450 225 0.7
HSPC 50 1:3 450 225 0.7

(1) C:S = Cement:sand (ISO standard sand); (2) AD: Admixture. W/C: water/cement.

Table 5. Mixing proportions for concrete tests.

Series W/B (1)

(%)
S/a (2)

(%)

Unit Weight(kg/m3) AD (8)

(B×%)B (3) W (4) OPC HSPC FA S1 (5) S2 (6) G (7)

II
(Concrete)

OPC 50 49.2 330 165 300 0 30 541 361 932 0.8
HSPC 50 49.2 330 165 0 300 30 541 361 932 0.8

(1) W/B: Water/Binder; (2) S/a: Sand/aggregates; (3) B: Binder; (4) W: Water; (5) S1: Crushed sand; (6) S2: Sea sand;
(7) G: Gravel; (8) AD: Polycarboxylic superplasticizer-based type admixture.

2.3. Experimental Procedure

In Series I, the mortar flow test was performed according to ASTM C1437 [36], and the mortar
setting test according to ASTM C403/C403M [37]. The compressive strength of mortar was measured
at the age specified by ASTM C109/C109M [38]. In Series II, the concrete slump test was conducted in
accordance with standard ASTM C143/C143M [39], and the air content test in accordance with ASTM
C231/C231M [40]. Cylindrical specimens for compressive strength (Ø: 100 × 200 mm) were fabricated
in accordance with the “Standard Test Method for Compressive Strength of Cylindrical Concrete
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Specimens”, described in ASTM C39/C39M [41], and the compressive strength by elapsed time was
measured. As shown in Figure 6, T-type thermocouples were installed to measure the temperature
history of the specimens under each curing condition using a data logger. The model proposed in
ASTM C873/C873M [42] was installed to measure the compressive strength of concrete samples and
record the actual history of hydration at an early age.

Equation (5), a functional formula proposed by Nurse–Saul, was used to calculate the sample
maturity according to ASTM C1074 [43–45]. Maturity theory is closely related to the strength
improvement of Portland cement concrete and was first proposed by Saul in 1951, who calculated
the maturity index based on the lowest temperature at which the strength could be improved [46].
Maturity theory was further refined by Bergström [47].

M =
∑

(T − T0
)
·∆t (5)

where M is the maturity index (◦C·h), T is the average concrete temperature (◦C) during the time
interval ∆t (h), T0 is the datum temperature (typically −10 ◦C), and t is the elapsed time (h).

Equation (6) was used to predict the early-age strength. It is a functional formula proposed by
Plowman in 1956, based on the hypothesis that the compressive strength of concrete is close to linear
when expressed as a logarithmic function of maturity using the Nurse–Saul equation [48]. As this
simple equation has only two constants to be determined, it is generally applicable [49]:

fc = a + b·ln(M) (6)

where fc is the compressive strength (MPa), M is the maturity index (◦C·h), and a and b are
regression constants.
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curing; (c) Mold temperature measurement; (d) Wall temperature measurement.

3. Results and Discussion

3.1. Setting Time and Early Strength Properties of Mortar

Figure 7 shows the OPC setting time by fineness. Initial setting time decreased by approximately
3 min, with fineness increased by 100 cm2/g, and the final setting time was reduced by 4 min 38 s.
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At the same fineness (3800 cm2/g), HSPC initial and final setting times were less than those of OPC by
92 and 98 min, respectively.

Figure 8 shows the early compressive strength of OPC and HSPC by elapsed time. At the same
fineness (3800 cm2/g), the compressive strength of HSPC was higher by 146%, 159%, and 176% after
15 h, 18 h, and 24 h, respectively. Figure 9 shows the early compressive strength of OPC by fineness.
Early compressive strength increased with the degree of fineness. Strength improvements of 0.33 MPa,
0.46 MPa, and 0.69 MPa were observed at 15 h, 18 h, and 24 h of elapsed time, per 100 cm2/g increase
in fineness.
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Taken together, the results of Figures 7–9 showed that as the fineness of cement increased, setting
time decreased, and early compressive strength increased. This might be due to enhanced activation
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of the initial hydration reaction with increasing fineness. However, at the same level of fineness,
HSPC exhibited a faster setting time and higher early compressive strength than OPC. For this reason,
the molar ratios CaO/SO3 and SO3/Al2O3 and the hydraulic moduli of OPC and HSPC were reviewed
(Figures 10 and 11). For HSPC relative to OPC, the CaO/SO3 ratio was lower (93.7%), the SO3/Al2O3

ratio was higher (116.1%), and the hydraulic modulus (CaO/(SIO2 + Al2O3 + Fe2O3)) was also higher
(104.4%). These differences have implied correspondence with the faster setting time and higher early
compressive strength of HSPC at the same fineness.
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Figure 10. CaO/SO3 and SO3/Al2O3 molar ratios in OPC and HSPC.
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Figure 11. CaO/SO3, SO3/Al2O3, and hydraulic modulus molar ratios in OPC and HSPC.

3.2. Early Strength Properties of Concrete

Fresh OPC and HSPC were produced from the batchers at Remicon S. The initial air content and
slump values after production were compared with those obtained one hour after production. The test
results revealed that both OPC and HSPC met the target slump and air content values of 180 ± 25 mm
and 4.5 ± 1.5%, respectively (Table 6).

Figure 12 shows the curing temperature history and maturity for concrete samples under the
three curing methods. The order of maturity after 24 h was HSPC concrete > Air > OPC concrete,
regardless of the method. The indoor curing results after 24 h (Figure 12a) showed that HSPC concrete
maturity (644.6 ◦C·h) was 103% higher than air (625.8 ◦C·h), whereas OPC concrete (608.6 ◦C·h) was as
low as 97.2%. The sealed curing results after 24 h (Figure 12b) showed that HSPC concrete maturity
(762.5 ◦C·h) was 104.6% higher than air (729.2 ◦C·h), whereas OPC concrete (719.2 ◦C·h) was at 98.6%.
The chamber curing results after 24 h (Figure 12c) showed that HSPC concrete maturity (672.7 ◦C·h)
was 108.8% higher than air (618.6 ◦C·h), while OPC concrete (602.1 ◦C·h) was 97.3% of the air value.
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Figure 12. Concrete curing temperature history and maturity for different curing methods: (a) Indoor
curing method; (b) Sealed curing method; (c) Chamber curing method.

Figure 13 compares the maturity and early strength of OPC and HSPC concrete. At elapsed times
of 15 h, 18 h, and 24 h, the maturity of HSPC concrete was 107.4%, 109.6%, and 111.7% higher than
that of OPC concrete, and the early compressive strength was 146.4%, 170.7%, and 154.5% higher.
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The differences in HSPC over OPC were, firstly, higher fineness (111.8%), leading to early activation
of the hydration reaction; secondly, higher SO3 content (107.9%) as measured by X-ray fluorescence
analysis (Figure 14); thirdly, CaO/SO3 was low, and SO3/Al2O3 and hydraulic modulus were high
(Figures 10 and 11). As a result, the heat of hydration and maturity of HSPC concrete were higher
than those of OPC under the same mixing and curing conditions (Figure 12), leading to higher early
compressive strength.

Table 6. Properties of fresh concrete.

Series
Air (%) Slump (mm)

Initial 1 h Initial 1 h

II
(Concrete)

OPC 4.6 4.3 165 170
HSPC 3.8 3.5 185 185
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Figure 13. Comparison of maturity and early strength of OPC and HSPC concrete: (a) Maturity;
(b) Early compressive strength.
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Figure 14. X-ray fluorescence analysis results of OPC and HSPC.

Figure 15 shows the strength enhancement curves for OPC and HSPC concrete, derived by
applying the functional formula proposed by Plowman (Equation (6)). The strength enhancement
curves for OPC and HSPC are modeled as y = 11.78 ln(x)− 67.35 and y = 16.99 ln(x)− 98.14, respectively,
with high correlations of 95% and 96%. At the maturity of 400–800 ◦C·h, the slope of the HSPC concrete
strength enhancement curve was 144.2% that of OPC concrete. The most important element for reducing
the number of cycles per floor for a typical apartment construction site is the time required to reach a
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compressive strength of 5 MPa, at which point form removal is possible [50]. OPC concrete reached
5 MPa at 465 ◦C·h, and HSPC concrete reached 5 MPa at 433 ◦C·h maturity; therefore, the application
of HSPC to actual construction sites could enable form removal at approximately 6.9% lower maturity
than OPC.

Figure 16 compares the estimated strength curve (ESC) for HSPC concrete, based on the temperature
history curve of the field molds, with the measured compressive strength of the field molds. The actual
compressive strengths of all six field molds of HSPC were within ±10% of the ESC. Therefore,
the reliability of the ESC for HSPC concrete was assumed to be 90% or higher.

Figure 17 shows the ESC for the HSPC concrete samples according to the temperatures of the mold,
curing air, and structure wall (200 mm thick). For a curing time of 9–18 h, the average maturity values
of the field mold, curing air, and structure wall were 496 ◦C·h (96.6%), 514 ◦C·h (100%), and 550 ◦C·h
(107%), indicating that curing in the structure wall resulted in approximately 10.8% higher hydration
heat than the mold. Therefore, a safety factor of approximately 10.8% could be assumed if vertical
form removal is performed at a time based on the attainment of 5 MPa compressive strength in the
mold. The compressive strengths of the field mold, curing air, and structure wall reached 5 MPa after
11.8 h, 11.3 h, and 11 h, indicating that the applicable time of form removal for the structure wall was
approximately 48 min earlier than that of the mold (i.e., without the 10.8% safety factor).
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Figure 15. Derived strength enhancement curves of OPC and HSPC concrete.
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Figure 17. Estimated strength curve and temperature history for the structure wall, field mold, and
curing air according to the curing elapsed time of HSPC concrete.

Figure 18 shows the estimated applicable time of form removal according to the average
temperature history of the concrete. Relationships of y = −10.57 ln(x) + 47.30 and y = −9.84 ln(x)
+ 44.05 were estimated for OPC and HSPC, respectively, with high correlations of 99.4% calculated
for both. ACI 347R Guide to Formwork for Concrete [51] requires that the wall vertical formwork
be retained for 12 h under conditions where the temperature of the air surrounding the concrete is
above 50 ◦F (10 ◦C). However, in the case of domestic construction sites, the wall vertical formwork is
often removed at 8 am the day after the ready-mixed concrete is poured, which is normally completed
by 2 pm. Therefore, this study assumed that the target vertical form removal time was 18 h after
concrete pouring. This required an average curing temperature greater than 15.8 ◦C for OPC and
14 ◦C for HSPC. Therefore, the strength required for form removal could be achieved at a 1.8 ◦C lower
curing temperature by employing HSPC concrete. As the curing temperature might be reduced during
construction in winter, this would enable a reduction of heat curing costs.

Figure 19 illustrates the length of time for which heat curing would not be required to ensure
the strength needed for form removal (5 MPa) within 18 h after concrete pouring by applying HSPC.
This length of time was calculated by analyzing the monthly average temperatures of Busan in Korea
for the last five years. Busan is a metropolitan city in the south of Korea and has a project that will
actually apply HSPC. It was found that heat curing would not be necessary from early April to the end
of October (approximately 6.8 months) when using HSPC; however, measures, such as heat curing,
would be required for the remaining 5.2 months to ensure an average curing temperature of 14 ◦C
or higher.
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Figure 18. Applicable time of form removal according to the average temperature history of field mold.
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Figure 19. Months when heat curing would not be required in Busan due to using HSPC concrete.

4. Conclusions

In this study, the influences of chemical composition and fineness on the development of concrete
strength by curing conditions were investigated through the performance evaluation of HSPC and
OPC. The early compressive strength of HSPC was predicted, and its application to actual construction
sites was examined. The main conclusions are as follows.

(1) According to the Series I (mortar) test, increasing the fineness of OPC resulted in faster setting
time and early compressive strength. At the same fineness (3800 cm2/g), the initial and final
setting times of HSPC were 92 and 98 min less than OPC, and the early compressive strength was
approximately 176% higher after 24 h curing.

(2) HSPC CaO/SO3 molar ratio was lower (93.7%), SO3/Al2O3 was higher (116.1%), and the hydraulic
modulus was 104.4% higher than OPC.

(3) According to the Series II (concrete) test, the maturity at elapsed time 24 h was HSPC > Air > OPC,
regardless of the curing method. At elapsed times of 15 h, 18 h, and 24 h, the maturity of HSPC
concrete was 107.4%, 109.6%, and 111.7% higher than OPC concrete, and the early compressive
strengths were 146.4%, 170.7%, and 154.5% higher.

(4) The reasons for the improvement were that the fineness of HSPC was approximately 111.8%
(400 cm2/g increase) greater than OPC, leading to early activation of the hydration reaction,
and by the results of X-ray fluorescence analysis, HSPC had 107.9% higher SO3 content. The heat
of hydration and maturity of HSPC were higher than that of OPC under the same mixing and
curing conditions.

(5) The applicable time of form removal was estimated according to the average temperature history
of the field molds. Relationships of y = −10.57 ln(x) + 47.30 and y = −9.84 ln(x) + 44.05 were
estimated for OPC and HSPC concrete, respectively. The average curing temperature must be
15.8 ◦C or higher for OPC and 14 ◦C or higher for HSPC to ensure 5 MPa within 18 h after
concrete pouring.

Based on the monthly average temperatures in Busan, Korea, for the last five years, heat curing
would not be required from early April to the end of October (approximately 6.8 months). During
the remaining months, measures, such as heat curing, would be required to maintain average curing
temperatures of 14 ◦C or higher for HSPC.

In future studies, the performance impact of HSPC according to mineralogical composition would
be investigated, and the effects of the construction period and cost reduction effects would be examined
when HSPC is applied to actual construction sites.

Author Contributions: Conceptualization, J.L. and T.L.; investigation, J.L. and T.L.; resources, J.L.; writing—
original-draft, J.L.; writing—review and editing, J.L. and T.L.
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