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Abstract: The paper reviews the recent works concerning the Portevin–Le Chatelier (PLC) effect in
Advanced High-Strength Steels (AHSSs) with a special attention to high-strength medium-manganese
steels. Theories explaining the mechanism of the plastic instability phenomenon in steels with
medium- and high-Mn contents were discussed. The relationships between microstructural effects
such as TRIP (Transformation-Induced Plasticity), TWIP (Twinning-Induced Plasticity) and the PLC
effect were characterized. The effects of processing conditions including a deformation state (hot-rolled
and cold-rolled) and strain parameters (deformation temperature, strain rate) were addressed. Factors
affecting the value of critical strain for the activation of serrated flow behavior in particular in
medium-manganese steels were described.

Keywords: medium-manganese steel; Portevin–Le Chatelier phenomenon; dynamic strain ageing;
Transformation-Induced Plasticity; retained austenite; deformation temperature

1. Introduction

The plastic instability phenomenon was firstly described by Albert Portevin and Francois Le
Chatelier in 1923. They observed characteristic oscillations on strain–stress curves in aluminum-based
alloys and low-carbon steels [1]. Since then, the Portevin–Le Chatelier effect (PLC) has been extensively
studied in copper and aluminum-based alloys during tensile or compression tests [2–5]. However, in the
case of steels the PLC effect was studied rarely [5–7]. In available literature, there are several theories
explaining the mechanism of serrated flow in steels. Generally, a value of critical strain for activation
of the PLC effect is related to several factors, which can be classified as interior factors: solute atom
concentration (especially C and N content), dislocation density, grain size and external factors, including
deformation temperature and strain rate [3,4,8,9]. The heterogeneous deformation associated with
the increase in flow stress can lead to multiple cracks during sheet molding. In addition, delayed
cracking may occur after the deep drawing process is completed. Temperature and strain rate factors
affecting the PLC phenomenon deserve a special attention because of a technological point of view.
During forming operations of sheets performed at various deformation rates, some amount of heat is
generated, which affects the appearance and intensity of the plastic instability phenomenon [10].

Medium-manganese steels (3–12% wt % Mn) showing a Transformation-Induced Plasticity
(TRIP) effect have attracted a significant attention in the automotive, thanks to their advantageous
strength–ductility balance [11,12]. However, industrial application of those steels for body-in-white
automobile components depends on their formability. It was reported [6,8] that both medium-
and high-Mn steels may show some manufacturing problems during forming related to the their
plastic instability.
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The explanation of the Portevin–Le Chatelier mechanism in medium-Mn steels showing the
TRIP effect is a complicated issue because of their microstructure consisting of several phases, as well
as the TRIP effect exhibited by these steels. The exact characteristics of the factors affecting the
PLC effect in AHSS is very important, both from a research point of view and their industrial
implementation. This overview concerns the PLC phenomenon in Advanced High Strength Steels
(AHSSs), with particular emphasis on advanced medium-Mn TRIP steels.

2. The Nature of PLC Effect in Steels

The plastic instability phenomenon occurring during the deformation of metallic materials shows
two most common forms of propagative bands: Lüders and Portevin–Le Chatelier bands. The Lüders
bands refer to the regions of localized strain. They form immediately after the onset of plastic
deformation from the yield point drop, followed to a dominant stage of the stress plateau stage.
Lüders bands are commonly caused by static strain aging (SSA) [13]. Static strain aging is characterized
by an increase in strength properties associated with a decrease in plasticity. The PLC bands are
represented by characteristic serrations on stress–strain curves. PLC bands are usually related to the
dynamic strain aging (DSA) effect. The occurrence of the PLC bands is much more erratic, and can be
observed in various forms (serration types) in comparison to the Lüders bands.

There are several theories which explain the PLC effect in metallic materials. However, none has
been so far clearly confirmed. The first interpretation of this phenomenon was proposed by Cottrell [1].
From his point of view, the PLC effect is related to the interactions between solute atoms, such as C
or N, and mobile dislocations. The presence of serrations on a tensile curve is associated with the
rapid release of dislocations from the atmospheres of dissolved atoms, which block their movement.
This model is based on the assumption that atmospheres are formed around dislocations due to volume
diffusion. In the presence of substitution atoms, diffusion is facilitated by vacancies resulting from
plastic deformation. The interstitial gaps located in the vicinity of the dislocation are enlarged due to a
plastic deformation of the crystal lattice, so substitution atoms get into such enlarged gaps, creating the
Cottrell atmospheres. To form such atmospheres, the diffusion rate of the dissolved atoms must be
slightly lower than the dislocation movement. Rapid unpinning of dislocations from atmospheres is
accompanied by a drop on a stress–strain curve, because the dislocations released from obstacles can
move. If the pinning and unpinning processes are repeated cyclically, it leads to a DSA effect [13]. At a
sufficiently high temperature the diffusion rate is high enough, therefore solute atoms can move at the
same rate as the dislocations, whereas at sufficiently high deformation rates, or under conditions of low
diffusion intensity, Cottrell atmospheres at dislocations are not formed [1]. McCormic [14] completed
the Cottrell theory with a statement, that mobile dislocations do not move uniformly; they are stopped
temporarily at obstacles during plastic deformation and then the formation of Cottrell atmospheres
takes place. Penning [15] reported that homogeneous plastic deformation is unstable when stress
decreases as well as the strain rate increases. This effect is called negative strain rate sensitivity (NSRS).
The main factors causing the NSRS are the DSA suppression by an increment in dislocations velocity
and the inhibition of deformation twinning under high strain rates [8,9].

The heterogeneous plastic deformation phenomenon is usually preceded by a homogeneous
deformation. A strain level at which the serrations appear is referred to a critical strain initiating the
PLC effect. The value of critical strain is related to several factors including solute atom concentration,
dislocation density, grain size, deformation temperature and strain rate [3,4,8,9]. Equation (1) includes
most of these factors. Moreover, the activation energy for serration occurrence can be estimated [8]:

.
ε = KCn exp

(
−

QM

RT

)m
c

(1)

.
ε is strain rate, K, m and n are constants, C is the carbon content, QM is the activation energy for

serrations occurrence, R is gas constant, T is the deformation temperature, εc is a critical strain value at
which the serrations appear.
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Types of serrations were classified by Brindley and Worington [16] as A, B or C. The type A usually
appears at ambient deformation temperature. It is characterized by a rise and then a rapid fall in stress
value, while oscillations repeat periodically. The A-type serrations are irregular, with relatively small
stress drops on tensile curves. The histogram in Figure 1a presents the distribution of stress drops;
it shows that the amplitude of serrations is relatively low. The B-type occurs at elevated deformation
temperatures. It is usually preceded by the presence of A-type oscillations. Oscillations of B type
appear regularly on a σ–ε curve. The amplitude of oscillations is higher when compared to A-type
serrations (Figure 1b). Serrations of C-type are related to oscillations, whose maximum values do not
exceed an average level of the tensile curve. The amplitude of oscillations observed in such kinds of
serrations is more regular when compared to serrations of A- or B-types (Figure 1c).
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Figure 1. Types of oscillations and examples of the histograms of the serration flow: (a) type A, (b) type
B and (c) type C.

Literature studies have shown that the PLC effect occurs not only in copper, aluminum and nickel
alloys [2–4,17,18], but also in some steel grades. Plastic instability phenomenon was observed in
steels with increased Cr content [7,19], austenitic stainless steels [20], Hadfield steels [21] and dual
phase (DP) steels [22]. Some of the AHSSs are also prone to plastic instability phenomenon, such as
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high-manganese Twinning-Induced Plasticity (TWIP) steels [8], medium-manganese steels [6,13] and
Q&P steels [10].

3. Theories Explaining the PLC Mechanism in Medium- and High-Manganese Steels

Several theories explaining the PLC mechanism in high-Mn (17–30% wt % Mn) and
medium-manganese (3–12% wt % Mn) steels are available in the literature. The DSA mechanism in
these steels is related to the interaction between interstitial and substitutional atoms and the stacking
fault energy (SFE). With an increase in the SFE (for example by rising temperature), the DSA effect
contributes to the work hardening of high-manganese steels containing a high C concentration [8].
An increase in the manganese content in steel results in a reduction in the rate of carbon diffusion. This is
the reason why the PLC effect is so pronounced in the high-Mn steels (Table 1). The DSA occurrence
at room temperature is difficult in austenitic steels due to their low carbon diffusivity. Therefore,
Owen and Grujicic [21] suggested that the DSA effect in steels with increased Mn content is caused
by interaction between dislocations and manganese–carbon clusters which enable the occurrence of
DSA even at room temperature. Changing the position of C atoms between octahedral and tetrahedral
interstices within clusters may lock partial dislocations in stacking faults. The octahedral position
is energetically stable for C. During plastic deformation, carbon changes position to a tetrahedral,
which results in the generation of a stacking fault. The location of carbon in the tetrahedral site
is not stable, and thus it returns to an octahedral position. When the carbon moves back to the
same position in the octahedral site, a dislocation pinning effect associated with the DSA does not
occur. If a C atom jumps to the position where a Mn atom is located, the amount of C–Mn pairs in
the stacking faults rises, which prevents dislocations motion resulting in the occurrence of DSA [8].
Hickel et al. [23] proved a strong impact of Mn–C clusters on the SFE. They showed that the active
deformation mechanism redistributes local solutes, and thus significantly affects the change in the local
SFE. However, Medvedeva et al. [24] reported that the presence of the Mn–C pairs limits the forecasted
impact in the SFE that is caused by carbon. Kang et al. [25] suggested that short range reorientation
C–Mn clusters could be sheared by moving dislocations and leads to glide plane softening, resulting in
an increase of the glide of the planar and a stress plateau in a flow curve.

Table 1. The value of critical serration strain in steels with various Mn content deformed at different
strain rate and temperature.

Type of Steel. Critical Strain,
%

Deformation
Temperature, ◦C Strain Rate s−1 Microstructure Reference

0.18C–17Mn ~12 room temperature 10−4 austenite+martensite [26]
0.18C–17Mn ~15 room temperature 10−3 austenite+martensite [26]
0.18C–17Mn ~16 room temperature 10−2 austenite+martensite [26]
0.6C–22Mn ~5 room temperature 10−3 austenite [27]
0.6C–18Mn ~15 room temperature 10−3 austenite [27]

0.6C–18Mn–2Al no serrations room temperature 10−3 austenite [27]
0.3C–17Mn–1Al 25 150 25 × 10−3 austenite [28]

0.6C–18Mn 5 150 25 × 10−3 austenite [28]
0.6–18Mn 3 room temperature 25 × 10−3 austenite [28]

0.2C–2Mn–1.4Si ~5 100 5 × 10−5 ferrite+martensite+
retained austenite [10]

0.2C–2Mn–1.4Si no serrations 200 5 × 10−5 ferrite+martensite+
retained austenite [10]

0.3C–7Mn–2Al ~10 −50 6.67 × 10−4 ferrite+austenite [7]
0.3C–7Mn–2Al ~25 27 6.67 × 10−4 ferrite+austenite [7]

0.3C–10Mn–3Al–2Si 43 room temperature 10−3 ferrite+austenite [29]
0.3C–9Mn–2Al ~10 room temperature 10−3 ferrite+austenite [29]

0.16C–5Mn–1.6Al ~1 60 10−3 bainite+retained austenite [30]
0.16C–5Mn–1.6Al ~8 100 10-3 bainite+retained austenite [30]
0.16C–5Mn–1.6Al ~6 140 10-3 bainite+retained austenite [30]
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Factors influencing the DSA effect in medium- and high-manganese steels are also related to the
amount of Al and Si additions and grain size. Reducing the interaction time between dislocations
and Mn–C complexes explains the reduction of the DSA effect. Al delays the reorientation of Mn–C
point defect complexes by rising the process activation energy [28,31–34]. Song et al. [35] and
Madivala et al. [36] reported that some amount of Al addition could suppress the Mn–C formation
in high-Mn steels. This might be the reason for the delay or absence of the serration phenomenon in
Al-alloyed high-Mn steels. Si addition also causes the increase in critical strain for serrated flow [8,31,33].
In high-manganese austenitic steels the influence of grain size on the plastic instability phenomenon is
different than in other steels. Typically, the DSA effect is enhanced in fine-grained steels. However,
in case of high-Mn austenitic steels, a critical strain for serrated flow rises with the reduction of grain
size. It is related to the fact that dislocation density in early stage of deformation is lower for smaller
austenite grains [37,38]. Presence of carbides or complex carbonitrides also reduces the probability of
DSA. It was reported [39] that an addition of 4.6 wt % Cr to the medium-Mn 0.17C–12Mn–4.5Cr–1.2Si
steel significantly reduced the DSA by precipitation of M23(C,N)6 occurring during batch annealing
(600 ◦C) within 20 h. It is related to a reduction in the carbon content in the solid solution.

3.1. Effect of Twinning-Induced Plasticity (TWIP) on Plastic Instability Phenomenon

In the group of AHSSs, the PLC effect is the most characterized in case of high-Mn TWIP
steels containing 17–30% Mn [25–29,31–34]. In these steels, work hardening is related to the PLC
and TWIP effects which occur simultaneously. Some authors reported that deformation twinning
is a very important mechanism responsible for the heterogeneous deformation in high-manganese
TWIP steels [25,28,31]. Allain et al. [37] suggested that dynamic interactions between carbon atoms
and dislocations could suppress dislocation glide due to the lattice friction effects, and as a result
promote deformation twinning. Lebedkina et al. [28] observed that serrations on tensile curves have
an influence on the activation of twinning systems. Sevsek et al. [31] reported that inhibiting the
movement of partial dislocations by ordered C–Mn short-range clusters promotes twin deformations.
The deformation twinning activates additional sources of displacement, sliding systems and twin
systems in nearby grains. At the macroscopic level, this generates local deformation phenomena such
as deformation bands. They are detectable in the form of a serrated flow in steels containing high-Mn
contents. They also noticed that the occurrence of serrated flow is dominated by the deformation
temperature (150 ◦C). This promotes C diffusivity, thereby improving the twin deformation in a short
range. They also found the correlation between the occurrence of serrated flow behavior and material
state. In the case of microstructures with the high homogeneity, for example a crystallized structure,
localized activation of new deformation mechanisms strengthened the creation and propagation of
deformation bands and the serrated flow in high-Mn TWIP steels. In the case of structures without
homogeneity, for example, partially-recrystallized, this process is limited. This is due to the inhibition
of the propagation of deformation bands.

3.2. Effect of Transformation-Induced Plasticity (TRIP) on Plastic Instability Phenomenon

So far, the PLC effect in medium-manganese TRIP steels has not been characterized in detail.
Only a few publications concerning plastic instability phenomenon in these steels are available in
the literature [6,13,40–44]. The explanation of the DSA mechanism in medium-manganese steels
showing the Transformation-Induced-Plasticity effect is a complex issue because of their microstructure
consisting of several phases, as well as the TRIP effect exhibited by these steels. There are a few theories
concerning the nature of plastic instability in medium manganese steels. Gibbs et al. [45] proposed an
explanation about the characteristic serrations with different rates of martensitic transformation during
deformation. Sun et al. [41] pointed to the association of the plastic instability of 0.26C–11.6Mn–2.7Al
and intermittent martensitic transformation-induced by strain. They noticed localized martensite
transformation occurring in the PLC areas, which spread when they are deformed. Callahan et al. [40]
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noticed in the 0.2C–5Mn–2.5Al steel at the same time a TRIP effect activity and the presence of both
Lüders and PLC bands.

Ryu et al. [42] found that the localized strain triggered by Lüders band may cause the austenite
transformation into martensite. PLC bands are a form of strain localization, in which the metastable
austenite grains have good conditions to martensitic transformation because of the severe strain [6,42,44].
However, strain-induced martensite acts as obstacles for propagation of PLC bands. Yang et al. [6]
reported that PLC bands observed in 0.3C–7Mn–2Al steel were subjected to a dynamic hindrance caused
by the inside-band transformed martensite during propagation. For this reason a volume fraction of
the dynamically formed martensite should affect the characteristics of Portevin–Le Chatelier bands.

Figure 2 explains the effect of strain-induced martensitic transformation on the serrations
characteristics. The retained austenite gradually transforms into martensite during straining, and the
amount of newly formed martensite increases as the deformation level increases. Austenite easily
transforms into martensite in areas of localized strain, such as PLC bands. This microstructural
component is characterized by higher hardness than austenite. Hence, it acts as obstacles for PLC
bands propagation. The presence of martensite affects a type of oscillations observed on tensile curves.
At the initial deformation level, a significant amount of retained austenite transforms into martensite.
Thus, high stress is needed to continue the propagation of PLC bands. Under such conditions,
the new area becomes a source of PLC bands, enabling them to move under relatively low stresses.
This mechanism is a reason of PLC bands hopping. If the retained austenite is characterized by relatively
low stability, it easily transforms into martensite resulting in occurring irregular serrations characterized
by a various amplitude (type A+B or B). In the late stage of deformation, characterized by the presence of
the only most stable non-transformed grains of retained austenite and uniformly-distributed obstacles
(martensite areas), the propagation of PLC bands is more regular. That is why PLC bands move
continuously. As a result, oscillations of the A-type characterized by a lower amplitude than B-type
can be observed on tensile curves. The serrations changed from A+B type to A type in this case.
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Figure 2. The scheme showing the relationship between a serration type and stability of retained
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4. The PLC Effect in Medium-Manganese Steels

In general, plastic instability phenomenon in medium-manganese steels is related to a DSA
effect. The mechanism of the Portevin–Le Chatelier effect in these steels is very similar to that in
high-manganese steels due to increased Mn content. Due to a lower Mn content (5–12%), medium-Mn
steels are less prone to an occurrence of plastic instability phenomenon [46]. It was found [30] that
an increase in a Mn content from 3% to 5% in C–Mn–Al medium-manganese steels results in the
appearance of the PLC effect. It is related to higher amount of C–Mn pairs which interact dynamically
with dislocations during deformation.
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The occurrence of plastic instability phenomenon in medium-Mn steels is also related to a grain
size. It was reported [6,39] that the dislocation density in austenite is influenced, not only by the
level of deformation, but also by the size of the austenite grain. If the austenite grain is less than the
critical value, sufficient dislocations cannot be generated during deformation. The dislocation density
increased more slowly in fine-grained austenite, so the amount of dislocations cannot be enough to
induce the PLC band formation.

4.1. Cold-Rolled Medium-Mn Steels

Most reports concerning the Portevin–Le Chatelier effect in medium-manganese steels are related
to cold-rolled grades characterized by ferritic-austenitic microstructure [6,13,40]. Steels obtained by
cold rolling are subjected to intercritical annealing. They are also prone to Lüders band formation
(Figure 3). Values of the Lüders strain depend on a variety of factors such as chemical composition,
strain rate, grain size and deformation temperature, similarly to the formation of PLC bands. However,
PLC bands observed as serrations on tensile curves appear less regularly when compared to Lüders
bands. The presence of Lüders and PLC bands was observed by Wang et al. [13] and Sevsek [47]
in cold-rolled and intercritically-annealed 7Mn–0.14C–0.23Si and X6MnAl12-3 steels, respectively.
Callahan et al. [40] reported that the temperature of intercritical annealing affects the occurrence of PLC
and Lüders bands. Serrations observed in 0.2C–5Mn–2.5Al steel disappeared when the temperature of
intercritical annealing was rising from 740 to 780 ◦C. Similar results were reported by Yang et al. [6].
They also observed a serrated flow in 0.22C–7.2Mn–2.4Al steel only at annealing temperatures 700 ◦C
and 720 ◦C. In intercritically-annealed steels, PLC bands can nucleate only in the austenite grains
because of their higher carbon content than in ferrite [6].
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4.2. Hot-Rolled Medium-Mn Steels

The PLC effect in medium-manganese steels manufactured by cold rolling has sparsely been
investigated [30,46,48]. In contrast to cold-rolled medium-Mn steels, hot-rolled grades do not show a
clear yield point as well as the next Lüders elongation (Figure 3). The continuous yielding behavior is the
result of mobile dislocations occurring during thermomechanical rolling [30,46,48]. The disappearance
of the PLC effect in such steels can be also related to cementite precipitation which reduces a carbon
content in solid solution, so the dynamic interaction with dislocations can be eliminated [48]. However,
some processing factors could trigger the PLC effect in hot-rolled medium-manganese steels. It was
reported [42] that the time and temperature of isothermal holding in an intercritical region affect the
appearance of the plastic instability effect.
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5. Effect of Deformation Temperature on the PLC Effect

An effect of elevated temperatures on the PLC related to dynamic strain aging (DSA) in medium-
and high-manganese steels have received minimal attention in the literature. The plastic deformation
temperature has a huge impact on the mechanical properties obtained during the production of steel
elements. Min et al. [10] reported that strain rates in automotive stamping processes can reach 1–10 s−1

with minimal heat dissipation. During the stamping process a temperature of even ~280 ◦C can
be generated. However, during typical production operations, this temperature does not exceed
~130 ◦C [10,49].

The DSA occurs in a specific range of temperature, and a value of critical strain activating a PLC
effect is related to the deformation temperature (Table 1). Min et al. [10] reported that a value of critical
strain in 0.2C–2Mn–1.4Si QP steel increases with decreasing temperature. However, in works [30,46]
concerning the plastic instability phenomenon in medium-Mn steels, the opposite trend was observed.
Grzegorczyk et al. [30] reported that a value of critical strain in 0.16C–4.7Mn–1.6Al–0.22Si-0.20Mo steel
is higher at deformation temperatures of 100 and 140 ◦C than at 60 ◦C (Figure 3). The temperature
drop in steels with a higher manganese content causes longer reorientation time of the C–Mn complex,
which suppresses the DSA. It can be seen in Figure 4 that serrations occur at the deformation
temperature range of 60–140 ◦C, whereas they were not observed in specimens deformed at 20 and
200 ◦C. Min et al. [10] observed the similar tendency in steel deformed at a temperature range of
25–350 ◦C. Serrations were not observed at deformation temperatures below 100 ◦C and higher than
250 ◦C. They concluded that at low temperatures where serrations do not occur, dislocation pinning
occurs very slow compared to dislocation unpinning. At high temperatures, where serrations do not
occur, a solute diffusion rate is high enough to reduce the pinning force on dislocations.

The disappearance of the PLC effect at high deformation temperatures can be also related to
carbide precipitation. Kipelova et al. [7] investigated the effect of deformation temperature in a range
200–500 ◦C in 0.13C–8.6Cr–3.2Co–1.2W–0.9Mo steel. They found that at the deformation temperature
higher than 350 ◦C, serrations disappeared due to carbide precipitation, which resulted in a reduced
concentration of interstitial atoms in solid solution, terminating the DSA. The decreasing carbon content
due to carbide precipitation requires a larger strain to trigger the Portevin–Le Chatelier effect. The very
similar situation took place in the investigated 0.16C–4.7Mn–1.6Al–0.22Si–0.20Mo steel (Figure 4).
Moreover, at deformation temperatures 100 and 140 ◦C, serrations were observed in a post-uniform
elongation range. Kipelova et al. [7] observed a similar effect in a temperature range of 200–300 ◦C.
This was explained because of the carbide precipitation effect, which increased the critical deformation
activating the DSA to a value greater than the uniform deformation of the steel. Therefore, no PLC
effect could be observed prior to necking.

Jung and De Cooman [31] investigated the effect of deformation temperature in 0.6C–18Mn–2.5Al
steel. They observed the relation between deformation temperature and a type of serrations. The B-type
was occurred at the largest deformations at high temperatures. It was related to the fact that the
increase in temperature increases the carbon diffusion. Hence, carbon atoms did not form C–Mn
clusters, and the diffusion path shortens as the strain increases because of a high dislocation density.
The combination of these effects can lead to a rapid uptake of dislocation by C atoms leading to the
observed B-type serration. The same type of serrations show the specimens deformed at 100 and
140 ◦C (Figure 4).
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Deformation temperature affects the stability of retained austenite (RA). It is well documented in
the literature [30] that stability of retained austenite increases at higher deformation temperatures. Very
helpful in identifying strain-induced martensitic transformation is an Electron Backscatter Diffraction
(EBSD) method. Figure 5 shows the image quality (IQ) and phase distribution maps. Martensite is
characterized by the highest crystal lattice distortion. Thus, it occurs in the darkest areas, showing the
lowest IQ parameter (Figure 5a,c). The retained austenite is located at the dark areas, whereas bainitic
ferrite is characterized by a slightly higher IQ value. Obtained results show that the specimen deformed
at the higher temperature 140 ◦C (Figure 5c) possesses a smaller fraction of the darkest areas when
compared to the specimen deformed at (the lower) 20 ◦C (Figure 5a). It is related to the fact that
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austenite is more stable at the higher deformation temperature. The EBSD method allows also the
amount and morphological details of retained austenite to be determined (as green in Figure 5b,d). RA
easier transforms into martensite at the lower deformation temperature (Figure 5b).
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6. Effect of Strain Rate on the PLC Effect

Based on the results performed on non-ferrous alloys, it is well known that the PLC effect is
also strain rate-dependent (Table 1) [4]. The increase in strain rate reduces interaction time between
dislocations and carbon atoms or C–Mn clusters. Hence, it can significantly reduce the PLC effect [6].
When the strain rate decreases, the waiting time of the dislocations rises, and the magnitude of the
serrations is enhanced [50]. Min et al. [10] reported that a value of critical strain rises with an increasing
strain rate in QP steels.

The effect of strain rate in medium- and high-Mn steels is usually discussed in terms of
negative strain rate sensitivity (NSRS), which reduces the amount of work hardening at high strain
rates [47,51–53]. Usually, conventional TRIP steels do not show this effect [48]. The occurrence of
the DSA effect can be reduced by a significant increase of strain rates during plastic deformation.
Several authors reported that the NSRS effect is related to the stability of RA due to adiabatic heating
at high strain rates. Generally, adiabatic heating affects both the DSA and NSRS by increased diffusion
intensity [8,9,15,49]. Callahan et al. [52] reported that the NSRS in 0.2C–5Mn–2.5Al TRIP steel is
due to the effect of adiabatic heating, which increases the stability of retained austenite, and thus
reduces the work hardening rate. They found that the NSRS in medium-Mn TRIP steel does not
follow from the DSA. As the martensitic transformation rate increases, the smallest deformation rate
required to generate uniform deformation decreases, similarly to fall in a deformation temperature.
This was explained by the formation of dislocations that could move during martensitic transformation.
Seol et al. reported [26] that the high strain rate deformation suppresses the DSA in 0.2C–17Mn steel;
thus a ductility increase and lower yield strength were noted. However, an increase in a strain rate
results also in an increased stability of the retained austenite due to adiabatic heating. Despite this,
these effects are balanced, so increased ductility was noted.
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7. Conclusions

The Portevin–Le Chatelier (PLC) phenomenon in AHSSs was analyzed. The PLC effect in medium-
and high-Mn steels was discussed based on the theory concerning the interaction between dislocations
and Mn–C clusters. A mechanism of the Portevin–Le Chatelier effect in these steels is similar due to
Mn alloying. The PLC is affected by microstructural mechanisms such as Twinning-Induced Plasticity
(TWIP) and Transformation-Induced Plasticity (TRIP) effects. The appearance and intensity of plastic
instability phenomenon are related to several factors. In this study, a special attention was paid to
deformation temperature and strain rate, which occur during processing of steel sheets. In order to
improve the formability of automotive medium-Mn steel sheets, the PLC effect should be suppressed.
The occurrence of plastic instability in these steels can be reduced by:

• Reduction of carbon and manganese contents. It results in a smaller amount of C–Mn pairs, which
interact dynamically with dislocations during deformation.

• Addition of elements which form carbides. Carbide precipitation decreases the concentration of
interstitial atoms in solid solution, terminating the DSA. The lower carbon content due to carbide
precipitation requires a larger strain to trigger the PLC effect.

• Reduction in grain size. The dislocation density increases more slowly in fine-grained austenite
grains. Hence, the amount of dislocations cannot be high enough to induce the PLC band formation.

• Application of hot rolling rather than cold rolling. Hot-rolled steel grades are not prone
to Lüders band formation due to the presence of mobile dislocations generated during
thermomechanical processing.

• Increasing the strain rate during deformation. It reduces interaction time between dislocations
and carbon atoms C–Mn clusters. Thus, it can significantly reduce the PLC effect. However,
applying a high deformation rate results in the higher stability of retained austenite because of
adiabatic heating, which stimulates the lower intensity of the TRIP effect.
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