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Abstract: Nanofibers isolated from unbleached neutral sulfite rice straw pulp were used to prepare
transparent films without the need to modify the isolated rice straw nanofibers (RSNF). RSNF
with loading from 1.25 to 10 wt.% were mixed with cellulose acetate (CA) solution in acetone
and films were formed by casting. The films were characterized regarding their transparency and
light transmittance, microstructure, mechanical properties, crystallinity, water contact angle, porosity,
water vapor permeability, and thermal properties. The results showed good dispersion of RSNF in CA
matrix and films with good transparency and homogeneity could be prepared at RSNF loadings of less
than 5%. As shown from contact angle and atomic force microscopy (AFM) measurements, the RSNF
resulted in increased hydrophilic nature and roughness of the films. No significant improvement in
tensile strength and Young’s modulus was recorded as a result of adding RSNF to CA. Addition of
the RSNF did not significantly affect the porosity, crystallinity and melting temperature of CA, but
slightly increased its glass transition temperature.

Keywords: nanofibers; rice straw; unbleached pulp; cellulose acetate; nanocomposites

1. Introduction

Cellulose acetate (CA) is one of the earliest cellulose derivatives used in different applications
including membranes for water treatment [1–5], gas separation [6,7], films for packaging [8–10],
and fibers in textile industry [11]. CA has several attractive advantages including availability of
cellulose from different resources, ease of processing, good mechanical properties, biodegradability,
and high transparency.

Nanomaterials have been used to impart CA new characteristics such as antimicrobial
properties [12], bioactivity [13], photoactivity [14–16], UV shielding [17], magnetic [18], catalytic
activity [19], gas permeability [6], and flame retardance [20,21]. An important property of the
nanomaterials used is their ability to keep transparency of CA films.

Nanocelluloses, e.g., cellulose nanofibers (CNF) and cellulose nanocrystals (CNC), are usually
prepared from bleached cellulose pulps and are characterized by high mechanical properties,
transparency in different polymer matrices, and hydrophilic properties. The blending of
nanocelluloses with other polymers requires good compatibility between them, which is not always
the case due to the relatively low hydrophilic nature of some polymers, such as CA, and the
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high hydrophilic nature of nanocelluloses. Therefore, chemical modification of nanocellulose
surfaces with hydrophobic moieties has been studied to prepare CA/nanocellulose films with
enhanced mechanical properties and transparency. Regarding modification of CNC for mixing
with CA, modification with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride has been recently
reported [22]. Nevertheless, thanks to the ability to disperse CNC in some polar aprotic solvents [23],
the use of non-modified CNC with CA has been reported [24–29]. Water of CNC aqueous
suspension was first removed and exchanged by another polar aprotic solvent such as such
as DMF, DMSO, 1,3-dimethyl-2-imidazolidinone (DMI), N,N-dimethylacetamide (DMAc), and
1-methyl-2-pyrrolidinone (NMP), then CNC was dispersed by applying ultrasonic or mechanical
treatment. In the aforementioned examples, enhancement of mechanical properties and hydrophilicity
of CA could be achieved by the addition of CNC.

On the other hand, the use of CNF isolated from bleached pulps with CA is somewhat different to
using CNC. This is due to differences in the ease of dispersion in aprotic polar solvents because of the
longer length and higher hydrophilicity of CNF. Accordingly, much fewer studies have been published
so far on using CNF with CA without modification of the former. In addition, the previously prepared
nanocomposite films were formed by phase inversion (not by direct casting) and consequently the films
were white in color, opaque, highly porous and asymmetric. For example, CNF in water suspension
was added to a CA acetone/water solution and films were formed by non-solvent phase inversion [30];
the films were tested as membranes regarding their water flux and ability to clarify fruit juice and whey.
In another work, TEMPO-oxidized cellulose nanofibers (up to 2.5% based on CA) were mixed with
CA after solvent exchange of the nanofibers with dimethyl formamide [31,32]. The films were formed
by non-solvent phase inversion and evaluated as membranes regarding water flux and ultrafiltration
characteristics. To prepare transparent CA/CNF film by casting (without phase inversion), CNF was
chemically modified with 3-aminopropyltriethoxysilane before mixing with CA [33]. The Young’s
modulus and tensile strength of CA films increased from 1.9 GPa to 4.1 GPa upon the addition of 7.5%
of the modified CNF while tensile strength increased from 38 MPa to a maximum of 63.5 MPa at 2.5%
CNF addition.

There is a recent trend in producing CNF from unbleached cellulose pulp to obtain nanofibers with
a lignin-rich surface [34]. Investigating the properties of nanocomposites produced using nanofibers
with a high lignin content is thus important to see what the advantages and disadvantages of these
nanofibers are. To the best of our knowledge, the use of cellulose nanofibers with a high lignin
content to make cellulose acetate nanocomposites films by casting without chemical modification of
the nanofibers has not been studied so far. Using cellulose nanofibers isolated from unbleached pulp
in composites reduces the cost when compared to those isolated from bleached pulps. In addition,
the presence of lignin covering the surface of cellulose nanofibers makes their surface properties
different from those isolated from bleached pulps, and thus affects the properties of nanocomposites.
The presence of lignin at the surface of the nanofibers can also improve the dispersion of the cellulose
nanofibers in polar aprotic solvents, and also improve compatibility with relatively less hydrophilic
polymers, such as CA. In addition, the presence of lignin with nanofibers allows for easier removal of
water and its exchange with polar aprotic solvents using simple washing rather than the exhaustive
solvent exchange needed in case of nanofibers obtained from bleached pulps.

Therefore, the aim of the current work was to study the blending of CA with RSNF isolated from
unbleached neutral sulfite pulp—i.e., nanofibers with a lignin-rich surface—to make films with high
homogeneity and transparency. The effect of RSNF addition on mechanical, thermal, and crystallinity
properties, and the water contact angle of CA films was studied.
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2. Experimental

2.1. Materials

Rice straw obtained from a local farm in Qalubiyah, Egypt. Reagent grade sodium sulfite, sodium
carbonate, citric acid, and sodium citrate were used as received from Sigma-Aldrich (Sigma-aldrich,
St. Louis, MO, USA). Xylanase powder, ≥2500 units/g, recombinant, expressed in Aspergillus oryzae
was purchased from Sigma-Aldrich and used as received. Cellulose acetate with ~39.8 wt.% acetyl
content and average molecular weight Mn ~30,000 was used as received from Sigma-Aldrich.

2.2. Preparation of Rice Straw Pulp

Rice straw neutral sulfite pulp was prepared as previously described [34] using 10% sodium
sulfite and 2% sodium carbonate (based on weight of rice straw) solutions at 160 ◦C for 2 h; the liquor
ratio was 1:10. The pulp was washed with water, defibrillated in a Valley beater (Valley Iron Works,
Appleton, WI, USA) to a 25◦ Schopper-Riegler (SR) degree of freeness, dewatered, and allowed to air
dry. The chemical composition of the pulp was analyzed according to the standard methods [35] and
was 54.1% α-cellulose, 14.2% Klason lignin, 3.2% acid insoluble lignin, 14.3% pentosans, and 16.6% ash
content. The degree of polymerization (DP) was measured using cupriethylenediamine hydroxide [35],
and was found to be 903.

2.3. Xylanases Pretreatment of Unbleached Rice Straw Pulp

Pretreatment of neutral sulfite unbleached pulp with xylanases was carried out in citrate buffer
(pH = 5.3) using 0.04 g of xylanases enzymes per gram of pulp at 10 wt.% consistency for 4 h at 50 ◦C,
as previously described [34]. Chemical composition of the pretreated pulp was 16.46% ash content,
13.18% Klason lignin, 2.31% acid insoluble lignin, 58.4% α-cellulose, 10.79% pentosans, and DP, 1097.

2.4. Isolation of Rice Straw Nanofibers (RSNF)

Isolation of RSNF from xylanase-treated unbleached pulp was carried out according to the
previously published protocol [34]. In brief, the pulp was first disintegrated using Silverson L4RT
shear mixer (Silverson Machines Ltd., Chesham, UK) at 2 wt.% consistency. The pulp was then passed
through ultrafine friction grinder (MKCA6-2, Masuko Sangyo, Kawaguchi, Japan) for approximately
140 min. The gap between the disks was adjusted to −90 µm. Chemical composition of the isolated
RSNF was 16.8% ash content, 10.51% Klason lignin, 2.11% acid insoluble lignin, 63.5% α-cellulose,
8.84% pentosans, and DP, 1271.

2.5. Characterization of RSNF

Transmission electron microscopy (TEM) was carried out using a high-resolution transmission
electron microscope (JEM-2100 transmission electron microscope, JEOL, Tokyo, Japan). A drop of
fiber suspension was used on a copper grid bearing a carbon film. An acceleration voltage of 100 kV
was used. Atomic force microscopy (AFM) was carried out using a VeecoMultiMode scanning probe
microscope (Santa Barbara, CA, USA) equipped with a Nanoscope V controller (Veeco instruments,
Plainview, NY, USA). A droplet of the aqueous fiber suspension was dried onto a mica surface prior to
AFM examination, and images were collected using a tapping mode and a tip model TESPA (antimony
(n) doped Si), (Bruker, Camarillo, CA, USA), with a nominal spring constant of 5 N/m and a nominal
frequency of 270 kHz. The width was measured on individually separated nanofibers from the height
images and the size distribution presented is based on measurements of 50 different nanofibers.

2.6. Film Casting

The CA solution (5 wt.%) was prepared by dissolving in acetone. Water in the RSNF suspension
(~2 wt.% RSNF) was first removed by vacuum filtration then acetone was passed once through the
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filtered RSNF. The acetone-wetted RSNF were kept in a closed container in fridge at 8 ◦C till use.
The acetone-wetted RSNF was added to CA solution at ratios from 1.25 to 10 wt.% of dry RSNF to CA;
the mixture was homogenized by magnetic stirring for 30 min. The viscosity of the CA/RSNF mixture
was measured using a tuning-fork vibration viscometer (Vibro Viscometer SV-10, A&D Company
Limited, Tokyo, Japan). The films were prepared by casting/evaporation technique on glass plates and
left to dry in air. After drying, the films were annealed at 70 ◦C for 30 min to remove residual acetone.

2.7. Characterization

Mechanical testing in tensile mode was carried out on 1-cm-wide test samples using a Shimadzu
universal testing machine (AGX, Shimadzu, Kyoto, Japan) equipped with a 1 kN load cell and a
HPV-X2 high-speed video camera to measure strain. Cross-head speed of 2 mm/min was used and the
gauge length was 20 mm. Ten samples from each material were measured and the results averaged.

The water contact angle of CA and its nanocomposite films was measured using an EasyDrop
measuring system and calculated with the drop shape analysis DSA1 control software, Krüss (EasyDrop
Standard, KRÜSS GmbH, Hamburg, Germany), using a sessile drop technique. A 4 µL water drop was
placed onto the films at eight separate places for calculating the average contact angle.

Atomic force microscopy (AFM) was used for characterization of topography of the CA films
with different RSNF loadings. The measurements were performed on a Veeco Multimode Scanning
Probe (Santa Barbara, CA, USA) in tapping mode, with a tip model TESPA (antimony (n) doped Si),
Bruker (Camarillo, CA, USA). The root-mean square roughness (RMS) values were measured from
the AFM height images and the reported RMS values are the average of five measurements for each
sample on a surface area of 225 µm2. All measurements were conducted in air at room temperature.

X-ray diffraction (XRD) patterns were recorded on films using an Empyrean X-ray diffractometer
(PANalytical, Almelo, The Netherlands).

Microscopic features of films were investigated using a FEI Quanta 200 scanning electron
microscope (SEM, FEI Company, Eindhoven, The Netherlands) at an acceleration voltage of 20 kV.
Differential scanning calorimetry (DSC) was carried out using Q100 TA (TA Instruments, New Castle,
DE, USA). The crystallinity degree of cellulose acetate (Xc%) was estimated from the ratio between the
melting enthalpy of the film under study (∆Hm) and the respective value for the totally crystalline
material (∆H0

m), Where ∆H0
m = 58.8 J/g as follows [36]: Xc = (∆Hm/∆H0

m) × 100.
The porosity (ε) was determined according to the following equation based on the previous

gravimetric method that depends on absorption of water by the films [37]:

(ε) = [(m1 −m2)/$·A·l] × 100

where m1 and m2 are the weight of the wet and dry films, respectively; $ is the water density (g/cm3);
A is the effective area of the films (m2), and l is the film thickness (m).

Surface area, pore volume, and average pore radius of the films were measured using a
Quantachrome Nova-1200 instrument (Quantachrome Instruments, Boynton Beach, FL, USA).
The samples were out-gassed overnight at 100 ◦C prior to measurement.

Dynamic mechanical thermal analysis (DMTA) measurements of the films were carried out using
Anton Paar MCR-301 Rheometer (Anton Paar, Graz, Austria) in tensile mode. The measurements were
performed at a constant frequency of 1 Hz and strain amplitude of 0.08% in the temperature range of
25 to 250 ◦C with a heating rate of 3 ◦C/min and a 20 mm distance between grips.

Thermal stability was studied by thermogarvimetric analysis (TGA) using Perkin Elmer STA 6000
instrument (Perkin Elmer, Waltham, MA, USA).
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3. Results and Discussion

RSNF isolated from rice straw xylanase-treated unbleached sulfite pulp had very uniform diameter
reached that of elementary fibrils [34]. TEM images of the isolated RSNF showed a diameter of about 4
nm, while AMF image showed a diameter of 14 ± 7 nm (Figure 1).Materials 2018, 11, x FOR PEER REVIEW  5 of 18 

 

  
(a) (b) 

Figure 1. TEM image (a) and AFM image (b) of RSNF isolated from xylanase-treated rice straw 
unbleached neutral sulfite pulps. 

3.1. Viscosity of the CA/RSNF Suspension 

The viscosity of the CA/RSNF mixture as a function of RSNF content was followed as an 
indication of the dispersion of RSNF. As shown in Figure 2, the addition of RSNF to the CA solution 
resulted in a significant increase in its viscosity, indicating good dispersion of the unbleached RSNF. 
The increase in viscosity ranged from 41% to 146% upon addition of 1.25% to 10% RSNF, respectively. 

 
Figure 2. Viscosity of CA solution as a function of RSNF content. 

3.2. Mirco-Structure of CA and CA/RSNF Films 

Regarding the effect of RSNF on the microscopic structure of CA films, Figure 3 shows SEM 
images for cross-sections of neat CA film and films containing 1.25–10% RSNF. As shown in the 
images, the presence of RSNF resulted in drastic changes in the microstructure of the film at loadings 
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Figure 1. TEM image (a) and AFM image (b) of RSNF isolated from xylanase-treated rice straw
unbleached neutral sulfite pulps.

3.1. Viscosity of the CA/RSNF Suspension

The viscosity of the CA/RSNF mixture as a function of RSNF content was followed as an indication
of the dispersion of RSNF. As shown in Figure 2, the addition of RSNF to the CA solution resulted in a
significant increase in its viscosity, indicating good dispersion of the unbleached RSNF. The increase in
viscosity ranged from 41% to 146% upon addition of 1.25% to 10% RSNF, respectively.
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3.2. Mirco-Structure of CA and CA/RSNF Films

Regarding the effect of RSNF on the microscopic structure of CA films, Figure 3 shows SEM
images for cross-sections of neat CA film and films containing 1.25–10% RSNF. As shown in the images,
the presence of RSNF resulted in drastic changes in the microstructure of the film at loadings above
5%; the cross section appeared as a layered structure while that of neat CA films or CA/RSNF films
with a lower nanofiber loading had a compact cross section. This indicates a strong tendency of the
nanofibers to agglomerate at high loadings, causing formation of the layered structure.Materials 2018, 11, x FOR PEER REVIEW  6 of 18 
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3.3. Transparency and Light Transmittance

Figure 4 shows the visual transparency of the neat CA film and that of a film containing
10 wt.% RSNF on printed paper sheet. The film containing RSNF appeared slightly brownish in
color. The thickness of neat CA film was about 21 µm while that of different CA/RSNF samples ranged
from 23 to 25 µm. The visual transparency of the CA/RSNF films, even at high contents of RSNF
without using compatibilizers or chemical modification, indicates good compatibility between RSNF
and CA which could be attributed to the presence of lignin at the surface of the RSNF; lignin has a
much more hydrophobic character than cellulose.
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Figure 4. Photos of neat CA (a) and CA/10% RSNF films (b) over a printed paper.

Previous work on using bleached CNF with CA showed that white films, rather than transparent
ones, were obtained upon using the same casting/solvent evaporation method [33]. This indicates
much better dispersion of the unbleached RSNF in the CA matrix used in the current work than in
case of using bleached CNF.

Regarding light transmittance, nanocomposite films showed good light transmittance at low RSNF
content (<5%), as evident from the measurement by UV-visible spectroscopy (Figure 5); transmittance
values of 92%, 87%, and 80% were recorded for neat CA, CA/1.25% RSNF, and CA/2.5% RSNF films,
respectively. As the content of RSNF in the films increased, transmittance of the light across the
films decreased because of light scattering and absorbance of light due to presence of lignin in the
RSNF. In addition, changes in the microstructure of the CA cross section as a result of RSNF addition
(Figure 3) could also cause a decrease in light transmittance due to the layered structure formed and
the presence of air gaps. Light transmittance values of 50%, 41%, and 27% were recorded for CA/5%
RSNF, CA/7.5% RSNF, and CA/10% RSNF films, respectively.
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3.4. Surface Characteristics: Wettability and Topography

The effect of RSNF addition in various concentrations on CA surface characteristics were assessed
in terms of hydrophilicity from water contact angle measurements, and the topographic features in the
form of roughness measurements. The roughness and contact angle measurements are presented in
Table 1; the values given in the table are the average of both films’ sides. The topographic features
obtained from AFM are shown in Figure 6.

Table 1. Contact angle and roughness measurements of CA and CA/RSNF films.

RSNF Content (wt.%) CA CA-1.25 CA-2.5 CA-5 CA-7.5 CA-10

Contact Angle (◦) 71.0 ± 2.0 66.1 ± 0.8 66.4 ± 1 65.0 ± 2.2 63.1 ± 2.0 60.7 ± 2.2
Roughness (nm) 5.9 ± 1.9 14.2 ± 2.0 18.0 ± 2.2 20.1 ± 4.0 28.7 ± 5.1 45.9 ± 6.0
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The introduction of RSNF resulted in a decrease in the contact angle of CA, as observed from
Table 1. Furthermore, the hydrophilicity of the CA films was overall gradually enhanced with increased
loadings of RSNF as observed from the decreased contact angles in Table 1. This was expected, as the
RSNF network has been shown in a previous study to be hydrophilic in nature, even with such a high
lignin content [34]. The contact angle of neutral sulfite xylanase-treated nanofiber networks was 63.9
± 1.8 [34].

From Table 1, it was also observed that the RSNF also introduces roughness immediately upon
addition at low loadings, and that the surface roughness was further increased as more RSNF was
added. This behavior was also seen in Figure 6, were the topography of the films’ surfaces changed
towards rougher structures as RSNF loading increased.

The porosity of the films with various RSNF content is presented in Table 2. The porosity was not
enhanced with the addition of RSNF, and appeared unaffected at the increased loadings (Table 2). With
comparable porosities, it can be assumed that the surface structure is in contact with the water upon
measurement of the contact angle, rather than in contact with a surface structure of small pores filled
with air, and thus the Wenzel regime roughness may be valid [38]. The roughness contribution for that
regime, assuming that air-filled pores are not dominating the structure, enhances hydrophilicity in the
case of hydrophilic surfaces. Thus, the rougher surface of films with increased RSNF loadings is likely
contributing to amplify hydrophilicity.
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Table 2. Porosity and surface area characteristics of CA and CA/RSNF films.

Property CA CA-1.25%
RSNF

CA-2.5%
RSNF

CA-5%
RSNF

CA-7.5%
RSNF

CA-10%
RSNF

Porosity (%) 15.1 ± 0.72 14.8 ± 0.55 14.6 ± 1.38 14.3 ± 1.1 16.6 ± 0.58 15.1 ± 0.87
Surface Area (m2/g) 7.68 - 7.46 6.43 - 8.24
Pore Volume (cc/g) 0.01 - 0.01 0.01 - 0.01

Average Pore Radius (nm) 1.92 - 1.93 1.93 - 1.92

3.5. Water Vapor Permeability (WVP)

The effect of RSNF on water vapor permeability (WVP) of CA films was studied and the results
are presented in Figure 7. The WVP of CA films was strongly affected by addition of RSNF even at the
lowest loadings. WVP increased with the addition of up to 5% of RSNF then tended to decrease at
higher loadings; at 5% RSNF addition, the increase in WVP was about 87% as compared to the neat
CA film, while at 7.5% and 10% RSNF loading the increase in WVP was 22% and 17%, respectively.
The increase in WVP could be understood from the increased hydrophilicity of the films upon adding
RSNF as seen from contact angle measurements, while the tendency to decrease at high RSNF loading
could be attributed to RSNF agglomeration and formation of blocked paths to water vapor molecules
to pass through the film cross section.
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3.6. Porosity and Surface Area Characteristics of CA/RSNF Films

The effect of RSNF on porosity of CA films was studied by measuring uptake of water by the
films [37]. In spite of the change in the cross section micro-structure shown in the SEM images
mentioned above, porosity measurement didn’t show significant changes as a result of RSNF addition
to CA (Table 2). Since formation of pores is directly related to the rate of solvent evaporation,
the obtained results mean that there was no effect of the RSNF on the rate of evaporation of acetone
solvent [39]. Surface area and pore volume measurement confirmed the porosity results as no difference
between neat CA and the different CA/RSNF samples was found.

3.7. Mechanical Properties of CA/RSNF Films

The effect of RSNF on mechanical properties CA films was studied and the results are presented
in Figure 8. As shown in the figure, the addition of RSNF did not have a noticeable effect on the
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mechanical properties of CA. Regarding tensile strength, the addition of RSNF did not show any
significant increase until 10%. The Young’s modulus and strain at maximum load showed larger
variations at higher RSNF loadings. Also, no significant increase in Young’s modulus was found.
Although a trend for increasing the strain at maximum load at high RSNF loading was found but the
variation in the values was high. The absence of the expected high reinforcing effect with increasing
the RSNF could be due to the change in the microstructure of the films, as seen in Figure 3, where the
cross section of the films became much less compact and with a layered structure at RSNF loadings of
more than 5%.Materials 2018, 11, x FOR PEER REVIEW  10 of 18 
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Figure 8. Tensile strength properties of CA films containing different ratios of RSNF contents. (a) tensile
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3.8. Crystallinity

The crystallinity of the prepared CA/RSNF films was briefly studied using XRD diffraction. CA
is a semi-crystalline polymer. As shown in Figure 9, the XRD pattern of CA (degree of substitution, DS
~2.5) showed peaks at two regions; the first peak at about 2θ = 20◦, known as the van der Waals or
amorphous region, and the second at about 2θ = 8◦–10◦, which is known as the low van der Waals halo
and attributed to the existence of regions of aggregates of parallel chain segments and characteristic
of the semi-crystallinity of CA [40]. Addition of RSNF to CA did not affect its crystalline pattern,
and at high ratios of RSNF, peaks belonging to cellulose at 2-theta of 18◦ and 22.5◦ started to appear.
Calculating the crystallinity of CA/RSNF films was not possible because of the overlapping of the
peaks of CA with those of RSNF. Crystallinity was estimated from DSC curves as discussed below.
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Figure 9. XRD patterns of CA films containing different ratios of RSNF.

3.9. Thermal Properties of CA/RSNF Films

Thermal properties of CA/RSNF films were studied using thermogravimetric analysis (TGA),
differential scanning calorimetery (DSC), and dynamic mechanical thermal analysis (DMTA). At first,
thermal stability was checked to assure non-degradability of the prepared films in the temperature
ranges used in DSC and DMTA analyses. Figure 10 shows thermogravimetry (TG) and differential
thermogravimetry (DTG) curves of CA and CA/RSNF with different nanofibers contents. In spite of
its low crystallinity, CA with a high degree of substitution has higher thermal stability than cellulose
due to the presence of acetyl groups [41]. Thermal degradation of CA involves degradation of the
cellulose backbone by decomposition of glycosidic linkages, depolymerization, dehydration, and the
loss of acetate groups [42]. RSNF contains amorphous polymers—e.g., hemicellulose and lignin—in
addition to the partially crystalline cellulose polymer, which has higher thermal stability than lignin
and hemicelluloses [43]. As shown in the figure, CA shows the onset of degradation at a temperature of
about 310 ◦C, while CA containing 2.5% and 10% RSNF showed an onset of degradation temperatures
at about 291 and 285 ◦C, respectively. The lower onset of degradation of CA/RSNF compared to CA
could be due to the lower thermal stability of RSNF components. A similar trend was found in the
case of the addition bleached cellulose nanofibers to CA, where increasing the cellulose nanofibers
content resulted in decreasing the onset of the degradation temperature of CA [33].
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Figure 10. TGA and differential thermogravimetric analysis (DTGA) curves of (a) CA and (b)
CA/RSNF films.

Regarding thermal properties, as shown in Figure 11, the DSC curve of CA showed a broad and
weak endothermic peak centered at about 120 ◦C, which could be attributed to loss of adsorbed water
by evaporation; a transition at about 187 ◦C, which could be attributed to Tg of CA; and another
endothermic peak at about 231 ◦C, which could be attributed to melting of CA [40,44,45]. Addition of
RSNF to CA resulted in shift of the Tg peak to about 191, 191, and 198 ◦C in case of samples containing
2.5%, 5%, and 10% RSNF, respectively, indicating an interaction between RSNF and CA (enlarged
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areas of the curves are shown in Appendix A). On the other hand, the endothermic peak due to
evaporation of adsorbed water became more intense due to the higher moisture sorption and water
holding capacity of RSNF; the intensity of that peak increased with increasing the RSNF loading,
i.e., more adsorbed water. The peak due to melting of CA at 231 ◦C did not show significant change
as a result of addition of RSNF. The estimated crystallinity of CA films calculated from the melting
enthalpy (∆H) was 12.3% while that of films containing RSNF ranged from 12.4% to 14.8% indicating
no significant effect of RSNF on the crystallinity of CA.
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DMTA curves (storage modulus and damping factor) of CA and CA/RSNF films are shown
in Figure 12. The storage modulus of CA showed a sharp decrease at about 188 ◦C due to a major
relaxation process (known as α relaxation) which is due to a glass-rubbery transition [33]. The addition
of RSNF resulted in an increase in the storage modulus of CA before and after Tg, indicating a slight
reinforcing effect of the nanofibers on the CA matrix; this was more obvious at a RSNF content of
>5%. Tan delta curves showed corresponding peaks at the Tg transition; the peak was at 202 ◦C in case
of neat CA while it was at 208–210 ◦C for samples containing 2.5–10% RSNF. It is worth mentioning
that, in a previous study on nanocomposites consisting of cellulose nanofibers from bleached pulp
with CA, addition of cellulose nanofibers to CA resulted in a lowering of its Tg value, and no obvious
reinforcement of the CA matrix at or above that Tg was observed [33]. This may indicate stronger
interfacial interaction between the nanofibers containing lignin used in the current work than that
isolated from bleached pulp, i.e., without lignin [33]. It is also noted that the intensity of the Tan delta
peaks decreased with increasing the RSNF content, probably because of the decrease in CA content
since the damping of CA is higher than that of the nanofibers due to the higher viscous nature of
the former.
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Figure 12. DMTA curves of CA and CA/RSNF films.

4. Conclusions

RSNF with high lignin content could be used to prepare cellulose acetate nanocomposites films
with acceptable transparency and improved hydrophilicity using the casting technique. Viscosity
measurements of the CA/RSNF suspension indicated a good distribution of RSNF in CA. Addition
of the RSNF did not bring noticeable increases in the mechanical properties of the cellulose acetate
films, their porosity, or crystallinity. Yet, the microscopic structure of the films was altered, where a
layered internal structure was observed at RSNF loadings above 5%, which negatively affected light
transmittance across the CA/RSNF films. The presence of RSNF in CA increased the hydrophilicity,
water vapor permeability, and roughness of the films, even at low RSNF loadings. Furthermore,
the addition of RSNF slightly decreased the thermal stability of CA and slightly shifted its Tg to higher
values. The presence of lignin allowed compatibility between RSNF and cellulose acetate without
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modification of the former or adding compatibilizers, thus demonstrating an environmentally-benign
approach to influence the structure and performance of cellulose acetate films.
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