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Abstract: In this research, the vibration and buckling of three-dimensional graphene foam (3D-GrF)
microshells are investigated for the first time. In the microshells, three-dimensional graphene foams
can distribute uniformly or non-uniformly through the thickness direction. Based on Love’s thin
shell theory and the modified couple stress theory (MCST), size-dependent governing equations and
corresponding boundary conditions are established through Hamilton’s principle. Then, vibration
and axial buckling of 3D-GrF microshells are analyzed by employing the Navier method and Galerkin
method. Results show that the graphene foam distribution type, size effect, the foam coefficient,
the radius-to-thickness ratio, and the length-to-radius ratio play important roles in the mechanical
characteristics of 3D-GrF microshells.

Keywords: three-dimensional graphene foam microshell; vibration; buckling; Love’s thin shell
theory; modified couple stress theory; size effect

1. Introduction

Three-dimensional graphene foams (3D-GrFs) [1–3], unlike conventional polymeric open-cell
foam materials, are a very new kind of nanofoam materials with three-dimensionally interconnected
constituent graphene flakes. These 3D-GrFs have been synthesized by some approaches such as hard
templating [4], sol–gel reaction [5], solution processing [6], powder metallurgy [7], 3D printing [8],
freeze drying [9], hydrothermal reduction [10], and chemical vapor deposition [11]. These 3D-GrFs
possess excellent properties of good electrical conductivity, high energy dissipation, super low density,
superelasticity, and electrochemical stability [12–15]. These combined properties enable 3D-GrFs to
be applied in electronics and energy storage/conversion systems [16,17], gas detection [15], sorbent
materials [18], stretchable electronics [11], and so on.

In contrast to many experimental studies on the mechanical property of 3D-GrFs, few computational
and theoretical investigations have been conducted to evaluate the relationship between the
macro-mechanical characteristics and the intrinsic micro/nanostructures. Jinlong et al. [19] investigated
and discussed the effects of graphene layer number and 3D-GrF defects on the electrical and
mechanical properties of 3D-GrFs. Based on the coarse-grained molecular dynamics simulation,
the constitutive relation between 3D-GrFs and microscopic deformation mechanisms were investigated
by Wang et al. [20]. The mechanical properties in both tension and compression of 3D-GrFs at macro
and nanoscales were evaluated by Nieto et al. [21]. Qin et al. [3] stated that 3D-GrFs have an
exceptionally high tensile strength and they are 10 times as strong as mild steel. Nautiyal et al. [22]
studied the dynamic mechanical properties of 3D-GrFs by nanoindentation technique.
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As material size changes from macroscale to nano/microscale, size effect on mechanical properties
of materials should be taken into account. It is reported that size effects in micro/nanostructures
have been experimentally observed [23–25]. Due to the exclusion of size effect in the classical theory
(CT), several non-classical theories were developed for analysis of micro/nanostructures. One of the
non-classical theories incorporating size effect is the modified couple stress theory [26,27]. This theory
has been employed in many aspects to interpret the size effect in micro/nanostructures [28–34].

Micro/nanoshells are an important and widely used form of micro/nanostructures in various
engineering fields. Gholami et al. [35] analyzed the dynamic stability and axial buckling of functionally
graded cylindrical microshells. Based on the strain gradient elasticity theory, Zhang et al. [36]
developed a shear deformable functionally graded microshell model. Ghayesh and Farokhi [37] studied
the nonlinear dynamical characteristics of doubly curved shallow microshells. SafarPour et al. [38]
investigated the influences of various temperature distributions on the vibration of functionally graded
rotating cylindrical microshells. Afterward, the buckling behavior of functionally graded sandwich
microshells under axial loads was studied by Zeighampour and Shojaeian [39]. Wang et al. [40] studied
nonlinear vibrations of cylindrical nanoshells conveying fluid in the framework of the surface stress
elasticity theory.

To date, no work has been published on the mechanical properties of 3D-GrF microshells. In this
paper, we aim to conduct size-dependent buckling and free vibration analysis of 3D-GrF cylindrical
microshells. The couple stress theory and Love’s thin shell theory are used to derive the governing
equations. After that, natural frequencies and critical buckling loads are solved by adopting the Navier
method and Galerkin method. Finally, the results are illustrated for different parameters.

2. Theoretical Formulation

2.1. Modified Couple Stress Theory

Based on the modified couple stress theory, the strain energy Us in a deformed elastic body
occupying a volume Ω is [27]

Us =
1
2

∫
Ω
(m : χ+σ : ε)dV (1)

where m represents the deviatoric part of the couple stress tensor; χ is the symmetric curvature tensor;
σ is the Cauchy stress tensor; ε is the strain tensor. These tensors are defined by [41]:

σ = λ tr(ε)I + 2µε (2)

m = 2l2µχ (3)

ε =
1
2

[
∇u + (∇u)T

]
(4)

χ =
1
2

[
∇θ+ (∇θ)T

]
(5)

where µ and λ represent Lamé constants; u represents the displacement vector; l represent a material
length scale parameter; θ is the rotation vector given by

θ =
1
2

curl u. (6)

The classical and higher-order strains are derived as [42,43]

ε
(i)
(j) = εi

j

√
gii
gjj

= 1
2

√
gii
gjj

{[(
u(i)
√gii

)
,j
+ Γi

mj
u(m)
√gmm

]
+gnjgim

[(
u(n)
√gnn

)
,m

+ Γn
qm

u(q)√
gqq

]}
,

(7)
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η
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i j

√
gkk

giigjj
=

1
2

√
gkk

giigjj

(
uk

;ij + uk
;ji

)
, (8)

uk
;lm =

(
u(k)
√gkk

)
,lm

+ Γk
ql

(
u(q)√

gqq

)
,m

+ Γk
qm

(
u(q)√

gqq

)
,l
− Γq
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(
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√gkk

)
,q

+
[
(Γk

lp),m
+ Γk
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pl − Γk

pqΓq
ml

]
× u(p)√

gpp
,

(9)

where η
(k)
(i) (j), ε

(i)
(j), and u(k) represent the physical components of higher-order displacement gradient

ηk
i j, displacement gradient εi

j, and displacement vector uk, respectively; gii and Γi
jk denote an individual

diagonal covariant component of the Euclidean metric tensor and Christoffel symbols of the second
kind, respectively. The underscores under the indices denote no summation over indices. In cylindrical
coordinates, the components of metric tensor and Christoffel symbols are expressed as

gθθ =
[
R
(
1 + z

R
)]2, gxx = 1 , gzz = 1, gkl = 0 (k 6= l),

Γz
θθ = −R

(
1 + z

R
)
, Γθ

θz = Γθ
zθ =

[
R
(
1 + z

R
)]−1.

(10)

Substituting Equations (9) and (10) into Equation (8) gives

ηxxx = ∂2u
∂x2 , ηxxθ = ∂2v

∂x2 , ηxθθ = ηθxθ =
[
R
(
1 + z

R
)]−1

[
∂2v

∂x∂θ +
∂w
∂x

]
,

ηxxz =
∂2w
∂x2 , ηzxx = ηxzx = ∂2u

∂z∂x ,

ηzzz =
∂2w
∂z2 , ηθxx = ηxθx =

[
R
(
1 + z

R
)]−1 ∂2u

∂x∂θ ,

ηzθθ = ηθzθ =
[
R
( z

R + 1
)]−1 ×

{
∂2v
∂z∂θ +

∂w
∂z −

[
R
(
1 + z

R
)]−1w−

[
R
(
1 + z

R
)]−1 ∂v

∂θ

}
,

ηzθz = ηθzz =
[
R
( z

R + 1
)]−1 ×

{
∂2w
∂z∂θ −

∂v
∂z −

[
R
(
1 + z

R
)]−1 ∂w

∂θ −
[
R
( z

R + 1
)]−1v

}
,

ηzxz = ηxzz =
∂2w
∂z∂x , ηzzθ = ∂2v

∂z2 , ηxθz = ηθxz =
[
R
(
1 + z

R
)]−1

(
∂2w
∂x∂θ −

∂v
∂x

)
,

ηθθx =
[
R
( z

R + 1
)]−1

{[
R
(
1 + z

R
)]−1 ∂2u

∂θ2 + ∂u
∂z

}
,

ηθθθ =
[
R
( z

R + 1
)]−2

[
∂2v
∂θ2 + 2 ∂w

∂θ + R
(
1 + z

R
)

∂v
∂z − v

]
,

ηθθz =
[
R
( z

R + 1
)]−2

[
∂2w
∂θ2 − 2 ∂v

∂θ + R
(
1 + z

R
)

∂w
∂z − w

]
.

(11)

2.2. 3D-GrF Circular Cylindrical Microshell

In Figure 1, a 3D-GrF microshell with the thickness h, the middle-plane radius R, and the length
L is shown. u(x, θ, t), v(x, θ, t), and w(x, θ, t) represent the in-plane and transverse displacements of
points at the middle plane; N0

xx represents the axial load applied to the microshell.
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Three types of foam distributions in the thickness direction were considered, as shown in Figure 2.
Herein, Figure 2a,b depict non-uniform foam distribution while Figure 2c shows uniform foam
distribution. They are denoted by 3D-GrF-I, 3D-GrF-II, and 3D-GrF-U, respectively. As shown in
Figure 2, the largest foams are located on the mid-plane for 3D-GrF-I while on the top and bottom
surfaces for 3D-GrF-II, leading to the variations of material properties given in Equations (12)–(14)
for 3D-GrF-I, and Equations (15)–(17) for 3D-GrF-II. Material properties of 3D-GrF-U are described in
Equations (18)–(20). They are given by [44–46]:

E(z) = E1[1− κ0 cos(πz/h)] (12)

ρ(z) = ρ1[1− κm cos(πz/h)] (13)

G(z) = G1[1− κ0 cos(πz/h)] (14)

E(z) = E1{1− κ∗0 [1− cos(πz/h)]} (15)

ρ(z) = ρ1{1− κ∗m[1− cos(πz/h)]} (16)

G(z) = G1{1− κ∗0 [1− cos(πz/h)]} (17)

E(z) = E1ϑ (18)

ρ(z) = ρ1ϑ′ (19)

G(z) = G1ϑ (20)

where E(z), ρ(z), and G(z) are general Young’s modules, mass density, and shear modules of the 3D-GrF
microshell, respectively; E1, G1, and ρ1 represent corresponding properties of solid graphenes without
internal foams; κ0 and κm represent coefficients of foams and mass density for 3D-GrF-I, respectively;
κ∗0 and κ∗m are corresponding coefficients for 3D-GrF-II; ϑ and ϑ′ are corresponding coefficients for
3D-GrF-U. Thereinto, shear modulus G1 is calculated by

G1 =
E1

2(1 + ν)
(21)

where ν represents Poisson’s ratio.
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Figure 2. 3D-GrF distributions in the thickness direction: (a) 3D-GrF-I; (b) 3D-GrF-II; (c) 3D-GrF-U.

The typical mechanical property of 3D-GrFs [3,20,21], shown in Equation (22), is employed to
establish the relationships in Equation (23) between mass density coefficients and foam coefficients for
different foam distributions:

E(z)
E1

=

[
ρ(z)
ρ1

]2.73
(22)


1− κm cos(πz/h) = 2.73

√
1− κ0 cos(πz/h) 3D−GrF− I

1− κ∗m[1− cos(πz/h)] = 2.73
√

1− κ∗0 [1− cos(πz/h)] 3D−GrF− II

ϑ′ = 2.73
√

ϑ 3D−GrF−U

(23)

The masses of all 3D-GrF microshells with varying foams are set to be equivalent, namely
∫ h/2

0
2.73
√

1− κ∗0 [1− cos(πz/h)]dz =
∫ h/2

0
2.73
√

1− κ0 cos(πz/h)dz∫ h/2
0

2.73
√

ϑdz =
∫ h/2

0
2.73
√

1− κ0 cos(πz/h)dz
(24)

which can be used to determine κ∗0 and ϑ with a given value of κ0, as tabulated in Table 1. It is seen
that κ∗0 rises dramatically with the increase of κ0. When κ0 reaches 0.65, κ∗0 is close to the upper limit
(κ∗0 = 0.9976). Therefore, the selected range of κ0 ∈ [0, 0.65] is applied in the following numerical
calculations.
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Table 1. Foam coefficients for different distributions.

κ0 κ∗
0 ϑ

0.1 0.1734 0.9360
0.2 0.3426 0.8713
0.3 0.5065 0.8058
0.4 0.6637 0.7391
0.5 0.8112 0.6711
0.6 0.9432 0.6012
0.65 0.9976 0.5653

The displacement fields, based on Love’s thin shell theory, are expressed as [47]

u1(x, θ, z, t) = u(x, θ, t)− z
∂w(x, θ, t)

∂x
(25)

u2(x, θ, z, t) = v(x, θ, t)− z
R

[
∂w(x, θ, t)

∂θ
− v(x, θ, t)

]
(26)

u3(x, θ, z, t) = w(x, θ, t) (27)

where t is time, and u1(x, θ, z, t), u2(x, θ, z, t), and u3(x, θ, z, t) are displacements of an arbitrary point
of the microshell along x-, θ-, and z-axes, respectively.

By substituting Equations (25)–(27) and Equation (10) into Equation (7), strain–displacement
relations are expressed as:

εxx =
∂u
∂x
− z

∂2w
∂x2 (28)

εθθ =
1
R

∂v
∂θ

+
w
R
− z

R2
∂2w
∂θ2 (29)

γxθ =
∂v
∂x

+
1
R

∂u
∂θ
− 2z

R
∂2w
∂θ∂x

. (30)

Nonzero components of χ can be obtained by substituting Equations (25)–(27) into Equation (11)
and using Equation (5):

χxx = − 1
R

(
∂v
∂x
− ∂2w

∂x∂θ

)
(31)

χzz =
1

2R2

(
∂u
∂θ
− 2z

∂2w
∂x∂θ

+ R
∂v
∂x

)
(32)

χθθ =
1

2R

(
∂v
∂x
− 2

∂2w
∂x∂θ

− 1
R

∂u
∂θ

)
(33)

χxθ = χθx =
1
2

(
−∂2w

∂x2 −
1

R2
∂v
∂θ

+
1

R2
∂2w
∂θ2

)
(34)

χxz = χzx =
1
4

(
∂2v
∂x2 −

1
R

∂2u
∂x∂θ

− z2

R2
∂3w

∂x2∂θ

)
(35)

χzθ = χθz =
1

4R

(
− 1

R
∂2u
∂θ2 −

z2

R2
∂3w

∂x∂θ2 +
∂2v

∂x∂θ
+ 2

∂w
∂x

)
. (36)
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According to Equation (1), the strain energy can be written as

Us =
1
2

∫ L
0

∫ 2π
0

[
Nxx

∂u
∂x +

(
Nxθ
R −

Yθθ
2R2 +

Yzz
2R2

)
∂u
∂θ −

Yzθ
2R2

∂2u
∂θ2

−Yzx
2R

∂2u
∂x∂θ +

(
Nxθ − Yxx

R + Yzz
2R + Yθθ

2R

)
∂v
∂x + Yzx

2
∂2v
∂x2 +

Yzθ
R

∂w
∂x

+
(

Nθθ
R −

Yxθ
R2

)
∂v
∂θ + Yzθ

2R
∂2v

∂x∂θ + (Yxx −Mxx −Yxθ)
∂2w
∂x2

+
(

Yθθ − Mθθ
R2 + Yxθ

R2

)
∂2w
∂θ2 +

(
Yxθ + Yzθ − 2Mxθ

R + Yxx
R −

Yθθ
R −

Tzz
R2

)
∂2w
∂x∂θ

+Nθθ
R w

]
Rdθdx

(37)

The non-classical and classical moments and forces are given by

Tij =
∫ h

2
− h

2
mijzdz, Yij =

∫ h
2
− h

2
mijdz,

Mij =
∫ h

2
− h

2
σijzdz, Nij =

∫ h
2
− h

2
σijdz.

(38)

The kinetic energy of the microshell is

T =
1
2

∫
V

ρ(z)

[(
∂u
∂t
− z

∂2w
∂x∂t

)2

+

(
∂v
∂t
− z

R
∂2w
∂θ∂t

)2

+

(
∂w
∂t

)2
]

dV. (39)

The work performed by axial load N0
xx applied on the middle surface of the 3D-GrF microshell is

given by [48]

WF =
∫

A

[
1
2

N0
xx ·
(

∂w
∂x

)2
]

dA. (40)

Using Hamilton’s principle [49–54]

∫ t

0
(δUs − δT − δWF)dt = 0 (41)

and applying Equations (37), (39) and (40) in Equation (41), the governing equations of motion for the
3D-GrF cylindrical microshell are

−D1,0
∂2u
∂x2 +

D5,0l2

4R2
∂4u

∂x2∂θ2 −
D5,0l2

4R
∂4v

∂x3∂θ
− 1

R (D3,0 + D5,0)
∂2v

∂x∂θ −
D5,0l2

4R3
∂4v

∂x∂θ3

− 1
R D3,0

∂w
∂x +

(
1

R2 D3,1 +
2

R2 D5,1 +
l2

R4 D5,1 − 3l2

2R3 D5,0

)
∂3w

∂x∂θ2

−D5,0
R2

(
1 + l2

R

)
∂2u
∂θ2 +

D5,0l2

4R4
∂4u
∂θ4 + D1,1

∂3w
∂x3 − I1,1

∂3w
∂x∂t2 + I1,0

∂2u
∂t2 = 0

(42)

l2

4 D5,0
∂4v
∂x4 − D5,0

(
1 + 3l2

R2

)
∂2v
∂x2 − 1

R2

(
D1,0 +

l2

R2 D5,0

)
∂2v
∂θ2 +

l2

4R2 D5,0
∂4v

∂x2∂θ2

− l2

4R D5,0
∂4u

∂x3∂θ
− l2

4R3 D5,0
∂4u

∂x∂θ3 − 1
R (D3,0 + D5,0)

∂2u
∂x∂θ

+
(

1
R D3,1 +

2
R D5,1 +

l2

R3 D5,1 + D5,0
5l2

2R2

)
∂3w

∂x2∂θ
+ l2

R4 D5,0
∂3w
∂θ3

− 1
R2 D1,0

∂w
∂θ + 1

R3 D1,1
∂3w
∂θ3 − 1

R I1,1
∂3w

∂θ∂t2 + I1,0
∂2v
∂t2 = 0

(43)

(
D1,2 + l2D5,0

)
∂4w
∂x4 −

(
2
R D3,1 + D5,0

l2

R2

)
∂2w
∂x2 + 1

R D3,0
∂u
∂x + 1

R2 D1,0w

+ 1
R2

(
2D3,2 + 4D5.2 +

l2

R2 D5.2 + 2l2D5.0

)
∂4w

∂x2∂θ2 +
1

R2 D1,0
∂v
∂θ

− 1
R2

(
D3,1 + 2D5,1 +

l2

R2 D5.1 − D5.0
3l2

2R

)
∂3u

∂x∂θ2 −
(

1
R3 D1,1 +

l2

R4 D5.0

)
∂3v
∂θ3

− 1
R

(
D3,1 + 2D5,1 +

l2

R2 D5.1 + D5.0
5l2

2R

)
∂3v

∂x2∂θ
+ 1

R4

(
D1,2 + l2D5.0

)
∂4w
∂θ4

−D1,1
∂3u
∂x3 − 2

R3 D1,1
∂2w
∂θ2 − I1,2

∂w
∂x2∂t2 − 1

R2 I1,2
∂4w

∂θ2∂t2 + I1,1
∂3u

∂x∂t2

+ 1
R I1,1

∂3v
∂θ∂t2 + I1,0

∂2w
∂t2 + N0

xx
∂2w
∂x2 = 0

(44)
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where

D1,i =
∫ h

2

− h
2

E(z)
1− ν2 zidz (i = 0, 1, 2)

D3,i =
∫ h

2

− h
2

E(z)ν
1− ν2 zidz (i = 0, 1, 2)

D5,i =
∫ h

2

− h
2

µ(z) zidz (i = 0, 1, 2)

I1,i =
∫ h

2

− h
2

ρ(z) zidz (i = 0, 1, 2).

Boundary conditions at the edges with x = constant are

δux=0,L = 0 or
∫

θ

[
D1,0

∂u
∂x −

D5,0l2

4R2
∂3u

∂x∂θ2 +
D5,0l2

4R
∂3v

∂x2∂θ
+

1
R D3,0

(
∂v
∂θ + w

)
− D1,1

∂2w
∂x2 − 1

R2 D3,1
∂2w
∂θ2

]
dθ|x=0,L = 0

(45)

δvx=0,L = 0 or
∫

θ

[
−D5,0l2

4
∂3v
∂x3 +

(
1 + 3l2

R2

)
D5,0

∂v
∂x −

D5,0l2

4R2
∂3v

∂x∂θ2

+
D5,0l2

4R
∂3u

∂x2∂θ
+

D5,0l2

4R3
∂3u
∂θ3 +

D5,0
R

∂u
∂θ

−
(

7l2D5,0
2R2 +

2D5,1
R +

l2D5,1
R3

)
∂2w
∂x∂θ

]
dθ|x=0,L = 0

(46)

δ

(
∂v
∂x

)∣∣∣∣
x=0,L

= 0 or
∫

θ

(
D5,0l2

4
∂2v
∂x2 −

D5,0l2

4R
∂2u

∂x∂θ

)
dθ|x=0,L = 0 (47)

δ w|x=0,L = 0 or
∫

θ

[
−(D1,2 + D5,0l2) ∂3w

∂x3 +
(

D5,0l2

R2

)
∂w
∂x

−
(

1
R2 D3,2 +

4D5,2
R2 +

3D5,0l2

R2 +
2D5,2l2

R4

)
∂3w

∂x∂θ2 + D1,1
∂2u
∂x2

+
(

5D5,0l2

2R2 + 1
R D3,1 +

2
R D5,1 +

l2

R D5,1

)
∂2v

∂x∂θ

+
(

2
R2 D5,1 +

l2

R4 D5,1 −
3D5,0l2

2R3

)
∂2u
∂θ2

]
dθ|x=0,L = 0

(48)

δ
(

∂w
∂x

)∣∣∣
x=0,L

= 0 or
∫

θ

[
(D1,2 + D5,0l2) ∂2W

∂x2 +
(

D3,2
R2 −

D5,0l2

R2

)
∂2w
∂θ2

+
(

D5,0l2

R2 − 1
R D3,1

)
∂v
∂θ − D1,1

∂u
∂x −

1
R D3,1w

]
dθ|x=0,L = 0

(49)

Boundary conditions at the edges with θ = constant are:

δ u|θ=0,θ0
= 0 or

∫
x

[
D5,0
R2

(
1 + l2

R2

)
∂u
∂θ −

D5,0l2

4R2
∂3u

∂x2∂θ
+

D5,0l2

4R3
∂3v

∂x∂θ2

+
D5,0

R
∂v
∂x +

(
3D5,0l2

2R3 −
2D5,1

R2 −
l2D5,1

R4

)
∂2w
∂x∂θ

]
dx|θ=0,θ0

= 0
(50)

δ v|θ=0,θ0
= 0 or

∫
x

[(
1

R2 D1,0 +
D5,0l2

R4

)
∂v
∂θ + 1

R D3,0
∂u
∂x

+ 1
R2 D1,0w +

(
D5,0l2

2R2 − 1
R D3,1

)
∂2w
∂x2 −

D5,0l2

4R2
∂3v

∂x2∂θ
+

D5,0l2

4R3
∂3u

∂x∂θ2

−
(

D5,0l2

R4 + 1
R3 D1,1

)
∂2w
∂θ2

]
dx|θ=0,θ0

= 0

(51)

δ

(
∂u
∂θ

)∣∣∣∣
θ=0,θ0

= 0 or
∫

x

(
D5,0l2

4R4
∂2u
∂θ2 −

D5,0l2

4R3
∂2v

∂x∂θ
− D5,0l2

2R3
∂w
∂x

)
dx|θ=0,θ0

= 0 (52)
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δ w|θ=0,θ0
= 0 or

∫
x

[
−
(

1
R4 D1,2 +

D5,0l2

R4

)
∂3w
∂θ3 +

3D5,0l2

R2
∂2v
∂x2

−
(

1
R2 D3,2 +

4D5,2
R2 +

3D5,0l2

R2 +
2D5,2l2

R4

)
∂3w

∂x2∂θ

+
(

D5,0l2

R4 + 1
R3 D1,1

)
∂2v
∂θ2 +

(
1

R2 D3,1 −
D5,0l2

R3

)
∂2u

∂x∂θ

+ 1
R3 D1,1

∂w
∂θ

]
dx|θ=0,θ0

= 0

(53)

δ
(

∂w
∂θ

)∣∣∣
θ=0,θ0

= 0 or
∫

x

[(
1

R4 D1,2 +
1

R4 D5,0l2
)

∂2w
∂θ2 +

(
D3,2
R2 −

D5,0l2

R2

)
∂2w
∂x2

−
(

D5,0l2

R4 + 1
R3 D1,1

)
∂v
∂θ −

1
R2 D3,1

∂u
∂x −

1
R3 D1,1w

]
dx|θ=0,θ0

= 0
(54)

3. Free Vibration and Buckling Analysis

3.1. Navier Solution

For simply supported–simply supported (SS–SS) 3D-GrF cylindrical microshells, the displacement
functions using the Navier method can be expressed as:

u(x, θ, t) = Umn cos
(mπx

L

)
cos(nθ)eiωt (55)

v(x, θ, t) = Vmn sin
(mπx

L

)
sin(nθ)eiωt (56)

w(x, θ, t) = Wmn sin
(mπx

L

)
cos(nθ)eiωt (57)

where Umn, Vmn, and Wmn represent the displacement amplitude components; m and n are mode
numbers; and ω is natural circular frequency of the 3D-GrF microshell. Obviously, displacement
functions in Navier solution procedure satisfy the SS–SS boundary condition.

Substituting Equations (55)–(57) into Equations (42)–(44) and then removing trigonometric
functions lead to (

K + N0
xx ·Kg

)
· d + M ·

..
d =


0
0
0

 (58)

where d = [Umn, Vmn, Wmn]
T ; K, Kg, and M denote stiffness matrix, geometric stiffness matrix, and

mass matrix, respectively. The non-zero elements in the above matrices are given in the Appendix A.
Neglecting axial load N0

xx, Equation (58) is reduced to the following eigenvalue problem of the
3D-GrF microshell: (

K−ω2M
)
· d =


0
0
0

. (59)

If disregarding inertia terms and assuming N0
xx = −P, Equation (58) is reduced to the equilibrium

equations of a static buckling problem of the 3D-GrF microshell:

(
K− P ·Kg

)
· d =


0
0
0

 (60)

where P represents buckling load. Therefore, the critical (minimum) buckling load Pcr and vibration
frequencies of the 3D-GrF microshell are obtained by solving the above eigenvalue problems [55–57].
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3.2. Galerkin Solution

In order to analyze free vibration of 3D-GrF microshells with other boundary conditions, a
Galerkin-based solution technique is utilized. Therein, the spatial displacement field of the microshell
can be expressed as [58]

u(x, θ, t) = Umn
∂φ(x)

∂x
cos(nθ)eiωt (61)

v(x, θ, t) = Vmnφ(x) sin(nθ)eiωt (62)

w(x, θ, t) = Wmnφ(x) cos(nθ)eiωt. (63)

Thereinto, the axial modal function φ(x) is:

φ(x) = c1 cosh
(

λix
L

)
+ c2 cos

(
λix
L

)
− ζi

[
c3sinh

(
λix
L

)
+ c4 sin

(
λix
L

)]
. (64)

The simply supported boundary condition is expressed as

∂2φ(x)
∂x2 = φ(x) = 0 (x = 0, L). (65)

The clamped boundary condition is expressed as

∂φ(x)
∂x

= φ(x) = 0 (x = 0, L). (66)

The free boundary condition is

∂2φ(x)
∂x2 =

∂3φ(x)
∂x3 = 0 (x = 0, L). (67)

Herein, free–simply supported (F–SS), clamped–free (C–F), clamped–simply supported (C–SS),
free–free (F–F), and clamped–clamped (C–C) boundary conditions are taken into account. Based on
Equations (65)–(67), the constants c1, c2, c3, c4, λi, and ζi (i = 1, 2, 3, 4 . . . ) are given in Table 2.

Substituting Equations (61)–(63) into Equations (42)–(44) and neglecting axial load N0
xx, then

applying the Galerkin method [59–62], yields

(
K1 −ω2M1

)
Umn

Vmn

Wmn

 =


0
0
0

 (68)

where M1 and K1 represent the mass matrix and stiffness matrix, respectively. By solving the
eigenvalue problem, the natural frequencies and eigenvectors are obtained.

Table 2. Values of c1, c2, c3, c4, ζi, and λi for different boundary conditions.

Boundary Condition c1 c2 c3 c4 ζi λi

C–C 1 −1 1 −1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

cosh(λi) · cos(λi) = 1

C–SS 1 −1 1 −1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

tan(λi) = tanh(λi)

F–F 1 1 1 1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

cosh(λi) · cos(λi) = 1

C–F 1 −1 1 −1 sinh(λi)−sin(λi)
cosh(λi)+cos(λi)

cosh(λi) · cos(λi) = −1

F–SS 1 1 1 1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

tan(λi) = tanh(λi)
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4. Results and Discussion

In order to verify the correctness of the derivation in this paper, we chose an SS–SS isotropic
homogeneous shell to make a comparison without considering the small-scale effect (l = 0). The system
parameters used are as follows: ρ = 2300 kg/m3, ν = 0.3, E = 1.06 TPa, R = 2.32 nm, L/R = 5. As can be
seen in Table 3, very good agreement was achieved.

Considering the scale effect, dimensionless natural frequencies of an isotropic homogeneous
cylindrical nanoshell were calculated, and are compared with the literature in Table 4. Here the
parameters used are the same as those in Table 3. It was found that the present results match those
given by Beni et al. [42] well, bespeaking the validity of the present study.

Table 3. Comparison of dimensionless natural frequency Ω(Ω = ωR
√

ρ/E) of a simply
supported–simply supported (SS–SS) isotropic homogeneous cylindrical shell (κ0 = 0, l = 0).

h/R (m, n) Present Beni et al. [42] Alibeigloo and Shaban [63]

0.02
(1,1) 0.1954 0.1954 0.1968
(2,2) 0.2532 0.2532 0.2563
(3,3) 0.2772 0.2772 0.2773

0.05
(1,1) 0.1959 0.1959 0.2004
(2,2) 0.2623 0.2623 0.2633
(3,3) 0.3220 0.3220 0.3158

Table 4. Comparison of dimensionless natural frequency Ω of an SS–SS isotropic homogeneous
cylindrical nanoshell (κ0 = 0, l = h).

h/R (m, n) Present Beni et al. [42]

0.02
(1,1) 0.1955 0.1955
(2,2) 0.2575 0.2575
(3,3) 0.3067 0.3067

0.05
(1,1) 0.1963 0.1963
(2,2) 0.2869 0.2869
(3,3) 0.4586 0.4586

To make further comparisons, we considered a homogeneous cylindrical shell with the C–C
boundary condition. The comparison result is listed in Table 5. It can be seen that the present results
agree well with those in the literature [64].

Table 5. Comparison of dimensionless natural frequency Ω
(

Ω = ω · R ·
√
(1− ν2)ρ/E

)
of a

clamped–clamped (C–C) isotropic homogeneous cylindrical shell (κ0 = 0, l = 0, m = 1, ν = 0.3, h/R =
0.01, L/R = 20).

n Present Razavi et al. [64]

1 0.034458 0.033844
2 0.015826 0.015770
3 0.025380 0.024826
4 0.045010 0.045001

Hereinafter, we conducted free vibration and buckling analyses of 3D-GrF cylindrical microshells.
If not specified, the geometrical and material properties of the 3D-GrF microshell are:

E1 = 1.02 TPa, ρ1 = 2300 kg/m3, ν = 0.3
l = 15 µm, m = 1, h = 15 µm, R/h = 40, L/R = 2
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In Figures 3–5, natural frequencies of 3D-GrF microshells under various boundary conditions
are shown for different foam distributions, where κ0 = 0.2. For all six of the boundary conditions,
one can see the natural frequencies first decreased and then increased as circumferential number n
increased. The minimum frequency occurred at n = 2 for the C–F boundary condition and occurred
at n = 3 for the other boundary conditions. In addition, the natural frequency of the C–F microshell
was the lowest while that of the F–F one was the highest. When the circumferential wave number was
greater than 5, natural frequencies under various boundary conditions tended toward the same value.
This result shows that the boundary condition effect was closely associated with the circumferential
wave number.
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Based on the modified couple stress theory and classical continuum theory, Figure 6 shows the
natural frequency versus dimensionless length scale parameter for the SS–SS 3D-GrF microshell, where
n = 3 and κ0 = 0.2. One can see that the natural frequency from the modified couple stress theory
increased while that from the classical theory did not change with length scale parameter. This is
because size effect tends to increase the stiffness of the 3D-GrF microshell. Nevertheless, the classical
shell theory fails to incorporate this effect and thus produces inaccurate results.Materials 2019, 12, x FOR PEER REVIEW 16 of 25 
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Figure 7 gives the variation of natural frequency against the foam coefficient for different foam
distributions. The results show that the increase in the foam coefficient led to a decrease in the natural
frequencies of 3D-GrF cylindrical microshells. When the foam coefficient was small, the 3D-GrF-I
microshell had the highest natural frequency while the 3D-GrF-II one had the lowest natural frequency.
With the increase in the foam coefficient, however, the natural frequency of the 3D-GrF-U microshell
dropped faster than that of the 3D-GrF-II one. At last, the 3D-GrF-U microshell had the lowest natural
frequency among the three types of foam distribution, except in the C–F boundary condition.
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The variations of natural frequency against the length-to-radius ratio for different foam
distributions are illustrated in Figures 8–10, where n = 3 and κ0 = 0.2. It was found that the natural
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frequencies kept decreasing with the length-to-radius ratio. It can also be seen that the natural
frequencies of 3D-GrF microshells under various boundary conditions tended toward the same value
as the length-to-radius ratio increased.
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Tables 6–8 show the natural frequency versus radius-to-thickness ratio for different foam distributions,
where n = 3 and κ0 = 0.2. It is clear that natural frequencies decreased as the radius-to-thickness ratio rose
for all the boundary conditions.

Table 6. Natural frequency ω (MHz) of 3D-GrF microshell with different radius-to-thickness ratios
(3D-GrF-I).

R/h SS–SS C–SS C–C C–F F–F F–SS

20 4.237 4.818 5.309 3.097 5.442 4.478
30 2.174 2.553 2.835 1.427 2.884 2.289
40 1.419 1.707 1.906 0.840 1.928 1.490
50 1.048 1.281 1.436 0.567 1.447 1.097
60 0.830 1.027 1.154 0.417 1.160 0.869
70 0.689 0.859 0.967 0.326 0.970 0.720
80 0.589 0.739 0.833 0.265 0.835 0.615
90 0.516 0.649 0.732 0.223 0.733 0.538

100 0.459 0.579 0.654 0.192 0.654 0.478

Table 7. Natural frequency ω (MHz) of 3D-GrF microshell with different radius-to-thickness ratios
(3D-GrF-II).

R/h SS–SS C–SS C–C C–F F–F F–SS

20 4.182 4.765 5.254 3.045 5.382 4.420
30 2.154 2.534 2.816 1.405 2.863 2.268
40 1.410 1.698 1.898 0.828 1.919 1.480
50 1.043 1.277 1.432 0.560 1.443 1.092
60 0.828 1.025 1.153 0.412 1.158 0.866
70 0.687 0.858 0.966 0.322 0.969 0.718
80 0.589 0.739 0.833 0.263 0.834 0.615
90 0.515 0.649 0.732 0.221 0.733 0.538

100 0.458 0.579 0.654 0.191 0.654 0.478

Table 8. Natural frequency ω (MHz) of 3D-GrF microshell with different radius-to-thickness ratios
(3D-GrF-U).

R/h SS–SS C–SS C–C C–F F–F F–SS

20 4.211 4.792 5.281 3.074 5.412 4.450
30 2.164 2.542 2.824 1.417 2.873 2.278
40 1.414 1.701 1.901 0.835 1.922 1.484
50 1.044 1.278 1.433 0.564 1.443 1.094
60 0.828 1.025 1.152 0.415 1.158 0.867
70 0.687 0.857 0.965 0.324 0.968 0.718
80 0.588 0.738 0.832 0.264 0.833 0.614
90 0.515 0.648 0.731 0.222 0.732 0.537

100 0.458 0.578 0.653 0.191 0.653 0.478

Table 9 lists the variation of buckling load against circumferential wave number for the SS–SS
3D-GrF microshell, where L/R = 3 and κ0 = 0.2. Results show the buckling loads initially decreased
and then increased with the circumferential wave number. It can be seen that the critical buckling load
Pcr occurred at n = 3. Therefore, mode (m = 1, n = 3) is chosen as a representative mode in the next
buckling studies.

The buckling load against radius-to-thickness ratio for the SS–SS 3D-GrF microshell is listed
in Table 10, where different foam distributions are taken into account. It is shown that the larger
radius-to-thickness ratio led to the lower buckling load. One can also see that the buckling loads
evaluated by the modified couple stress theory were higher than those evaluated by the classical theory,
showing that the classical theory underestimated the buckling loads of 3D-GrF microshells.
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Table 9. Variation of buckling load P (107 N) against circumferential wave number n for SS–SS
3D-GrF microshell.

n 3D-GrF-I 3D-GrF-II 3D-GrF-U

1 291.546 292.449 291.078
2 13.640 13.617 13.594
3 4.369 4.265 4.318
4 5.521 5.349 5.443
5 8.223 7.966 8.106
6 11.705 11.346 11.541
7 15.858 15.376 15.637
8 20.657 20.036 20.372
9 26.098 25.318 25.740

10 32.180 31.221 31.739

Table 10. Buckling load P (106 N) against radius-to-thickness ratio R/h for SS–SS 3D-GrF microshell
(n = 3, κ0 = 0.2).

R/h
3D-GrF-I 3D-GrF-II 3D-GrF-U

CT MCST CT MCST CT MCST

30 63.509 109.735 61.314 107.690 62.528 108.682
40 42.734 62.244 41.860 61.433 42.296 61.775
50 32.374 42.365 31.961 41.984 32.133 42.109
60 26.157 31.940 25.942 31.744 26.007 31.780
70 21.996 25.638 21.879 25.532 21.893 25.529
80 19.006 21.446 18.941 21.389 18.930 21.366
90 16.747 18.461 16.713 18.432 16.689 18.400

100 14.978 16.227 14.962 16.215 14.931 16.178

Figure 11 examines the critical buckling load against the foam coefficient for SS–SS 3D-GrF
microshells with different foam distributions. One can see that the higher foam coefficient led to the
lower critical buckling load. Additionally, the 3D-GrF-I microshell had the highest critical buckling
load. This shows that compact inner and outer surfaces and sparse mid-plane can lead to higher
structural stiffness of 3D-GrF microshells.
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Figure 12 depicts the buckling load against length-to-radius ratio for SS–SS 3D-GrF microshells
with different foam distributions. With the increase of length-to-radius ratio, buckling load decreased
initially and then increased. The lowest value of buckling loads occurred at nearby L/R = 3.5 for all
types of foam distribution.Materials 2019, 12, x FOR PEER REVIEW 21 of 25 
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Figure 12. Buckling load P against length-to-radius ratio L/R for SS–SS 3D-GrF microshell (n = 3, κ0 = 0.2). 

5. Conclusions 

In this study, size-dependent free vibration and buckling of cylindrical 3D-GrF microshells 
were investigated. Formulation of the 3D-GrF microshell was extracted using the modified couple 
stress theory and the thin shell theory. The Navier method and the Galerkin method were utilized to 
get critical buckling loads and natural frequencies of 3D-GrF microshells. Results indicate that the 
foam distribution and foam coefficient play important roles in the buckling and vibration behavior 
of 3D-GrF microshells. An increase in the foam coefficient led to the smaller natural frequency and 
critical buckling load. When the foam coefficient was small, the 3D-GrF-I microshell had the highest 
while its 3D-GrF-II counterpart had the lowest natural frequency and critical buckling load; when 
the foam coefficient was large, the 3D-GrF-U microshell had the lowest natural frequency, except in 
the C–F boundary condition. Moreover, compact inner and outer surfaces and sparse mid-plane can 
the enhance structural stiffness of 3D-GrF microshells. 
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Appendix A 

The non-zero elements in the matrices of Equation (58) are given by 
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Figure 12. Buckling load P against length-to-radius ratio L/R for SS–SS 3D-GrF microshell (n = 3, κ0 =
0.2).

5. Conclusions

In this study, size-dependent free vibration and buckling of cylindrical 3D-GrF microshells were
investigated. Formulation of the 3D-GrF microshell was extracted using the modified couple stress
theory and the thin shell theory. The Navier method and the Galerkin method were utilized to get
critical buckling loads and natural frequencies of 3D-GrF microshells. Results indicate that the foam
distribution and foam coefficient play important roles in the buckling and vibration behavior of
3D-GrF microshells. An increase in the foam coefficient led to the smaller natural frequency and
critical buckling load. When the foam coefficient was small, the 3D-GrF-I microshell had the highest
while its 3D-GrF-II counterpart had the lowest natural frequency and critical buckling load; when the
foam coefficient was large, the 3D-GrF-U microshell had the lowest natural frequency, except in the
C–F boundary condition. Moreover, compact inner and outer surfaces and sparse mid-plane can the
enhance structural stiffness of 3D-GrF microshells.
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Appendix A

The non-zero elements in the matrices of Equation (58) are given by

K1,1 =
D5,0n2

[
4R2 + l2

(
4 + n2 + km

2R2
)]

4R4 + D1,0km
2;
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K1,2

kmn
[

D5,0l2n2 +
(
−4D3,0 − 4D5,0 + D5,0km

2l2
)

R2
]

4R3 ;

K1,3 = −
km

[
2D5,1n2(l2 + 2R2)− 3D5,0l2n2R + 2R2

(
D3,1n2 + RD3,0 + D1,1km

2R2
)]

2R4 ;

K2,1 = K1,2;

K2,2 =
4D1,0n2R2 + D5,0

{
4km

2R4 + l2
[
4n2 +

(
12 + n2)km

2R2 + km
4R4

]}
4R4 ;
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nD5,0l2

(
2n2 + 5km

2R2
)
+ 2Rn

[
D1,1n2 + D5,1km

2(l2 + 2R2)+ RD1,0 + D3,1km
2R2

]
2R4 ;

K3,1 = K1,3;

K3,2 = K2,3;

K3,3 = 1
R4

[
D5,0l2n4 + 2D1,1n2R + D1,0R2 + D5,0km

2l2R2 + 2D32km
2n2R2 + 2D50km

2l2n2R2

+ 2D31km
2R3 + D50km

4l2R4 + D52km
2n2(l2 + 4R2)+ D12

(
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4R4
)]

;

M1,1 = −I1,0;

M2,2 = −I1,0;

M3,3 = −I1,0 − I1,2

(
km

2 +
n2

R2

)
;

Kg3,3 =
n2π2

L2 .

where km = mπ/L.
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