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Abstract: The influence of processing parameters on the micro-hardness and wear resistance of
a Ni-based alloy and titanium carbide (TiC) composite cladding layer was studied. Mathematical
models were developed to predict the micro-hardness and wear resistance of the cladding layer
by controlling the laser cladding processing parameters. Key processing parameters were the laser
power, scanning speed, gas flow, and TiC powder ratio. The models were validated by analysis of
variance and parameter optimization. Results show that the micro-hardness is positively correlated
with laser power and TiC powder ratio, where the TiC powder ratio shows the most significant impact.
The wear volume decreased with an increasing TiC powder ratio. The targets for the processing
parameter optimization were set to 62 HRC for micro-hardness and a minimal volume wear. The
difference between the model prediction value and experimental validation result for micro-hardness
and wear volume were 1.87% and 6.33%, respectively. These models provide guidance to optimize
the processing parameters to achieve a desired micro-hardness and maximize wear resistance in
a composite cladding layer.

Keywords: Ni35A + TiC composite; laser cladding; central composite design; micro-hardness;
wear resistance

1. Introduction

Laser cladding is a surface modification technology that is used to enhance the mechanical
properties of a substrate. In this process, a thin layer of metal powder is placed on the surface of
the substrate and both the powder and substrate are melted with a laser beam to form a cladding
layer [1,2]. Due to its modest heat affected zone, small-scale deformation, low dilution rate, and rapid
melting and solidification, laser cladding has been widely applied to repair and remanufacture crank
shaft and other high value parts in the aerospace, marine, petroleum, and chemical industries [3–5].

Recent development in laser cladding powders and surface coatings has been extended beyond
traditional materials to include composite materials. For instance, NiCrSiB series alloys are extensively
utilized in industry due to their exceptional corrosion, wear and fatigue resistance, and cost
efficiency [6–8]. Within this series, most of the research has focused on Ni60A powder. However, Ni60A
has high brittleness, which could lead to a high possibility of fracture. Ni35A possesses high plasticity
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but low hardness. However, its hardness could be improved by incorporating add-on materials [9].
TiC has a high melting point, high hardness, outstanding wear resistance, and a low coefficient of
friction. Thus, TiC has been frequently adopted to enhance material properties [10,11]. Because of the
phenomenal properties, research has been concentrated on combining nickel-based alloys and TiC to
form composite cladding materials.

Bakkar et al. investigated the microstructure, micro-hardness, wear resistance, and corrosion
resistance of different volume percentages of TiC/Inconel 625 nickel-based composite alloys. They
found that the micro-hardness and wear resistance of these type of composites could be improved
by adding an appropriate volume fraction of TiC [12]. Muvvala et al. conducted laser cladding
experiments with different weight percentages of TiC/Inconel 718 nickel-based composite alloy
powder and investigated the impact of processing parameters on the molten pool and structural
properties. Analyzing the result illustrated that optimizing processing parameters could effectively
disperse fine TiC particles, which enhanced hardness and wear resistance of the cladding layer [13].
Liu et al. produced a TiC enhanced nickel-based composite coating. They concluded that the phase
and distribution of TiC were affected by convection in the molten pool [14]. Saroj et al. created
a TiC-Inconel 825 composite coating employing a Tungsten Inert Gas (TIG) cladding method and
discovered the impact of different TiC percentages (20%, 40%, and 60%) and processing currents on
the coating morphology, micro-hardness, and wear resistance. Because of the superior wettability and
binding between nickel-based alloys and TiC, the coating hardness reached 1100 HV0.05, and the wear
resistance improved seven times over that of the substrate [15]. Sahoo et al. also utilized TIG cladding
to build TiC-Ni composite coating on an AISI304 steel substrate. The results exhibited outstanding
binding between the coating and substrate, the hardness reached 1300 HV0.05, and the wear resistance
increased 70 times with TiC-Ni composite coating when compared to the substrate [16].

Existing research on a nickel-based alloy and TiC composite material are primarily focused on the
influence of different TiC ratios and processing parameters on the structural properties, micro-hardness,
and wear resistance of the coating since micro-hardness and wear resistance are two important
factors evaluated in industrial applications. However, predicting and controlling the cladding layer
micro-hardness and wear resistance by manipulating the laser cladding processing parameters and
TiC ratio have rarely been explored. In this paper, mathematical models are developed to predict the
micro-hardness and wear resistance of the cladding layer by controlling the laser cladding processing
parameters and TiC powder ratio.

2. Materials and Methods

AISI/SAE 1045 steel was selected as the substrate with a size of 40 mm × 20 mm × 5 mm. The laser
beam diameter was adjusted to 4 mm. Cladding powder was made from Ni35A and TiC powder with
a particle size ranging from 48 µm to 106 µm. The elemental composition and morphology of Ni35A
and TiC power are shown in Table 1 and Figure 1.
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Table 1. Elemental composition (wt.%) of Ni35A and TiC powder.

Powder
Element (wt.%)

C Si O Fe Cr B T.C F.C N Ni

Ni35A 0.32 3.35 <0.05 2.75 7.75 1.65 - - - Rest
TiC - 0.02 0.5 0.08 - - >18.8 <0.5 0.5 -

Figure 2 explains the laser cladding system, which includes a laser system (YLS-3000, IPG,
Burbach, Germany), laser cladding nozzle with 300 mm focal length (FDH0273, Lasermech,
Novi, MI, USA), industrial robot (M-710iC/50, FANUC, Yamanashi, Japan), water cooling system
(TFLW-4000WDR-01-3385, Sanhe Tongfei, Sanhe, China), powder feeding system (CR-PGF-D-2,
Songxing, Fuzhou, China), control system (PLC, Mitsubishi, Japan), and laser pulse control system
(SX14-012PULSE, IPG, Burbach, Germany). Argon gas was used to protect the material during the
cladding process.
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Figure 2. Laser cladding system.

Before cladding, the 1045 steel substrate surface was cleaned with ethanol. The Ni35A and TiC
powder was mixed in a MITR–YXQM-2L ball mill machine (MITR, Changsha, China) for 30 min at
a speed of 300 rpm and then placed in a vacuum dryer for an additional 30 min at a temperature
of 120 ◦C. After completion of the laser cladding, the sample was processed by cutting, setting,
grinding, and polishing. Then the sample was immersed in 4% nitric acid and alcohol mixture for
30 s. An MVA-402TS micro-hardness tester (HDNS, Shanghai, China) was utilized to measure the
micro-hardness with a 500 g-force applied for a 30-s duration. The microstructure was observed
using a scanning electron microscope (SEM) TM3030Plus (HITACHI 550I, Tokyo, Japan). In addition,
element analysis was performed using an energy-dispersive X-ray spectroscopy (EDS) system (A550I,
IXRF, Austin, TX, USA). The wear resistance was examined with a UMT-2 high load scratch tester
(Bruker, Billerica, MA, USA). The X-ray diffraction (XRD) analysis was conducted with Ultima IV XRD
systems (Rigaku Corporation, Tokyo, Japan). 3D morphology of the abrasion surface was obtained
using white light interferometry. Afterwards, the width and depth of the worn area was measured.
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The average wear off area was obtained by repeating the previously mentioned measurement in five
different locations. In the end, wear volume was calculated by multiplying the average wear off area
by the scratching distance. The wear volume was used to evaluate wear resistance in which lower
wear volume indicates greater wear resistance. The friction coefficient was measured every 0.1 s over
a duration of 60 min. Conditions for the wear test are shown below in Table 2.

Table 2. Scratch testing parameters.

Parameters Unit Specifications

Friction pair mm Cemented Carbide—Φ 6 mm
Force N 35
Speed mm/s 10

Distance mm 4
Duration min 60

Mode - Reciprocating
Temperature ◦C Room temperature

Respond surface methodology (RSM) is an optimization method that can be used to build
a mathematic model between output and input variables. In this study, the central composite design
(CCD) module in RSM was selected. The experimental design matrix contained four factors and five
levels. The four factors were laser power (LP), scanning speed (SS), gas flow (GF), and TiC powder
ratio (PR). The variables for the factors were set to 0, ±1, and ±2 in the Design Expert software
(Version 10.0). Then the interaction respond value between input and output was obtained with
the CCD design. The intent of RSM is to build a statistical prediction model based on experimental
results. Afterwards, analysis of variance was utilized to analyze the model [17]. Multiple regression
analysis was employed to build and analyze the model between the input parameters and the output.
The polynomial regression function is shown in Equation (1) below [18], where y is the response value
and β0 is the intercept factor. The coefficients for the linear term, interaction term, and quadratic term
are βj, βij, βjj, respectively. Additionally, xi and xj represent the processing parameter, k is the number
of factors, and ε is the residual.

y = β0 +
k

∑
j=1

β jxj +
k

∑
i,j=1

βijxixj +
k

∑
j=1

β jjx2
j + ε (1)

The laser cladding processing parameter variables are exhibited in Table 3. Experimental design
and results are shown in Table 4.

Table 3. Laser cladding processing parameter variables.

Variables Notation Unit
Levels of Input Variables

Code −2 −1 0 1 2

Laser power LP kW

Actual

1.1 1.2 1.3 1.4 1.5

Scanning speed SS mm/s 4 5 6 7 8

Gas flow GF L/h 800 1000 1200 1400 1600

TiC powder ratio PR wt.% 0 20 40 60 80

Table 4. CCD experimental design and results.

Run LP (kW) SS (mm/s) GF (L/h) PR (wt.%) Micro-Hardness
(HRC)

Wear Volume
(µm3)

1 1.4 5 1400 60 75.18 1386.04
2 1.2 7 1000 20 55.70 8076.80
3 1.3 6 800 40 67.02 5840.25
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Table 4. Cont.

Run LP (kW) SS (mm/s) GF (L/h) PR (wt.%) Micro-Hardness
(HRC)

Wear Volume
(µm3)

4 1.4 7 1000 20 57.50 10,499.10
5 1.4 5 1000 20 57.78 5877.28
6 1.3 6 1200 40 63.68 5116.18
7 1.4 7 1000 60 74.32 1659.55
8 1.4 5 1000 60 73.04 669.07
9 1.2 5 1000 60 70.14 3582.03

10 1.4 5 1400 20 57.12 8248.70
11 1.2 5 1400 60 71.48 1221.86
12 1.3 6 1200 80 74.54 518.22
13 1.2 5 1000 20 59.44 14,804.70
14 1.3 6 1200 40 66.06 6982.62
15 1.3 6 1200 40 70.88 6938.96
16 1.4 7 1400 60 72.42 3408.27
17 1.2 7 1000 60 70.88 5854.99
18 1.3 6 1200 40 65.30 6821.46
19 1.2 5 1400 20 54.04 15,654.50
20 1.2 7 1400 20 58.64 10,248.70
21 1.4 7 1400 20 59.70 11,030.70
22 1.3 6 1200 0 45.98 16,519.10
23 1.3 6 1200 40 69.70 7145.65
24 1.5 6 1200 40 67.60 7670.22
25 1.3 6 1200 40 65.40 8012.80
26 1.3 4 1200 40 69.16 6209.50
27 1.1 6 1200 40 64.72 6772.47
28 1.3 8 1200 40 64.68 9153.11
29 1.2 7 1400 60 68.12 2962.03
30 1.3 6 1600 40 67.54 9341.54

3. Results and Discussion

3.1. Analysis of Variance

Variance analysis of micro-hardness and wear volume (Tables 5 and 6) was used to examine the
reasonableness of the selected model. Note that, for the micro-hardness model, its P-value is less than
0.0001 and the lack of fit is larger than 0.05. These results indicate that there is only a 0.0001 probability
of causing interference. The adequate precision (signal-to-noise ratio) value of 29.479 is larger than 4,
which indicates that model accuracy is satisfied. The closer the value of R-Square to 1 is, the better
fit the model is. The R-Square value of this model is 0.9447. In addition, the Adjusted R-Square and
Predicted R-Square values are both close to 1 and the difference between these two values is 0.0176,
which is less than the needed value of 0.2 [18]. These results demonstrate that this model has a high
level of fit and could be used to precisely predict the correlation between processing parameters and
micro-hardness. Similarly, the wear volume model also meets these expectations.

In Table 5, it can be seen that the TiC powder ratio and its quadratic term are the dominant factors
in the micro-hardness model. Laser power has a moderate effect and the effect of scanning speed is
negligible. It is evident from Table 6 that the TiC powder ratio is also the most significant parameter in
the wear volume model. The micro-hardness and wear volume models are shown below in Equations
(2) and (3), where LP is laser power, SS is scanning speed, and PR is the TiC powder ratio. LP × SS,
LP × SS, and SS × PR are the interaction terms. The quadratic term of the powder ration is represented
by PR2.

Microhardness = 58.20639 − 12.09167 × LP − 1.60125 × SS + 0.42509 × PR + 1.61250
×LP × SS + 0.31438 × LP × PR − 0.22687 × SS × PR − 4.2218 × 10−3

×PR2
(2)
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Wear Volume = 1.33239 × 105 − 85232.58542 × LP − 16189.90302 × SS − 736.06472
×PR + 11585.69688 × LP × SS + 207.21641 × LP × PR + 36.73658 × SS
×PR + 0.58615 × PR2

(3)

Table 5. Analysis of variance on micro-hardness.

Source Sum of
Squares

Degree of
Freedom

Mean
Square F Value p-Value

Prob > F

Model 1364.86 7 194.98 53.68 <0.0001 Significant
LP 24.77 1 24.77 6.82 0.0159
SS 4.08 1 4.08 1.12 0.3005
PR 1243.87 1 1243.87 342.46 <0.0001

LP × SS 0.42 1 0.42 0.11 0.7382
LP × PR 6.33 1 6.33 1.74 0.2005
SS × PR 3.29 1 3.29 0.91 0.3513

PR2 82.11 1 82.11 22.61 <0.0001
Residual 79.91 22 3.63 - -

Lack of Fit 40.37 17 2.37 0.30 0.9719 Not significant
Pure Error 39.54 5 7.91 - -
Cor Total 1444.77 29 - -

R2 0.9447 Adj R2 0.9271
Pred R2 0.9068 Adeq Precision 29.479

Table 6. Analysis of variance on wear volume.

Source Sum of
Squares

Degree of
Freedom

Mean
Square F Value p-Value

Prob > F

Model 4.321 × 108 7 6.172 × 107 18.81 <0.0001 Significant
LP 1.325 × 107 1 1.325 × 107 4.04 0.0570
SS 2.790 × 106 1 2.790 × 106 0.85 0.3665
PR 3.816 × 108 1 3.816 × 108 116.26 <0.0001

LP×SS 2.148 × 107 1 2.148 × 107 6.54 0.0179
LP×PR 2.748 × 106 1 2.748 × 106 0.84 0.3701
SS×PR 8.637 × 106 1 8.637 × 106 2.63 0.1190

PR2 1.583 × 106 1 1.583 × 106 0.48 0.4946
Residual 7.221 × 107 22 3.282 × 106 - -

Lack of Fit 6.774 × 107 17 3.985 × 106 4.46 0.0531 Not significant
Pure Error 4.471 × 106 5 8.942 × 105 - -
Cor Total 5.043 × 108 29 - - -

R2 0.8568 Adj R2 0.8112
Pred R2 0.7008 Adeq Precision 17.048

3.2. Analysis of the Micro-Hardness Model

The plot of the residual factor for the micro-hardness model is shown in Figure 3a. The almost
linear distribution of the plot indicates an exceptional fit to the model. Figure 3b shows the small-scale
error between the predicted and actual micro-hardness experimental values, which demonstrates this
model has high prediction accuracy.

Figure 4 shows laser power to be positively correlated to micro-hardness and scanning speed to
be negatively correlated with micro-hardness. This phenomenon is due to the fact that laser power
defines the amount of energy absorbed by the powder during laser cladding. With other conditions
being the same, higher laser power corresponds to more energy being absorbed. Element analysis
by EDS of the cladding layer cross section was performed on samples made with 6 mm/s scanning
speed, 1200 L/h gas flow, 40% TiC powder ratio, and laser power of 1.1 kW (Figure 5) and 1.5 kW
(Figure 6). Iron content in the cladding layer increased with the higher laser power. The distribution of
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iron is relatively even in Figure 5 due to the effects of elemental diffusion. However, the distribution
of iron in Figure 6 decreases from bottom to top, which results from more iron being diffused into
the cladding layer since higher laser power promotes more intensive elements diffusion. A higher
laser power causes an increase in TiC melting and an increased possibility of nucleation, which creates
smaller crystallite and increases the micro-hardness [19–21]. In addition, the scanning speed controls
the amount of time the cladding powder is exposed to the laser beam. With the same laser power,
a lower scanning speed increased the amount of energy delivered to the cladding material. This
condition helps the melting of TiC and improves the micro-hardness of the cladding layer. On the
contrary, a higher scanning speed reduces the exposure time, which reduces the energy delivered to
the cladding powder and has an adverse effect on melting of TiC. Thus, increased scanning speed
decreases micro-hardness.

Figure 7 shows how the interaction of laser power and the TiC powder ratio influences
micro-hardness. It is evident that the TiC powder ratio has stronger influence on the cladding layer
micro-hardness than the laser power, which is consistent with Table 5. The micro-hardness increases with
the TiC ratio because a known property of TiC is that it can serve as a hardness enhancement compound.
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Figure 8 displays the impact of different parameters on the micro-hardness. The most significant
impact on the micro-hardness is the TiC powder ratio. Laser power is linearly related to micro-hardness
and positively correlated. Scanning speed is also linearly related to micro-hardness, but has
a negative correlation.
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The wear volume of the cladding layer increases as the laser power decreases and the scanning
speed increases (Figure 10). Lower laser power results in less energy being absorbed by the cladding
layer. In addition, the grain size was measured with the Nano Measurer, where the average grain size
is 14.62 µm and 18.66 µm in the cladding layer obtained with 6 mm/s scanning speed, 1200 L/h gas
flow, 40% TiC powder ratio, and laser power 1.5 kW and 1.1 kW, respectively. Therefore, a fine crystal
grain could be obtained with higher laser power while other parameters remain the same. In addition,
according to the Hall-Petch relation, fine crystal grains will also contribute to increased cladding layer
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micro-hardness [22]. Increasing laser power could aid in grain refinement and nucleation, which
decomposes more TiC and promotes the diffusion of fine grains. Therefore, better wear resistance
could be achieved with larger laser power.
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The cladding layers shown in Figure 11 were obtained using a 1.2 kW laser power, 1400 L/h gas
flow, 60% TiC powder ratio, and scanning speeds of 5 mm/s and 7 mm/s. The lower scanning speed
results in a longer exposure time, which creates a more uniformed structure and leads to the improved
micro-hardness and wear resistance. EDS was used to conduct the element analysis in two areas for
each sample. The nickel percentage was much higher in the nickel-based structures area A and C.
Titanium percentage was higher in the TiC dendrite structures area B and D. The iron percentage in the
cladding layer at the 7 mm/s scanning speed was lower than at the 5 mm/s scanning speed. A higher
percentage of iron will enhance solid solution strengthening, which improves the micro-hardness and
wear resistance of the cladding layer [22]. Therefore, a faster scanning speed will lead to a lower wear
resistance and a larger wear volume.

It can be observed from Figure 12 that the wear volume increases as the TiC powder ratio
decreases. Ni35A powder contains elements of Fe, Cr, B, and Si. Rapid melting and solidification
during the laser cladding process causes elemental diffusion resulting in super-saturation leading
to solid solution strengthening. With the increase of the TiC powder ratio, second phase and solid
solution strengthening significantly increases due to the mixture of the ionic bond, the covalent bond,
and the metallic bond within the grain structure. This causes a significant improvement of wear
resistance [23–25].

Figure 13 demonstrates the scanning speed positively affected the wear volume and the laser
power and TiC powder ratio negatively affects the wear volume. The TiC powder ratio has the most
significant impact. All of these three processing parameters display a linear relation with wear volume.
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Figure 14 shows the XRD diffraction patterns of four randomly selected samples since it is
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3.5. Processing Parameter Optimization and Model Validation

The criteria and limits of the processing parameters and the response of the optimization are
listed in Table 7. Since the micro-hardness and wear volume are important factors to evaluate the
quality of the cladding layer, their importance levels are both assigned as five (within range 1–5, larger
number, higher importance). The hardness requirement for regular tools of 62 HRC [26] was adopted
as the target for micro-hardness. The goal for wear volume was to achieve a minimum value in order
to attain higher wear resistance.

Table 7. Optimization criteria and limit.

Criterion
Limit

Importance
Lower Upper

Variable

Laser power In range 1.1 1.5 3
Scanning speed In range 4 8 3

Gas flow rate In range 800 1600 3
TiC powder ratio In range 0 80 3

Response Micro-hardness Target = 62 45.98 75.18 5
Wear volume Minimize 518.22 16,519.10 5

The optimal parameters were found to be a laser power of 1.5 kW, scanning speed of 4 mm/s, gas
flow of 1408.558 L/h, and TiC powder ratio of 26.964% (Table 8). Based on limitation of the equipment
set point accuracy, the test parameters of the validation experiment were set as a laser power of 1.5 kW,
scanning speed of 4 mm/s, gas flow of 1400 L/h, and TiC powder ratio of 27%. The micro-hardness
and wear volume of the predicted and experimentally validated values are also shown in Table 8.
The error of the prediction was calculated to be 1.87% for micro-hardness and 6.33% for wear volume.

Table 8. Optimization result and parameter selection of the validation experiment.

LP
(kW)

SS
(mm/s) GF (L/h) PR

(wt.%) Micro-Hardness Wear
Volume Desirability

Prediction 1.5 4 1408.558 26.964 62 3067.37 0.917 Selected
Validation 1.5 4 1400 27 63.16 3261.57 - -

Figure 15a shows that the friction coefficient of the cladding layer to increase for the first 10 min
then stabilizes at a value of approximately 0.25. The friction coefficient of the substrate also increases
over time and stabilizes around 0.61. The difference in the coefficient of friction between the cladding
layer and the substrate can be explained by the TiC powder ratio of 27% in the cladding layer, which
promotes more second-phase strengthening and improves its wear resistance. The furrow wear and
a large amount of peeling observed in the substrate (Figure 15b) was not observed in the cladding
layer (Figure 15c) due to the solid solution strengthening from TiC and second-phase strengthening.
Second-phase strengthening had protected the pressing of the grinding head with only slight scratches
being observed. It demonstrates that application of a cladding layer with an optimized parameter can
be an effective surface modification method.

The 3D morphology of the worn area is shown in Figure 16. The wear volume of AISI/SAE
1045 steel was 20,114.36 µm3 (Figure 16a) and the wear volume of the cladding layer with optimized
parameters was 3261.57 µm3 (Figure 16b). Under the same testing conditions, the wear volume
of the substrate enhanced by the cladding layer was reduced 83.8% compared with the substrate.
The cladding layer improved the wear resistance 6.17 times when compared to the AISI/SAE 1045
steel substrate without cladding.
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4. Conclusions

This research developed the models relating the laser cladding processing parameters (laser
power, scanning speed, gas flow, and TiC powder ratio) of a composite material cladding layer to the
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micro-hardness and wear volume through response surface methodology. A validation experiment
conducted with optimized processing parameters verified the reliability of these models. These models
provide guidance for processing parameters optimization, composite material cladding layer property
prediction, and control. Conclusions can be drawn as follows:

1. A near linear relationship exists between micro-hardness and processing parameters. Micro-
hardness is primarily affected by the TiC powder ratio. A higher micro-hardness in the cladding
layer can be obtained by increasing the TiC powder ratio, increasing the laser power, and
decreasing scanning speed.

2. The correlation between wear volume and processing parameters also appears to be linear. TiC
powder ratio has a major influence on the wear volume of the cladding layer. Increasing laser
power and TiC powder ratio and decreasing scanning speed could achieve smaller wear volume.

3. Enhancing the surface of the substrate by applying a cladding layer with optimal processing
parameters increased the wear resistance by approximately 6.17 times and reduced the wear
volume by about 83.8%.
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