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Abstract: If supplementary cementitious materials (SCMs) are used as binders, the environmental
impact produced by cement-based composites can be reduced. Following the substitution strategy to
increase sustainability, several studies have been carried out with the aim of measuring the mechanical
properties of different concrete systems, in which a portion of Portland cement was substituted
with SCMs, such as fly ashes. On the other hand, studies on the structural behavior of reinforced
concrete (RC) elements made with SCMs are very scarce. For this reason, in this paper, a new
procedure is introduced with the aim of fulfil a new limit state of sustainability, in accordance with
the serviceability and ultimate limit states required by building codes. Although the environmental
impact of concrete decreases with the reduction of cement content, the proposed approach shows that
the carbon dioxide emission of an RC beam is not a monotonic function of the substitution rate of
cement with SCMs. On the contrary, there are favorable values of such substitution rates, which fall
within a well-defined range.

Keywords: fly ash; substitution strategy; structural concrete; steel reinforcement; limit states;
RC beams in bending; carbon footprint

1. Introduction

Reinforced concrete (RC) structures are currently designed to satisfy ultimate and serviceability
limit states [1]. Nevertheless, as stated by Model Code 2010 [2], the design of structures is a process of
developing a suitable solution in which not only must safety and functionality be guaranteed during
service life, but also sustainability must be assured. Although green concrete structures are achieved
via different approaches [3], two possible strategies can be applied to better fulfill environmental
requirements [4]:

• Material performance strategy, aimed at the reduction of clinker and thus of the volume of
structures, by increasing the mechanical performance of concrete.

• Material substitution strategy, which consists of substituting clinker with cementitious and/or
pozzolanic mineral admixtures (e.g., fly ashes, silica fumes, etc.).

In several cases, these two strategies are contemporarily used, such as in the substitution of
cement with supplementary cementitious materials (SCMs), which can be byproducts of the industrial
process. For instance, coal fly ashes, deriving from the combustion of coal in power plants and which
can be used to partially substitute Portland cement, can also enhance the strength and the durability of
traditional concrete [5].

From a practical point of view, the abovementioned strategies are not well integrated into the
current limit state design approach. In other words, there is not a single procedure capable of assuring
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structural safety while also minimizing the environmental impact of concrete elements. In almost
all cases, after designing the mechanical performance of RC structures, the environmental impact is
assessed through broad-based green building rating schemes [2]. As the most common rating systems
grant a posteriori (i.e., after building the structure) sustainability certificate, the sustainability and
the mechanical performances of different concretes cannot be compared [6–8]. Hence, the European
Union (EU) target to reduce the greenhouse gasses GHG emissions by 20% [9] cannot be fulfilled by
the cement and concrete industry if the current mechanical and environmental approaches used to
design RC structures are not integrated.

In the opinion of the authors, to design more sustainable reinforced concrete structures, a new
limit state has to be introduced and used in combination with the traditional limit states. In this
way, a code-specific language addressing sustainability practices, which is one of the key objectives
of the American Concrete Institute ACI Concrete Sustainability Forum [10], can be developed. Thus,
here, a simply supported beam is designed not only to satisfy the bearing capacity and deflection
limits, but also to reduce, as much as possible, the environmental impact and fulfill the EU target [9].
Specifically, an integrated ecological and mechanical procedure is herein proposed to select the best
concrete with the optimal replacement rate of cement with fly ash.

2. The Sustainability of Materials

In the material performance strategy, the CO2 emitted per cubic meter of concrete increases with
the concrete strength. According to Habert’s and Roussel’s [4] model (see Figure 1a), a quadratic
function can define this relationship:

β = δ
√

fc (1)

where β = mass of CO2 emitted by the production of a cubic meter of concrete (whose binder is
only cement); fc = average compressive strength of concrete (whose binder is only cement); and δ =

coefficient of proportionality.
Conversely, the application of the substitution strategy, e.g., replacing part of the cement with fly

ash, produces a decrement of the initial values of CO2 emission, βA, and concrete strength, fcA, in a
specific concrete system (Figure 1b).
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Figure 1. The impact of concrete: (a) the quadratic function proposed by Habert and Roussel [4]; (b) the
decrement of β and fc due to the substitution of cement with fly ash in a specific concrete system, whose
initial values of CO2 emission and average compressive strength are βA and fcA, respectively.

The new values of fc and β of concrete in which part of the cement is substituted by fly ash, depend
on the initial values βA and fcA (of a concrete made by only cement) and on the rate of substitution S.
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Thus, for given values of βA, fcA, and S, by means of the following functions, both fc and β can
be evaluated:

fc = (1 + α·S) fcA (2)

β = (1 + γ·S) βA (3)

where S = is the substitution rate of cement with fly ash that modifies fcA and βA into fc and β,
respectively; α = strength coefficient; and γ = sustainability coefficient. Obviously, for a specific
concrete system, the three coefficients α, δ, and γ have to be evaluated through the regression analyses
of the available experimental data.

The Tests of Lam et al. [11]

Lam et al. [11] investigated the effects of replacing cement by fly ash on the compressive strength of
concrete. The investigation included 15 concretes, having 3 sets of water/cement ratios and containing
low and high volumes of fly ash. The mixtures taken into consideration are reported in Table 1.
The same Table also shows the results of compressive strength measured on the cylindrical specimens
at 28 days. To evaluate the impact of the concrete components, in terms of CO2 released into the
atmosphere, the data reported in Table 2 are assumed herein [8].

Table 1. The concretes tailored and tested by Lam et al. [11].

Mix w/c Cement (kg/m3) Fly Ash (kg/m3) Aggregate (kg/m3) Superplasticizer (kg/m3) fc (MPa)

S1-0 0.3 500 0 1810 7.5 82.5
S1-15 0.3 425 75 1810 7.5 77.9
S1-25 0.3 375 125 1810 7.5 79.1
S1-45 0.3 275 225 1810 7.5 64
S1-55 0.3 225 275 1810 7.5 57.1
S2-0 0.4 400 0 1810 7.5 55.8

S2-15 0.4 340 60 1810 7.5 44.8
S2-25 0.4 300 100 1810 7.5 44.1
S2-45 0.4 220 180 1810 7.5 32.7
S2-55 0.4 180 220 1810 7.5 32.4
S3-0 0.5 410 0 1810 7.5 42.6

S3-15 0.5 348.5 61.5 1810 7.5 38.1
S3-25 0.5 307.5 102.5 1810 7.5 35.2
S3-45 0.5 225.5 184.5 1810 7.5 30.4
S3-55 0.5 184.5 225.5 1810 7.5 25.9

Table 2. The environmental impact of the components of reinforced concrete (RC) structures [8].

Materials Unit Global Warming Potential (GWP) CO2 (kg)

Cement Type I 52.5 kg 0.832
Ground limestone kg 0.0191

Fly ash kg -
Silica fume kg -
Aggregates kg 0.00246

Steel kg 1.50
Water kg 0.000318

Superplasticizer kg 0.720
Air entraining kg 0.0860

Retarder kg 0.0760

Accordingly, the following values can be obtained through least squares approximation of the
experimental data reported in Tables 1 and 2:

• δ = 48.088 kg CO2/(m3 MPa0.5);
• α = −0.006732;
• γ = −0.009731.
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Such parameters, to be used in Equations (1)–(3), seem to be independent of the water/cement
ratio and are included in the procedure illustrated in Figure 2, herein used to evaluate the curves fc-S
and β-S of a specific concrete system. For instance, the diagram depicted in Figure 3 shows the results
of the proposed procedure applied to the three series of specimens tested by Lam et al. [11].
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3. The Limit States of an RC Beam in Bending

According to Eurocode 2 (EC2) [1] the ultimate limit states of RC beams in bending (Figure 4a,b)
depend on the constitutive relationships of materials. For normal-weight concrete of a class lower
than 50 MPa, the parabola–rectangle relationship illustrated in Figure 4c can be used. The bilinear
elastic–perfectly plastic relationship is assumed for steel in tension (Figure 4d). In the latter, after
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yielding (i.e., εs > εyd = fyd/Es, where Es = 200 GPa = elastic modulus of steel), the stress is constant and
equal to the yielding strength, regardless of the strain.

The design strengths of both materials are computed in accordance with the partial safety factors
given by Eurocode 2 [1]:

σcd = 0.85
fck

γc
(4)

fyd =
fyk

γs
(5)

where fck = characteristic compressive cylinder strength of concrete at 28 days; fyk = characteristic yield
strength of reinforcement; γc = 1.5 = partial safety factor of concrete; and γs = 1.15 = partial safety
factor of steel.Materials 2019, 12, x FOR PEER REVIEW 6 of 12 
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subjected to distributed loads; (b) the limit state profile in a cross-section; (c) the parabola–rectangle
relationship for concrete; and (d) the elastic–perfectly plastic relationship for steel.

With the constitutive laws illustrated in Figure 4c,d, an RC cross-section can be designed in order
to satisfy the following condition:

MRd ≥MEd (6)

where MEd = design bending moment applied to the cross-section and produced by the external actions
and MRd = design bending moment capacity of the cross-section.

The value of MRd can be analytically computed assuming the limit strain conditions illustrated in
Figure 4b. Specifically, the maximum strain of concrete is reached in the compressed edge of the beam,
whereas the strain of steel in tension should be larger than or equal to that at yielding (i.e., εs ≥ εyd).

Under these assumptions, the equilibrium and compatibility equations provide [12]:

ω = 0.81 ξ (7a)

µRd = 0.81 ξ(1− 0.42ξ) (7b)

where, according to the symbols reported in Figure 4b, the following non-dimensional geometrical and
mechanical properties are taken into consideration
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ξ =
xc

d
(8)

ω =
As fyd

b d σcd
(9)

µRd =
MRd

b d2 σcd
(10)

If the value of ξ is fixed, the optimal values of ω and µRd can be calculated through Equation (7).
Generally, code rules fix the minimum and the maximum value of the reinforcement area [1,2]

as follows:
k1

b d
fyk
≤ As ≤ k2

b d
fyk

(11)

where k1 = 1.4 and k2 = 3.5 are the values used in Italy.
To reduce the volume of the cross-section, it is better to design the area As close to the upper

bound of Equation (11), thus:

ω =
k2

σcd γs
(12)

If Equation (12) is substituted into Equation (7a), the optimal value of ξ can be obtained:

ξ =
k2

0.81 σcd γs
(13)

It must be noted that in the case of concrete C25 (which is the most used in Italy), the value of
ξ = 0.25 is obtained when k2 = 3.5 and γs = 1.15. As stated by EC2 [1], the plastic analysis of beams,
frames, and slabs can be performed without the explicit verification of the required ductility when
ξ ≤0.25 for concrete strength classes lower than C50.

Finally, by substituting Equation (9) into Equation (12) and Equation (10) and Equation (13) into
Equation (7b), the following formulae can be obtained:

As =
b d k2

fyd γs
(14a)

MRd = b d2 k2

γs

(
1− 0.42

k2

0.81 σcd γs

)
(14b)

As the direct computation of deflection is not always necessary [1], the span/depth ratio is herein
limited for avoiding deflection problems in RC beams. In other words:

H ≥
L
ψ

(15)

where L= span length of the beam (Figure 4a); H = height of the beam (Figure 4a); and ψ = coefficient.
The depth of the concrete cover c is related to durability requirements. Thus, it depends on the

environmental conditions (i.e., the class of exposition), and it can be assumed as a fraction of the
height H:

c ≥
H
ρ

(16)

where ρ = coefficient.

4. A New Design Procedure for RC Beams in Bending

When a concrete system is introduced (and, therefore, δ, α and γ are known), it is possible to select
a specific value of strength fc (herein assumed as the average value of strength) and the corresponding
coefficient β. For the beam depicted in Figure 4a, the length of the span L, the density of concrete
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De, and the applied load qd are the input data. The values of the depth H and concrete cover c can
be obtained from the coefficients ψ and ρ, regarding the serviceability (control of deflection) and the
durability requirements, respectively.

Under these conditions, to obtain the geometry of the beam, only the width b and the area of the
reinforcement As have to be calculated. Such values mainly depend on the maximum bending moment
acting on the beam:

MRd = MEd = (1.3 b H De + 1.5 qd)
L2

8
(17)

where 1.3 and 1.5 are the partial safety factors of the structural weight and service load.
If Equation (17) is substituted into Equation (14b), and assuming d = H − c, then the width b can

be obtained:

b =
1.5 qd L2[

8 (H − c)2 k2
γs

(
1− 0.42 k2

0.81 σcd γs

)
− 1.3 H De L2

] (18)

The area of reinforcement in tension is then computed with Equation (14a), and the global impact
of the beam BI, in terms of CO2 released into the atmosphere, is:

BI = β(b H −As) + φ As (19)

where φ is the environmental impact of steel as obtained from Table 2.
The procedure illustrated in Figure 2 and used to calculate the fc-S and β-S functions can now be

extended to calculate the relationships b–S, As–S, and BI–S of the RC beam illustrated in Figure 4a.
The flow chart of the new procedure is drawn in Figure 5, whereas Figure 6 shows the curves computed
in the case of f ckA = 25 MPa (f ckA = the characteristic value of strength in the absence of cement
substitution = fcA − 8 MPa [1,2]) and:

• δ = 48.088 kg CO2/(m3 MPa0.5);
• α = −0.006732;
• δ = −0.009731;
• ψ = 0.1;
• ρ = 0.07;
• L = 5000 mm;
• De = 25 kN/m3;
• qd = 46.5 kN/m;
• k2 = 3.5;
• φ = 1174.525 kg CO2 /m3.

As shown in Figure 3, β (and thus fc) linearly decreases with S (see also Figure 6a). Consequently,
the geometrical dimensions of the beam increase as the substitution rate of cement with fly ash
increases. As a matter of fact, the width of the beam b becomes larger as S grows. Nevertheless, the b-S
function (Figure 6b) is not linear as is β-S (Figure 6a). In particular, when S > 75% the width of the
beam drastically increases for small increments of S, and Figure 6b shows a vertical asymptote when
S→ 100%.

The above observations are also valid for the area of the steel used to reinforce the tensile zone of
the RC beam. Namely, Figure 6c reveals a monotonic increment of As with S, but the As-S function
shows two different slopes before and after S � 75% (Figure 6c). As a result, the global impact of an RC
beam decreases when S < 75%, whereas BI grows when S > 75% (Figure 6d). In other words, although
the unitary impact of concrete always decreases with S (see Figure 6a), the global impact of a beam BI
is not a monotonic function of S (see Figure 6d). For the given initial strength and impact (i.e., fcA and
BI0), the values of BI have a minimum, BImin, in correspondence to the substitution rate SF (where
0 < SF < 100%).
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It must be noted that the shape of the functions BI-S strongly depends on f ckA. As shown in
Figure 7, where five BI-S functions, corresponding to five different values of f ckA, are reported, BImin

tends to decrease and SF tends to increase if the initial strength of the concrete increases. However, BI0

becomes larger as f ckA increases, and, when S < SF, although the beam can be cast with a low amount
of concrete (and steel, as well), the impact is higher due to the high content of cement. On the contrary,
when S > SF, the impact increases despite the low amount of cement (and low concrete strength),
because large amounts of concrete and steel are needed. Finally, the proposed model reveals that for
high values of f ckA, the best substitution rate of cement with fly ash can be 100% (i.e., SF = 100%).
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different f ckA.

From a practical point of view, the substitution rate cannot be too high, because some problems
occur in the concrete system, whose early strength decreases with S [13]. Thus, to reduce the emission
of CO2, a new limit state of sustainability, corresponding to the maximum environmental impact of a
structure, is herein introduced. For instance, code rules or tenders can require a concrete in which
the substitution of cement with fly ashes leads to a reduction of the carbon dioxide emission of larger
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than 20% (as suggested in [9]), with respect to the emission produced by the same concrete system
when S = 0. Referring to Figure 8, where the concrete strength f ckA is 25 MPa, a new limit BImax =

80% BI0 must be introduced. It defines a range of the admissible S, where the optimal substitution
rate of cement with fly ash (or others SCMs) can be selected. The best S does not necessarily coincide
with SF, because, for large substitutions, the RC beams and the area of rebar are too large to be used
in practice. Moreover, higher rates of substitution would provide a decrease in the early strength
of concrete. Thus, some building codes impose lower limits on the usage rates of fly ash than the
feasibility rates measured by laboratory tests.

Finally, it must be noted that though the proposed approach herein applies to fly ashes only, it can
be easily generalized to other SCMs. Indeed, the procedure illustrated in Figure 5 can be used in all
cases, if the parameters of Equations (2) and (3) are experimentally measured for the supplementary
cementitious material taken into consideration.
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Figure 8. Application of a possible sustainability limit state and definition of the range of admissible S
(f ckA = 25 MPa).

5. Conclusions

According to the results obtained by applying the design procedure previously described,
the following conclusions are drawn:

• The use of SCMs as cement replacement can be directly integrated within the current design
procedure of RC structures, as long as specific experimental analysis on concrete systems provides
the function fc-S and β-S (Figure 1).

• In the new approach, the design of an RC beam in bending (Figure 4), performed in accordance
with the traditional ultimate and serviceability limit states, also includes the evaluation of the
environmental impact BI, herein computed as a function of the substitution rate of cement
with SCMs.

• In absence of cement substitution (i.e., S = 0), BI increases with the initial strength fcA. Nevertheless,
the relative minimum of the curve BI-S moves towards higher S. As BImin decreases when fcA
increases, it seems more convenient to use high strength concrete systems (i.e., with the highest
fcA ) but with the maximum substitution rate of cement with fly ash.

• If a new limit state of sustainability (i.e., BImax) is introduced, the reduction of the carbon dioxide
emission can be achieved also in the case of low values of S.
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Finally, future works will be devoted to calculating BI-S functions in more complex structures,
such as frames and slabs, as well as considering the effects of other actions (e.g., shrinkage, seismic
loads, etc.).
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